
20
The Dirac field

The Klein–Gordon equation’s negative energy solutions and corresponding
negative probabilities prompted Dirac to look for a relativistically invariant
equation of motion which was linear in time. His equation was formally the
square-root of the Klein–Gordon equation.

The Dirac equation leads naturally to the existence of spin 1
2 . It is the basic

starting point for the study of spin- 1
2 particles such as the electron and quarks. It

also appears in condensed matter physics as the relevant low-energy degrees of
freedom in the strong-coupling limit of the Hubbard model [92], and has been
used as an alternative formulation of gravity [84].

20.1 The action

The action for the Dirac field is given by

SD =
∫
(dx)

{
−1

2
ih̄cψ(γ µ

→
∂µ −γ µ

←
∂µ)ψ

+ (mc2 + V )ψψ − Jψ − ψ J
}
, (20.1)

where ψ and ψ = ψ†γ 0 are dR-component spinors. The γ µ are dR × dR

matrices, defined below. All quantities here are implicitly matrix-valued. They
have hidden ‘spinor’ indices, which we shall write explicitly at times using
Greek letters α, β, . . ..

The variation of the action with respect to a dynamical change in the field ψ
gives the equation of motion for ψ is found by varying the action with respect
to ψ , and is given by

(−ih̄cγ µ∂µ + mc2 + V )ψ = J. (20.2)

If we drop the source term J , this can also be written

ih̄c∂0ψ = γ 0(−ih̄cγ i∂i + mc2 + V )ψ = HDψ, (20.3)
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20.2 The γ -matrices 431

where HD is the differential Hamiltonian operator (to be distinguished from
the field theoretical Hamiltonian below). The conjugate equation is found by
varying the action with respect to ψ and may be written as

ψ(ih̄cγ µ
←
∂ µ +mc2 + V ) = 0, (20.4)

or in terms of the differential Hamiltonian operator HD,

−ih̄c(∂0ψ) = ψγ 0 HDγ
0. (20.5)

The free Dirac equation may be viewed as essentially the square-root of the
Klein–Gordon equation. In the massless limit, the linear combination of
derivatives is a Lorentz-scalar-representation of the square-root of . This
may be verified by squaring the Dirac operator and separating the product of
γ -matrices into symmetric and anti-symmetric parts:

(γ µ∂µ)
2 = γ µγ ν ∂µ∂ν (20.6)

= 1

2
{γ µ, γ ν} ∂µ∂ν + 1

2
[γ µ, γ ν]∂µ∂ν (20.7)

= −gµν∂µ∂ν + 1

2
γ µγ ν[∂µ, ∂ν] (20.8)

= − . (20.9)

The commutator of two partial derivatives vanishes when the derivatives act
on any non-singular function. Since the fields are non-singular, except in the
presence of certain exceptional interactions which do not apply here, the Dirac
operator can be identified as the square-root of the d’Alambertian.

20.2 The γ -matrices

In order to satisfy eqn. (20.9), the γ -matrices must satisfy the relation

{γ µ, γ ν} = −2gµν (20.10)

(γ 0)2 = −(γ i )2 = I. (20.11)

The matrices satisfy a Clifford algebra. The set of matrices which satisfies
this constraint is of fundamental importance to the Dirac theory. They are not
unique, but may have several representations. The form of the γ µ matrices
is dependent on the dimension of spacetime and, since they carry a spacetime
index, on the Lorentz frame [61, 103].

Products of the γ µ form a group of matrices �a , where a = 1, . . . , dG , and
the dimension of the group is dG = 2(n+1). The elements �a are proportional to
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432 20 The Dirac field

the unique combinations:

I
γ 0, γ i , γ iγ j , γ 0γ i

γ 0γ iγ j , γ 1γ 2 . . . γ n

γ 0γ 1γ 2 . . . γ n.

