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In decaying magnetohydrodynamic (MHD) turbulence with a strong magnetic field, the
spectral magnetic energy density is known to increase with time at small wavenumbers
k, provided the spectrum at low k is sufficiently steep. This process is called inverse
cascading and occurs for an initial Batchelor spectrum, where the magnetic energy per
linear wavenumber interval increases like k4. For an initial Saffman spectrum that is
proportional to k2, however, inverse cascading has not been found in the past. We study
here the case of an intermediate k3 spectrum, which may be relevant for magnetogenesis in
the early Universe during the electroweak epoch. This case is not well understood in view
of the standard Taylor expansion of the magnetic energy spectrum for small k. Using high
resolution MHD simulations, we show that, also in this case, there is inverse cascading
with a strength just as expected from the conservation of the Hosking integral, which
governs the decay of an initial Batchelor spectrum. Even for shallower kα spectra with
spectral index α > 3/2, our simulations suggest a spectral increase at small k with time t
proportional to t4α/9−2/3. The critical spectral index of α = 3/2 is related to the slope of
the spectral envelope in the Hosking phenomenology. Our simulations with 20483 mesh
points now suggest inverse cascading even for an initial Saffman spectrum.
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1. Introduction

Standard hydrodynamic turbulence exhibits forward cascading whereby kinetic energy
cascades from large scales (small wavenumbers) to smaller scales (larger wavenumbers)
(Kolmogorov 1941). This also happens in decaying turbulence, except that the rate of
energy transfer to smaller scales is here decreasing with time (Batchelor 1953; Saffman
1967). In magnetohydrodynamic (MHD) turbulence, the situation is in many ways rather
different. This is primarily owing to magnetic helicity (Hosking & Schekochihin 2021),
which is a conserved quantity in the absence of magnetic diffusivity (Woltjer 1958).
Magnetic helicity is an important property of MHD turbulence that is not shared with
hydrodynamic turbulence, even though there is kinetic helicity that is also an invariant
if viscosity is strictly vanishing (Moffatt 1969). However, this is no longer true when
the viscosity is finite (Matthaeus & Goldstein 1982). This is because kinetic helicity
dissipation occurs faster than kinetic energy dissipation, whereas magnetic helicity
dissipation occurs more slowly than magnetic energy dissipation for finite magnetic
diffusivity (Berger 1984).

The importance of magnetic helicity conservation has been recognized long ago by
Frisch et al. (1975) and Pouquet, Frisch & Leorat (1976) in cases when it is finite
on average. In that case, it leads to the phenomenon of an inverse cascade. In forced
turbulence, this means that part of the injected energy gets transferred to progressively
larger scales (Brandenburg 2001). This process is at the heart of large-scale dynamos,
which can be described by what is known as the alpha effect (Steenbeck, Krause & Rädler
1966), and is relevant for explaining the large-scale magnetic fields in stars and galaxies
(Parker 1979). In decaying MHD turbulence, on the other hand, inverse cascading leads
to a temporal increase of the magnetic energy at the smallest wavenumbers. A similar
phenomenon has never been seen in hydrodynamic turbulence, where the spectrum at
small k remains unchanged.

Even when the magnetic helicity vanishes on average, there can still be an inverse
cascade. In that case, it is no longer the mean magnetic helicity density whose
conservation is important, but the magnetic helicity correlation integral, also known as
the Hosking integral (Hosking & Schekochihin 2021; Schekochihin 2022; Zhou, Sharma
& Brandenburg 2022). In non-helical turbulence, the possibility of inverse cascading
with an increase of spectral magnetic energy at small wavenumbers was originally only
seen for steep initial magnetic energy spectra, EM(k) ∝ k4, where k is the wavenumber.
Here, EM(k) is defined as the spectral magnetic energy per linear wavenumber interval
and is normalized such that

∫
EM(k, t) dk = 〈B2〉/2 ≡ EM(t) is the mean magnetic energy

density. Those k4 spectra were motivated by causality arguments, requiring that magnetic
field correlation functions strictly vanish outside the light cone (Durrer & Caprini 2003).
Such a field can be realized by a random vector potential that is δ-correlated in space,
i.e. the values of any two neighbouring mesh points are completely uncorrelated. The
magnetic vector potential A therefore has a k2 spectrum, which implies that the magnetic
field B = ∇ × A has a k4 spectrum.

For the case of a shallower EM(k) ∝ k2 spectrum, no inverse cascade has been
found (Brandenburg et al. 2017; Reppin & Banerjee 2017). This was explained by the
conservation of the magnetic Saffman integral (Brandenburg & Larsson 2023), which
constitutes the coefficient in the leading quadratic term of the Taylor expansion of the
magnetic energy spectrum for small k.