(i �= j)

The usual case is n + 1 = 4, where one has �a ,

I
γ 0, iγ 1, iγ 3, iγ 3,

γ 0γ 1, γ 0γ 2, γ 0γ 3, iγ 2γ 3, iγ 3γ 1, iγ 2γ 3

iγ 0γ 2γ 3, iγ 0γ 1γ 3, iγ 0γ 1γ 2, γ 1γ 2γ 3

iγ 0γ 1γ 2γ 3

Factors of i have been introduced so that each matrix squares to the identity
(see ref. [112]). These may also be grouped differently, in the more suggestive
Lorentz-covariant form:

1 scalar
γ µ vector
σµν anti-symmetric tensor
γ 5γ µ pseudo-(axial) vector
γ 5 pseudo-scalar

where

σµν = 1

2i
[γ µ, γ ν]. (20.12)

For each �a , with the exception of the identity element, it is possible to find a
suitably defined �a , such that

�a�b�a = −�b (b �= 1). (20.13)

By taking the trace of this relation, and noting that

Tr(�a�b�a) = Tr(�a�a�b) = Tr(�b) (20.14)

one obtains

Tr(�b) = −Tr(�b) = 0. (20.15)

From this, it follows that the 2n+1 elements are linearly independent, since, if
one attempts to construct a linear combination which is zero,∑

a

λa�a = 0, (20.16)
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20.2 The γ -matrices 433

then taking the trace of this implies that each of the components λa = 0.
This establishes that each component is linearly independent and that a matrix
representation for the γ µ must have at least this number of elements, in order
to satisfy the algebra constraints. This divides the possibilities into two cases,
depending on whether the dimension of spacetime is even or odd.

For even n+1, the γ µ are most simply represented as dR×dR matrices, where

dR = 2(n+1)/2. (20.17)

d2
R then contains exactly the right number of elements. Although the matrices

are not unique (they can be transformed by similarity transformations), all such
sets of matrices of this dimension are equivalent representations. Moreover,
since there is no redundancy in the matrices, the dR × dR representations are
also irreducible, or fundamental. In this case, the identity is the only element
of the group which commutes with every other element (the group is said to
have a trivial centre). Another common way of expressing this, in the literature,
is to observe that other matrices, typically γ 0γ 1 . . . γ n , anti-commute with
an arbitrary element γ µ. There are thus more elements in the centre of the
group than the identity. This is a sign of reducibility or multiple equivalent
representations.

For odd n + 1, it is not possible to construct a matrix with exactly the
right number of elements. This is a symptom of the existence of several
inequivalent representations of the algebra. In this case, one must either
construct several sets of smaller matrices (which are inequivalent), or combine
these into matrices of larger dimension, which are reducible. The reducible
matrices reduce to block-diagonal representations, in which the blocks are the
multiple, inequivalent, irreducible representations. In this case, the identity is
not the only element of the group which commutes with every other element
(the group is said to have a non-trivial centre), and the matrix γ 0γ 1 . . . γ n

anti-commutes with an arbitrary element γ µ. Spinors in n + 1 dimensions are
discussed in ref. [10].

20.2.1 Example: n + 1 = 4

In 3 + 1 dimensions, the dimension of the algebra is 24 = 16, and one has the
standard representation,

γ 0 =
( −1 0

0 1

)
, γ i =

(
0 −σ i

σ i 0

)
(20.18)

where σ i are the Pauli matrices, defined by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (20.19)
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434 20 The Dirac field

The product of two γ -matrices may be evaluated by separating into even and
odd parts, in terms of the commutator and anti-commutator:

γµγν = 1

2
[γµ, γν]+ 1

2
{γν, γν}

= iσµν − gµν, (20.20)

where

σµν = 1

2i
[γµ, γν]. (20.21)

The product of all the γ ’s is usually referred to as γ 5, and is defined by

γ 5 = iγ 0γ 1γ 2γ 3

=
(

0 −I
I 0

)
. (20.22)

Clearly, this notation is poorly motivated in spacetime dimensions other than
3+ 1. In 3+ 1 dimensions, it is straightforward to show that

(γ 5)2 = 1, {γ µ, γ 5} = 0. (20.23)

The cyclic nature of the trace can be used together with the anti-commutativity
of γ 5 to prove that the trace of an odd number of γ -matrices vanishes in 3 + 1
dimensions. To see this, one notes that

Tr(γ5 Aγ5
−1) = Tr(A). (20.24)

Thus, choosing a product of m such matrices A = γµγν . . . γσ , such that

γ5 A = (−1)m Aγ5, (20.25)

it follows immediately that

Tr(A) = (−1)m Tr(A), (20.26)

and hence the trace of an odd number m of the matrices must vanish. The
hermiticity properties of the matrices are contained by the relation

γ µ
† = γ 0 γ µ γ 0, (20.27)

which summarizes

γ 0† = γ 0 (20.28)

γ i † = −γ i . (20.29)
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20.2 The γ -matrices 435

20.2.2 Example: n + 1 = 3

In 2 + 1 dimensions, the dimension of the algebra is 23 = 8, and thus the
minimum representation is is terms of either two irreducible sets of 2 matrices,
or a single set of reducible 4× 4 matrices, with redundant elements.