The intermediate case of a k3 spectrum may be realized during the electroweak epoch
in cosmology due to a distribution of magnetic charges as shown in Vachaspati (2021) and
Patel & Vachaspati (2022). The evolution of the magnetic field in this case is less clear.
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Inverse cascading for intermediate MHD turbulence spectra 3

Reppin & Banerjee (2017) reported weak inverse cascading, but it is not obvious whether
this agrees with what should be expected based on the conservation of the Hosking
integral, or whether it is some intermediate case in which the possible conservation of both
the magnetic Saffman integral and also the Hosking integral can play a role. Investigating
this in more detail is the purpose of the present work.

2. Preliminary considerations
2.1. Relevant integral quantities in MHD

Three important integrals have been discussed in the context of decaying MHD turbulence.
The first two are the magnetic Saffman and magnetic Loitsyansky integrals (Hosking &
Schekochihin 2021)

ISM =
∫

〈B(x) · B(x + r)〉 d3r, (2.1)

ILM = −
∫

〈B(x) · B(x + r)〉 r2 d3r, (2.2)

respectively. Here, angle brackets denote ensemble averages, which we approximate by
volume averages. The integrals (2.1) and (2.2) are analogous to those in hydrodynamics,
but with B being replaced by the velocity u. The third relevant quantity is the Hosking
integral (Hosking & Schekochihin 2021; Schekochihin 2022)

IH =
∫

〈h(x)h(x + r)〉 d3r, (2.3)

where h = A · B is the magnetic helicity density. By defining the longitudinal correlation
function ML(r) through

〈B(x) · B(x + r)〉 = 1
r2

d
dr

(r3ML), (2.4)

the integrals ISM and ILM emerge as the coefficients of the Taylor expansion of the magnetic
energy (Subramanian 2019). A similar expansion also applies to the magnetic helicity
variance spectra (Hosking & Schekochihin 2021).

For power spectra that decay sufficiently rapidly, a Taylor expansion of (kr)−1 sin kr
gives

Sp(B)|k→0 = 2k2

π

∫
d
dr

(r3ML)

(
1 − k2r2

6
+ · · ·

)
dr ≡ ISM

2π2
k2 + ILM

12π2
k4 + · · · , (2.5)

Sp(h)|k→0 = IH

2π2
k2 + · · · . (2.6)

Here, Sp(h) = (k2/8π3L3)
∮

4π
|h̃|2 dΩk is the shell-integrated spectrum in volume L3, the

tilde marks a quantity in Fourier space and Ωk is the solid angle in Fourier space, so that∫
Sp(h) dk = 〈h2〉, and likewise for

∫
Sp(B) dk = 〈B2〉. The definition of shell integration

implies that Parseval’s theorem in the form 〈h2〉L3 = ∫ |h̃|2 d3k/(2π)3 is obeyed. The
magnetic energy spectrum is defined as EM(k, t) = Sp(B)/2μ0, where μ0 is the magnetic
permeability, but in the following, we measure B in units where μ0 is set to unity.

According to (2.5), Sp(B) seems to be constrained to having only even powers of k in
the limit k → 0. Furthermore, Sp(B) ∝ k2 when ISM is finite and dominant, and likewise,
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Sp(B) ∝ k4 when ILM is finite and dominant. The expansion in powers of k in (2.5) holds,
however, only when the coefficients in the expansion are finite. This is the case if, for
example, ML is an exponentially decaying function of r. If, on the other hand, ML decays
only as a power law, the expansion does not hold since higher-order coefficients will be
divergent. In such cases the leading-order behaviour in k may consist of odd (or even
arbitrary) powers of k. A simple counterexample to the expansion in (2.5) is provided
by considering the case r3ML ∝ r for large r in (2.4). The specific case of Sp(B) ∝ k3

occurs for magnetic fields produced during electroweak symmetry breaking as discussed
in Vachaspati (2021) and Patel & Vachaspati (2022).

2.2. Competition between ISM and IH

Using the Taylor expansion of the magnetic energy spectrum in (2.5), we see that, for
initial Saffman scaling (EM ∝ kα with α = 2), the magnetic Saffman integral ISM must
be non-vanishing. For initial Batchelor scaling (α = 4), on the other hand, ISM vanishes
initially and cannot play a role. In that case, the conservation of IH becomes important and
leads to inverse cascading, which then also implies the non-conservation of ISM (Hosking
& Schekochihin 2021).

Our question here is what happens in the intermediate case when α = 3, a case
already discussed in the supplemental material of Hosking & Schekochihin (2023). In
that situation, Sp(B) and Sp(h) cannot be Taylor expanded and it is unclear whether there
is then inverse cascading, because it would require violation of the conservation of ISM, or
whether ISM is conserved, as for α = 2, and there is no inverse cascade.

2.3. Growth of spectral energy at small wavenumbers
We now want to quantify the growth of spectral energy at small wavenumbers. As in
Brandenburg & Kahniashvili (2017), we use self-similarity, i.e. the assumption that the
magnetic energy spectra at different times can be collapsed on top of each other by suitable
rescaling. Thus, we write

EM(k, t) = ξ
−β

M φ(ξMk), (2.7)

where ξM(t) = ∫
k−1EM(k) dk/EM is the integral scale and β depends on the relevant

conservation law: β = 2 for Saffman scaling and β = 3/2 for Hosking scaling. This
follows from the dimensions of the conserved quantity; see Brandenburg & Larsson (2023)
for details. Next, we assume a certain initial subinertial range scaling, EM(k, 0) = aα0kα,
where aα0 is a coefficient determining the initial field strength. Thus, for kξM � 1, we can
write φ = aα0(ξMk)α, so

EM(k, t) = aαξ
α−β

M kα (kξM � 1). (2.8)

Assuming power-law scaling, ξM(t) ∝ tq, we get

lim
k→0

EM(k, t) ∝ t(α−β) q. (2.9)

From this, it follows that inverse cascading is possible for α > β, so α = 2 and β = 3/2
could, in principle, still give rise to inverse cascade.

Following Brandenburg & Kahniashvili (2017), who assumed a self-similar decay,
we have q = 2/(β + 3), so q = 2/5 for β = 2 and q = 4/9 for β = 3/2; see table 1
for a comparison of different theoretical possibilities for the various exponents. Thus,
unless ISM were conserved and there were therefore no inverse cascades, we must expect
limk→0 EM(k, t) ∝ t2/3 for cubic scaling (EM ∝ k3, i.e. between Saffman and Batchelor

https://doi.org/10.1017/S0022377823001253 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001253


Inverse cascading for intermediate MHD turbulence spectra 5

α β q (α − β) q comment, property

1.7 3/2 4/9 4/45 ≈ 0.09 non-integer scaling, assuming Hosking integral conserved
2 2 2/5 0 Saffman scaling, assuming Saffman integral conserved
2 3/2 4/9 2/9 ≈ 0.22 Saffman scaling, assuming Hosking integral conserved
2.5 3/2 4/9 4/9 ≈ 0.44 non-integer scaling, assuming Hosking integral conserved
3 3/2 4/9 2/3 ≈ 0.67 cubic scaling, assuming Hosking integral conserved
4 3/2 4/9 10/9 ≈ 1.11 Batchelor scaling, assuming Hosking integral conserved
6 3/2 4/9 (2) very blue spectrum

TABLE 1. Summary of (α − β) q for Saffman (α = 2), Batchelor (α = 4) and intermediate
(1.7 ≤ α ≤ 3) spectra under the assumption that either the Saffman integral is conserved (β = 2)
or the Hosking integral (β = 3/2). Two non-integer values of α are also considered. For α = 6,
the subinertial range quickly becomes shallower with time, so the value (α − β) q = 2 does not
apply and is put in parentheses.

scalings) when the Hosking integral is conserved (β = 3/2 and q = 4/9). Let us also
note that the case α > 4 reduces to that of α = 4 after a short time; see Appendix A.
In the following, however, we present numerical simulations demonstrating that, for
3/2 < α ≤ 4, there is indeed inverse cascading with the expected rise of spectral magnetic
energy at small values of k. We focus on the α = 3, but we also consider α 
= 3 to show that
an inverse cascade always occurs for α > 3/2 and that the Hosking integral is conserved.

3. Simulations

We perform simulations in a domain of size (2π)3, so the lowest non-vanishing
wavenumber is k ≡ k1. For most runs, we use k1 = 1, but we use k1 = 0.02 for what
we call runs A and D. For the run with α = 3 (run B), as well as for all other runs, we
assume that the initial magnetic energy spectrum peaks at k0 = 60 k1, and therefore we
consider spectral values for k = k1 to approximate the limit k → 0. We use N3 = 20483

mesh points in all those simulations, so the largest wavenumber is 1024. This is similar
to a run of Zhou et al. (2022) with α = 4, which is here called run C. We also compare
with some other runs that we discuss later. All simulations are performed with the PENCIL
CODE (Pencil Code Collaboration et al. 2021), which solves the compressible, isothermal
equations using sixth-order finite differences and a third-order time stepping scheme.

In the numerical simulations, the sound speed cs is always chosen to be unity, i.e. cs = 1.
The initial position of the spectral peak is at k = k0 and its numerical value is chosen
to be 60 and the lowest wavenumber in the domain is unity, or, when using the data of
Brandenburg & Larsson (2023), k0 = 1 and k1 = 0.02, so that k0/k1 = 50. The magnetic
diffusivity is η k1/cs = 2 × 10−6 in runs B and C, so η k0/cs = 1.2 × 10−4. In some runs
with α = 2, we also present results for larger values of η. The magnetic Prandtl number,
i.e. the ratio of kinematic viscosity ν to magnetic diffusivity, PrM = ν/η, is unity for most
of our runs. For runs A and D, we have η k0/cs = 5 × 10−5 and ν k0/cs = 2 × 10−4, so
PrM = 4.