The fundamental 
2 representation is satisfied by

γ 0 = σ3, γ i = −iσi (20.30)

for i = 1, 2. This representation breaks parity invariance, thus there are two
inequivalent representations which differ by a sign.

γ µ,−γ µ (20.31)

The 
4 representation is a symmetrized direct sum of these, padded with zeros:

γ µ(
4) =
( +γ µ(
2) 0

0 −γ µ(
2)
)
. (20.32)

The matrices of the 
2 representation satisfy

γ µγ ν = −gµν − iεµνργ c (20.33)

Tr(γ µγ µγ ρ) = 2iεµνρ (20.34)

γ5 = γ 0γ 1γ 2 (20.35)[
γ5, γµ

] = 0, (20.36)

where the first of these relations is found by splitting into a commutator and
anti-commutator and using the su(2) Lie algebra relation for the Pauli matrices:

[σi , σ j ] = 2iεi jkσk . (20.37)

In the 
4 representation in 2+ 1 dimensions the results are as for 
2 except that

Tr(γ µγ νγ ρ)
4 = 0. (20.38)

Note that the product of all elements is usually referred to as γ 5 in the literature,
rather than γ 4, by analogy with the (3+ 1) dimensional case.

γ5 = γ 5 = γ 4 = iγ 0γ 1γ 2

=
( −I 0

0 −I

)
. (20.39)

Since this is a multiple of the identity matrix, it commutes with every element in
the algebra. Thus there are two elements to the centre of the group: I and −I .
The centre is the discrete group Z2, and the complete fundamental representation
of the algebra is

γ µ(
2)⊗ Z2. (20.40)
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436 20 The Dirac field

These two inequivalent representations correspond to the fact that, in a two-
dimensional plane, spin up and spin down cannot be continuously rotated into
one another (not even classically), and thus these two physical possibilities are
disconnected regions of the rotation group. In much of the literature on two-
dimensional physics, it is common to adopt either a spin up, or spin down 2× 2
representation for the γ -matrices, not the complete 
4 representation.

20.3 Transformation properties of the Dirac equation

Consider a Lorentz transformation of the Dirac spinor by a matrix representation
of the Lorentz group:

ψ ′(x ′) = S(L) ψ(x) = L R ψ(x). (20.41)

The matrix, usually denoted S(L) in the literature, is just an example of
a non-adjoint representation of the Lorentz group from section 9.4.3. This
representation has to carry spinor indices α, β, which are suppressed above,
in the usual way. These spinor indices correspond to the representation indices
A, B of section 9.4.3.

A transformation of the free Dirac equation may be written as

(γ µ p′µc + mc2)ψ ′(x ′) = 0 (20.42)

(γ µ(L−1)µν p′µc + mc2)(L Rψ(x)) = 0, (20.43)

where one recalls that

pµ = Lµν pν → pµ = (L−1)µ ν pν. (20.44)

Multiplying on the left hand side by L−1
R , and comparing with the untransformed

equation, leads to a condition

L−1
R γ µ L R = Lµνγ

ν, (20.45)

which is an identity, provided L = Ladj, the adjoint representation of the group.
The infinitesimal form of the spinor representation may be written in terms of

the generators of this representation TR:

L R = S(L) = I + θaT a
R , (20.46)

or, with spinor (representation) indices intact,

S(L)αβ = δαβ + θa(T a
R )
α
β. (20.47)

Consider an infinitesimal transformation

x ′µ = xµ + εωµνxν, (20.48)
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20.3 Transformation properties of the Dirac equation 437

so that

L R(I + εω) = I + εTR. (20.49)