Neither hyperviscosity nor magnetic hyperdiffusivity are used in any of our runs.
Hyperviscosity and magnetic hyperdiffusivity are sometimes used to enhance the length
of the inertial range. This would give rise to different scalings, as explained in the works
of Hosking & Schekochihin (2021) and Zhou et al. (2022). This led to the idea that a finite
reconnection time could significantly prolong the decay (Zhou et al. 2019; Zhou, Loureiro
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(a)

(b)

FIGURE 1. (a) Values of EM(k, t) and (b) Sp(h) vs k for run B with α = 3 at t = 2, 5, 10, 25,
50, 100 and 200. The first three times are shown as black dashed, solid and dotted lines. The
next four times are shown as solid blue, green, orange and red lines. The upward arrow in (a)
indicates the direction of time. The inset in (a) shows that EM(k1, t) ∝ t2/3.

& Uzdensky 2020; Bhat, Zhou & Loureiro 2021). However, this aspect will not be pursued
in the present paper.

The initial magnetic field strength is characterized by the Alfvén speed vA ≡ Brms/
√

ρ,
where ρ is the gas density. For most of our runs, we choose rather strong magnetic fields
with an initial value vA0/cs ≈ 0.87.

3.1. Inverse cascading
The results for the magnetic energy and helicity variance spectra are shown in figure 1,
which shows inverse cascading with EM(k1, t) ∝ t2/3 and Sp(h) = const. for k → 0. The
temporal increase at low k is compatible with table 1 for α = 3, β = 3/2, q = 4/9, and
thus (α − β) q = 2/3. For general values 3/2 ≤ α ≤ 4, the spectral increase at small k is
proportional to t4α/9−2/3.

In the supplemental material of Hosking & Schekochihin (2023), it was proposed
that the evolution for α ≤ 3 deviates from self-similarity at intermediate times, and that
the spectrum might show a ‘pile up’ to the left of the peak where it would locally be
approaching k4 scaling. In fact, this was already proposed by Vachaspati (2021, see his
figure 16). While we cannot exclude the possibility of a short k4 range, figure 1(a) suggests
that such a tendency could at best be identified at intermediate times. However, according
to the phenomenology of Hosking & Schekochihin (2023), this range should become wider
at later times. This is certainly not the case in the simulations, but there is the worry that, at
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late times, our results become affected by finite-size effects; see the blue and green curves
for t = 25 and 50, respectively.

At early times, our simulations are poorly resolved and one might wonder whether they
are then still reliable. Poor resolution can be seen by the lack of a proper dissipation range
in figure 1(a) for t = 2. At later times, however, the simulations are certainly well resolved
and inverse cascading is still found to persist. Thus, we argue that the initial phase does not
adversely affect our results. Indeed, sufficiently small viscosity and magnetic diffusivity
are crucial for being able to verify the expected Hosking scaling.

Next, we compare in figure 2 compensated spectra, which allow us to determine
aα = Sp(B)/2kα and IH → 2π2Sp(h)/k2 for small k, where the k-dependence of those
compensated spectra is approximately flat. The fact that the magnetic Saffman integral is
not conserved is evidenced by the increase in the height aα(t) of the compensated magnetic
spectra; see figure 2(a,b). Only for α = 2 does the height stay nearly constant, as was
already verified by Brandenburg & Larsson (2023). In that case, we have ISM = 4π2a2.
However, we return to this aspect in § 3.6, where our higher resolution simulations now
suggest that, even in that case, the decay is governed by the conservation of the Hosking
integral rather than the magnetic Saffman integral.

In figure 2(d), we see that Sp(h) shows a distinctly downward trend with k for the
smallest k values. This suggests that the conservation property of IH begins to deteriorate,
especially at late times. To clarify this further, even more scale separation would be useful,
i.e. a run with a larger value of k0. Such runs at a resolution of 20483 mesh points are,
however, rather expensive, but it is interesting to note that, even for the case of an initial
k4 spectrum, the compensated spectra show a similar downward trend with k when the
numerical resolution is only 10243; see figure 3(d) of Brandenburg & Larsson (2023),
which corresponds to our run D. It should also be noted that, in figure 2(d), the last time
is t = 190/csk1, while, in figure 2(c), the last time is only 60. The two times correspond to
t ηk2

0 ≈ 1.4 and 0.4, respectively.

3.2. Universal scaling constants
Given that IH is reasonably well conserved and enters the evolution of magnetic energy
and correlation length, as well as the spectral envelope of the peak, through dimensional
arguments, it is useful to determine the non-dimensional coefficients in these relations.
This was done recently for the cases α = 2 and α = 4; see Brandenburg & Larsson (2023),
who computed the coefficients C(ξ)

H , C(E)

H and C(E)

H , defined through the relations

ξM(t) = C(ξ)

i Iσ
i tq, EM(t) = C(E)

i I2σ
i t−p, EM(k) = C(E)

i I(3+β)/σ

i (k/k0)
β, (3.1a–c)

where the index i in the integrals Ii and the coefficients C(ξ)

i , C(E)

i and C(E)

i stands for SM
or H for magnetic Saffman and Hosking scalings, respectively, and σ is the exponent with
which length enters in Ii: σ = 5 for the magnetic Saffman integral (i = SM) and σ = 9
for the Hosking integral (i = H). In the following, we focus on the case i = H, but refer
to Brandenburg & Larsson (2023) for comparisons with i = SM. We recall that k0 is the
initial position of the spectral peak. Note that the last expression of (3.1a–c) describes an
envelope under which E(k, t) evolves; see figure 1(a) for an example.

In principle, the non-dimensional coefficients C(ξ)

H , C(E)

H and C(E)

H could depend on other
quantities characterizing the system, for example the magnetic Reynolds number, but they
may also be universal, just as for the Kolmogorov constant in the kinetic energy spectrum.
To begin assessing the degree of universality of these non-dimensional coefficients, we
now consider the empirical laws ξM(t), EM(t) and EM(k, t) for the new case of α = 3.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 2. Compensated spectra showing that limk→0 Sp(B)/kα is not constant, and that
instead the Hosking integral is conserved. Panels (a,c,e) and (b,d, f ) show a comparison between
α = 4 (Batchelor spectrum, a,c,e) and α = 3 (b,d, f ). The times are t = 2 (black), 6 (blue), 20
(green), 60 (orange) and 190 (red). For α = 4 (a,c,e), t = 190 is not available. In panels (e, f ),
we see that the red lines asymptote to constants, compatible with earlier work (Brandenburg &
Larsson 2023). In (e, f ), the dashed curves denote the compensated time dependences of ξM(t)
and the solid ones refer to the compensated dependences of EM(t). Thus, we plot ξMI−1/9

H t−4/9

and EMI−2/9
H t10/9, which are non-dimensional and should approach constants. The dotted lines

mark the approximate positions of the asymptotic values of the non-dimensional constants in the
Hosking scalings.

As in earlier work, the non-dimensional constants in the scaling laws for α = 3 agree
with those found earlier for α = 4 (Brandenburg & Larsson 2023). Specifically, we have

ξM(t) ≈ 0.12 I1/9
H t4/9, EM(t) ≈ 3.7 I2/9

H t−10/9, EM(k, t) � 0.025 I1/2
H (k/k0)

3/2.
(3.2a–c)

The quality of these asymptotic laws can be seen from the red lines in figure 2(e, f ). The
blue lines show the case if the Saffman integral were conserved. As explained above, those
are based on the values of aα0 indicated in figure 2(a,b). A comparison of the coefficients
with those found by Brandenburg & Larsson (2023) is given in table 2. Note that, in
figure 2(e, f ), the solid and dashed blue lines show an asymptotic upward trend, reflecting
again that the magnetic Saffman integral is not conserved.
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Run α C(ξ)
H C(E)

H C(E)
H ηk0/cs E2

Mξ5
M k5

0/(ρ̄c2
s )

2 IH/Iref
H resol.

O 1.7 0.14 3.8 0.038 7 × 10−3 1.1 × 10−2 3.5 20483

Q 2 0.13 3.7 0.038 7 × 10−3 1.9 × 10−3 6.3 20483

A 2 0.15 3.8 (0.04) 5 × 10−5 1.2 × 10−5 6.5 10243

A1 2 0.18 2.1 (0.04) 2 × 10−4 1.7 × 10−5 4.3 5123

A2 2 0.24 0.8 (0.04) 1 × 10−3 1.7 × 10−5 3.0 5123

P 2.5 0.12 3.9 0.038 7 × 10−3 2.8 × 10−3 9.6 20483

B 3 0.12 3.7 0.025 7 × 10−3 1.7 × 10−3 12.2 20483

C 4 0.11 3.6 0.037 7 × 10−3 9.4 × 10−4 8.3 20483

D 4 0.13 3.5 0.037 5 × 10−5 4.5 × 10−6 17.5 10243

TABLE 2. Summary comparison of the coefficients in the relations for ξM(t), EM(t) and EM(k, t)
for different values of α. The numbers in parentheses indicate that the slope β is incompatible
with the value of α.