The adjoint transformation can thus be expressed in two equivalent forms:

S−1γ µS = (1− εT )γ µ(1− εT )

= γ µ + ε(γ µT − T γµ)

= (Ladj)
µ
ν (1+ εω)γ ν

= γ µ + εωµνγ ν. (20.50)

Thus,

γ µT − T γ µ = ωµνγ ν, (20.51)

which defines T up to a multiple of the identity matrix. Choosing unit
determinant det(I + εT ) = 1 + ε Tr T , we have that Tr T = 0, and one may
write

(TR)
α
β =

1

8
ωµν(γµγν − γνγµ)αβ, (20.52)

or, compactly,

(TR)
α
β =

i

4
ωµνσµν. (20.53)

20.3.1 Rotations

An infinitesimal rotation by angle ε about the x1 axis has

ω23 = −ω32 = 1, (20.54)

and all other components zero. Thus the generator in the spinor representation
is

T 1 = 1

2
γ2γ3, (20.55)

and the exponentiated finite element becomes

S(R1) = eθ1TR = e−
i
2 θ*1,

= I cos
θ

2
+ i*1 sin

θ

2
, (20.56)

where

*1 =
(
σ1 0
0 σ1

)
. (20.57)

The half-angles are characteristic of the double-valued nature of spin:

S(θ1 + 2π) = −S(θ1). (20.58)
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438 20 The Dirac field

20.3.2 Boosts

For a boost in the x1 direction, ω10 = −ω01 = 1,

S(B1) = 1

2
γ 0γ 1 = 1

2

(
0 σ1

σ1 0

)
≡ 1

2
α1. (20.59)

The finite, exponentiated element is thus

S(B1) = e
α
2 α1 = I cosh

α

2
+ α1 sinh

α

2
, (20.60)

where tanhα = v/c. Notice that the half-valued arguments have no effect on
translations.

20.3.3 Parity and time reversal

The meaning of parity invariance is intrinsically linked to the number of
spacetime dimensions, since an even number of reflections about spatial axes is
equivalent to a rotation, and is therefore simply connected to the infinitesimally
generated group. In that case, spatial reflection is defined by a reflection in an
odd number of axes. In odd numbers of spatial dimensions, reflections in all axes
lead to a ‘large’ transformation which cannot be generated by exponentiated
infinitesimal generators.

Consider the case in 3+ 1 dimensions. For a space inversion, one has

L−1
R γ

0L R = γ 0

L−1
R γ

i L R = −γ i . (20.61)

Thus, the parity transformation can be represented by:

S(P) = eiφ γ 0 (20.62)

in Dirac space. This exchanges the upper and lower spinor contributions.
Similarly, a time inversion

L−1
R γ

0L R = −γ 0

L−1
R γ

i L R = γ i (20.63)

can be given the form

S(T ) = eiφ γ 5. (20.64)

20.3.4 Charge conjugation

Charge conjugation transforms a positive energy solution with charge q into
a negative energy solution with charge −q. One searches for a unitary
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20.3 Transformation properties of the Dirac equation 439

transformation C with the following properties:

C ψ C−1 = η Cψ
T

C Aµ C−1 = −Aµ. (20.65)

η is a possible intrinsic property of the field, η2 = 1. The two features of this
transformation are that it exchanges positive for negative energies and that it
reflects the vector field like an axial vector. Since Aµ always multiplies the
charge q, in the covariant derivative, this is equivalent to changing the sign of
the charge. The action for the gauged Dirac equation is (h̄ = c = 1),

S =
∫
(dx) ψ(iγ µDµ + m)ψ, (20.66)

where Dµ = ∂µ + iq Aµ. In order to find a transformation which exchanges ψ

with ψ
T
, one begins by integrating by parts:

S =
∫
(dx) ψ(−iγ µ(

←
∂µ −iq Aµ)+ m)ψ, (20.67)

then, taking the transpose:

S =
∫
(dx) ψT(−iγ Tµ(

→
∂µ −iq Aµ))ψ

T
. (20.68)

This has almost the same form as the original, untransposed action, with
opposite charge. In order to make it identical, we require a matrix which has
the property

C γ Tµ C−1 = −γ µ. (20.69)

Introducing such a matrix, one has

S =
∫
(dx) (γ TC−1)(iγ µD∗

µ + m)(Cψ
T
)

=
∫
(dx) ψ

c
(iγ µD∗

µ + m)ψc, (20.70)

where the charge conjugated field is ψc = Cψ
T
.