3.3. The normalized Hosking integral
The runs of Brandenburg & Larsson (2023) had different mean magnetic energy densities
and also the minimum wavenumber k1 was not unity, but k1 = 0.02, unlike the present
cases, where k1 = 1. Instead, the peak of the initial spectrum, k0, was then chosen to be
unity. To compare such different runs, it is necessary to normalize ISM and IH appropriately.
On dimensional grounds, ISM is proportional to EMξ 3

M and IH is proportional to E2
Mξ 5

M. By
approximating the spectrum as a broken power law, as in Zhou et al. (2022),

EM(k) =
{

Epeak
(
k/kpeak

)α
, k ≤ kpeak,

Epeak
(
k/kpeak

)−s
, k > kpeak,

(3.3)

where s = 5/3 and s = 2 were used to represent the inertial range slopes at early and late
times, respectively, we find

kpeakξM = α−1 + s−1

(α + 1)−1 + (s − 1)−1
, Epeak = EMξM

α−1 + s−1
. (3.4a,b)

For α = 2, we find the following reference values for the Saffman integral:

Iref
SM = 2π2 ×

{
250/99 (for s = 5/3),
16/9 (for s = 2).

(3.5)

For other values of α, the value of Iref
SM is not meaningful and only Iref

H is computed for other
values of α by using equations (2.14) and (4.5) in Zhou et al. (2022). It is given by

Iref
H = 8π2E2

Mξ 5
M

(
(α + 1)−1 + (s − 1)−1

(α−1 + s−1)5/3

)3 (
1

2α − 3
+ 1

2s + 3

)
. (3.6)

In calculating the above expression, we assumed the magnetic field distribution to be
Gaussian and its spectrum to be of the form as given in (3.3). These reference values
are summarized in table 3.

In table 2, we list the ratio IH/Iref
H , where Iref

H ∝ E2
Mξ 5

M is given in table 3. We have used
here the actual values of α and s = 2 in all cases, which describes the late time inertial
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α s Iref
SM/(EMξ3

M) Iref
H /(E2

Mξ5
M)

1.7 5/3 — 2π2 4 437 053 125/151 086 708 ≈ 579.7
1.7 2 — 2π2 90 870 848/5 097 897 ≈ 351.9
2 5/3 2π2 250/99 ≈ 49.8 2π2 100 000/5643 ≈ 349.8
2 2 2π2 16/9 ≈ 35.1 2π2 2048/189 ≈ 213.9
2.5 5/3 — 2π2 390 625/26 068 ≈ 295.8
2.5 2 — 2π2 200 000/21 609 ≈ 182.7
3 5/3 — 2π2 253 125/17 024 ≈ 293.5
3 2 — 2π2 324/35 ≈ 182.7
4 5/3 — 2π2 5120/323 ≈ 312.9
4 2 — 2π2 131 072/13 125 ≈ 197.1

TABLE 3. Reference values for ISM and IH for different combinations of α and s.

range; see figure 1(a).
The former ratio, IH/Iref

H , varies only little, because the Hosking integral is always
reasonably well conserved, except when the magnetic diffusivity is large. Near tηk2

0 ≈ 0.1,
the ratio has for all runs a well-distinguished maximum, which is the value we quote in
table 2. These values tend to be approximately 20 % larger than those at the end of the run,
which are the reference values given in table 2.

It is interesting to note that IH/Iref
H is approximately twice as large on the finer mesh

(run C) than on the coarser mesh (run D). This is somewhat surprising. It should be noted,
however, that run C with a larger mesh had actually a larger magnetic diffusivity (ηk0/cs =
7 × 10−3) than run D (ηk0/cs = 5 × 10−5); see table 2. It is therefore possible that run D
was actually underresolved and that this was not yet noticed.

3.4. Comments on non-Gaussianity
The question of non-Gaussianity is important in many aspects of cosmology. Not all of
its aspects are captured by kurtosis or skewness. In the work of Zhou et al. (2022), it was
already pointed out that, although the kurtosis was only slightly below the Gaussian value
of three, there was a very strong effect on the statistics of the fourth-order moments that
enter in the calculation of IH and Sp(h). In figure 3, we compare Sp(h) at the initial and
a later time from the numerical calculation and the semi-analytical calculation based on
the actual magnetic energy spectra, assuming Gaussian statistics. As in Zhou et al. (2022),
we find also here a tenfold excess of the actual spectra compared with the value expected
based on the assumption of Gaussianity.

3.5. Scaling for non-integer values of α

We now address in more detail the case α = 1.7, for which (2.9) with β = 3/2 would
predict limk→0 EM(k, t) ∝ t4α/9−2/3 = t4/45 ≈ t0.09. These runs are listed in table 2 as runs O
and P. We have seen that, for small magnetic diffusivity, IH is well conserved for all values
of α. On the other hand, ISM appears to be well conserved in the special case of α = 2.
One possibility is therefore that, as long as α > 2, we have an inverse cascade, but not for
α ≤ 2. However, the argument for not expecting an inverse cascade relies heavily on the
existence of ISM and that it is non-vanishing. If we accept that, for α = 3, Sp(B) cannot be
expanded in terms of k2 and k4, then this would also be true for α = 1.7, which is a value
between 3/2 and 2. One might therefore expect that, also in this case, ISM would not be
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FIGURE 3. The function Sp(h) at t = 0 and 1. The dotted red curves represent the spectra
obtained from the simulation and the solid black curves represent the spectra calculated by
assuming the magnetic field distribution to be Gaussian.

(a)

(b)

FIGURE 4. Similar to figure 1, but for α = 1.7.

conserved, and that the decay is governed by the conservation of IH . This possibility was
already listed table 1.

In figure 4(a) we show that there is no noticeable growth of limk→0 EM(k, t). The inset,
however, does show that there is an intermediate phase with a very weak growth ∝ t0.05.
Given that the theoretically expected growth ∝ t0.09 is already very small, and that the
degree of conservation of IH is also limited by a finite Reynolds number, as seen in
figure 4(b) showing a premature decline of Sp(h)/k2 in time at small k, it is indeed possible
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(a)

(b)

FIGURE 5. Similar to figure 1, but for α = 2.5. Note that, for the green line at t = 50, there is
some evidence for a short range with a steeper spectrum, possibly ∝ k4.

that, at larger resolution and smaller magnetic diffusivity, clearer inverse cascading might
emerge.

Next, we consider the case α = 2.5. The results are shown in figure 5. We see inverse
cascading that is compatible with a2.5(t) ∝ t4/9 = t0.44. Note that, for the intermediate time
t = 50, there is some evidence for a short range with a steeper spectrum, but it would
hardly be as steep as k4.

3.6. Reassessment of the Saffman case
Given that there is now some evidence for inverse cascading for α = 1.7, it is reasonable
to re-address earlier evidence for the absence of inverse cascading for α = 2. We must
remember that the results of Brandenburg & Larsson (2023) for α = 2 were obtained at a
resolution of 10243 mesh points using a value of the magnetic Reynolds number that was
possibly too large for that resolution. More importantly, however, a superficial inspection
of the spectral evolution may not suffice. We have therefore repeated such a calculation
using otherwise the same parameters as in figures 1, 4 and 5 and compared the evolution
of the spectral magnetic energy at low k with that expected theoretically. Our initial result
suggested that a larger scale separation would be needed to obtain reliable results; see
Appendix B.

A large scale-separation ratio, k0/k1, was previously found to be important. For example,
in the context of the Hall cascade, a threefold larger value of k0/k1 was needed to
demonstrate clear evidence for inverse cascading (Brandenburg 2020). Therefore, we now
present in figure 6 the results for k0 = 180 k1. We see that, similarly to the case of α = 1.7
in the inset of figure 4(a), there is an initial rise of spectral magnetic energy compatible
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(a)

(b)

FIGURE 6. Similar to figure 1, but for α = 2 and k0 = 180 k1 at t = 2, 6, 15, 34, 80, 183 and
416. The inset applies here to the evolution at k = 5 k1, instead of k = k1, as for all other plots.

with being ∝ t0.22, which, again, is followed by a decline at very late times. This result
therefore supports the notion that the Hosking integral is indeed well conserved and that
it governs the evolution of the magnetic field even for α = 2.

3.7. Evolution in the pq diagram
There is a range of tools for assessing the decay properties of MHD turbulence. We
have already discussed the determination of IH and ISM, and the potentially universal
coefficients C(ξ)

H , C(E)

H and C(E)

H . We also discussed the close relation between the envelope
parameter β in (2.7) and (3.1a–c), and the parameter q characterizing the growth of the
correlation length ξM ∝ tq. There is also the parameter p characterizing the decay of
magnetic energy, EM ∝ t−p. Both p and q can also be determined as instantaneous scaling
parameters through p(t) = −d ln EM/d ln t and q(t) = d ln ξM/d ln t, and their parametric
representation p(t) vs q(t) gives insights into the properties of the system and how far it is
from a self-similar evolution (Brandenburg & Kahniashvili 2017) and the scale-invariance
line, p = 2(1 − q); see Zhou et al. (2022).

In figure 7, we show such a pq diagram for runs B, C and Q. We see that the points (q, p)
for different times and for both runs cluster around (q, p) = (4/9, 10/9), as expected for
Hosking scaling. The locations for Loitsyansky and Saffman scalings, (2/7, 10/7) and
(2/5, 6/5), respectively, as well as for the fully helical case (2/3, 2/3), are also indicated
for comparison. Note that, even for run Q with α = 2, the points are closer to Hosking
scaling than to Saffman scaling.

A detailed assessment of the full range of scaling parameters is important for
establishing the validity of Hosking scaling. Assessments based on comparisons of the
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FIGURE 7. A pq diagram showing a parametric representation of p(t) vs q(t) for runs B (α = 3,
blue), C (α = 4, red) and Q (α = 2, orange) and 10 < t < 60. Larger symbols correspond to
later times. The locations for Loitsyansky and Saffman scalings, as well as for the fully helical
case, are indicated as black dots along the scale-invariance line (black solid line), p = 2(1 − q),
and the black dotted lines mark the position q = 4/9 and p = 10/9.

parameter p for different runs may not be sufficient, and have not yet confirmed this
scaling; see Armua, Berera & Calderón-Figueroa (2023) for recent results. Thus, the
idea behind the Hosking phenomenology is therefore not universally accepted. Possible
reasons for discrepancies could lie in an insufficiently large magnetic Reynolds number
and therefore also in a lack of a sufficiently long inertial range. Therefore, it would be
useful to have independent verification from other groups. In this connection, it should be
noted that additional support for the validity of the Hosking scaling came from two rather
different numerical experiments. First, in applications to the Hall cascade, the Hosking
phenomenology predicts the scalings q = 4/13 and p = 10/13, which was confirmed by
simulations (Brandenburg 2023). Second, in relativistic plasmas where the mean magnetic
helicity density is finite, but the total chirality vanishes because the helicity is exactly
balanced by fermions chirality, the Hosking phenomenology predicts a decay of mean
magnetic helicity ∝ t−2/3, which, again, was confirmed by simulations (Brandenburg,
Kamada & Schober 2023).

4. Conclusions

Our work has shown that the decay dynamics of an initial magnetic field with power-law
scaling proportional to k3 is similar to that for k4. According to a simple argument
involving self-similarity, we showed and confirmed that the temporal growth of the
magnetic energy spectra at small k is proportional to t4α/9−2/3, so for α = 3, we have
an increase proportional to t2/3, while for α = 4, the increase is proportional to t10/9.
Thus, although we cannot exclude the possibility of artefacts from the finite size of the
computational domain, our simulations now suggest inverse cascading even for an initial
Saffman spectrum. This underlines the importance of the Hosking integral in determining
the decay dynamics for a large class of initial magnetic energy spectra. We also confirmed
that the non-dimensional coefficients in the empirical scaling relations for ξM(t), EM(t)
and EM(k, t) are compatible with those found earlier for an initial k4 subinertial range
spectrum.

At the moment, even with a resolution of 20483 mesh points, we cannot make very firm
statements about the case α = 1.7, because IH is not sufficiently well conserved and the

https://doi.org/10.1017/S0022377823001253 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823001253


Inverse cascading for intermediate MHD turbulence spectra 15

value of α is close to 3/2. It would be useful to reconsider the case α = 2 with even higher
resolution to confirm the violation of the conservation of the magnetic Saffman integral,
and thus weak inverse cascading ∝ t0.2.
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Appendix A. Approach to a k4 spectrum from a steeper one

In this paper, we focus on the case α < 4. This is because for α = 4, the spectrum
quickly develops into one that is equivalent to α = 4. The approach to a k4 spectrum from
a steeper k6 spectrum is shown in figure 8. We see that the spectra quickly gain power at
low k so that the subinertial range is ∝ k4. This happens at very early times, well before
any inverse cascading has started yet.

FIGURE 8. Approach to a k4 spectrum from a steeper k6 spectrum for k0 = 60 k1 using 10243

mesh points and otherwise the same parameters as for figure 1.
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(a)

(b)

FIGURE 9. Similar to figure 1, but for α = 2 and at t = 2, 6, 15, 37, 87, 205 and 475 and with
k0 = 60 k1.

Appendix B. Finite-size effects

In § 3.6, we mentioned that we needed a larger scale-separation ratio to obtain reliable
results for α = 2. To demonstrate the problem, we show here the result for the usual scale
separation of k0/k1 = 60. The inset to figure 9(a) shows that the growth of EM(k, t) at
k = k1 does not follow a clear power-law scaling. There is a decline in the slope in the
range 50 < t < 100, followed by an increase that lasts until the end of the simulation at
t = 475. A likely explanation for this unexpected behaviour could be finite-size effects. If
that is the case, the intermediate decline in the slope could be interpreted as evidence for
a levelling off, compatible with Saffman scaling.

We should also mention that it turned out that, even for k0 = 60 k1, we had to decrease
the initial magnetic field strength to vA0/cs ≈ 0.65 to prevent the code from crashing. This
value of vA0/cs is approximately 30 % smaller than our usual value of vA0/cs ≈ 0.87 that
was used for the other runs at that resolution. While these field strengths are not that
different, it indicates that at early times, our simulations are close to the limit below which
we can still trust them.
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