The existence of a matrix C , in 3 + 1 dimensions, possessing the above
properties can be determined as follows [112]. Taking the transpose of the
Clifford algebra relation,

{γ Tµ, γ Tν} = −2gµν, (20.71)

one sees that the transposed γ -matrices also satisfy the algebra, and must
therefore be related to the untransposed ones by a similarity transformation

γ Tµ = B−1 γ µ B. (20.72)
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440 20 The Dirac field

In 3+1 dimensions, the 4×4 γ -matrices are irreducible, and thus the existence
of a non-singular, unitary B is guaranteed. Taking the transpose of eqn. (20.72)
and re-using the relation to replace for γ µ, one obtains

γ Tµ = (B−1 BT) γ Tµ (B−1T B), (20.73)

thus establishing that B−1 BT commutes with all the γ -matrices. From Schur’s
lemma, it follows that this must be a multiple of the identity:

B−1 BT = cI. (20.74)

Taking the inverse and then the complex conjugate of this relation, one finds

1

c∗
= B∗(BT)−1∗

= B∗B∗∗ (20.75)

= B∗B. (20.76)

where we have used the unitarity B† B = I . This means that c is real, and
furthermore that c = ±1, i.e.

B = ±BT, (20.77)

so, from this, the matrix is either symmetrical or anti-symmetrical. An addi-
tional constraint comes from the number of symmetrical and anti-symmetrical
degrees of freedom in the 4 × 4 γ -matrices. If B is anti-symmetric, then the
six matrices γ µB, γ 5 B, B are also anti-symmetric, whereas the ten matrices
Bγ 5γ µ, Bσµν are symmetrical. This matches the number of anti-symmetrical
degrees of freedom in a 4 × 4 matrix representation. Conversely, if one takes
B to be symmetrical, then the numbers are reversed and it does not match. One
concludes, then, that B is an anti-symmetric, unitary matrix. This result was
shown by Pauli in 1935. It has now been shown that it is possible to construct
a similarity transformation which turns γ -matrices into their transposes. The
matrix we require is now

C = −iγ 5 B. (20.78)

With this definition, we have

C−1 γ µ C = −B−1 iγ5 γ
µ iγ5 B = −B−1γ µB

= −γ Tµ. (20.79)

C is thus a charge conjugation matrix for Dirac spinors.

https://doi.org/10.1017/9781009289887.024 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.024


20.4 Chirality in 3+ 1 dimensions 441

20.4 Chirality in 3+ 1 dimensions

The field equations of massless spinors are, from eqn. (20.101),( −p0+ −σ i pi

σ i pi p0

)(
χ1

χ2

)
= 0 (20.80)

or

σ i p̂i χL = 2λχL = −χL

σ i p̂i χR = 2λ = +χR, (20.81)

where λ = 1
2σ

i p̂i , and

χL = χ1 + χ2

χR = χ1 − χ2. (20.82)

These equations are referred to as the Weyl equations, and χL and χR are Weyl-
spinors. For such massless particles, the eigenvalue of γ 5 is referred to as the
chirality of the solution:

γ 5u(p, λ) = 2λu(p, λ)

γ 5v(p, λ) = −2λv(p, λ). (20.83)

A projection operator for the chirality states is thus

P± = 1

2
(1± γ 5). (20.84)

Particles with helicity + 1
2 are referred to as right handed, while particles with

helicity − 1
2 are referred to as left handed. Only left handed neutrinos interact

by the weak interaction and appear in the Standard Model. Symmetry under the
continuous transformation

ψ(x)→ eiλγ5ψ (20.85)

is known as chiral symmetry.

20.5 Field continuity

The variation of the action leads to surface terms,

h̄
∫

dσµ
(
δψγµψ

)
, (20.86)

for ψ variations, and

h̄
∫

dσµ
(
ψγµδψ

)
, (20.87)
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442 20 The Dirac field

for ψ variations. This provides us with definitions for the conjugate momenta
across spacelike hyper-surfaces σ :

h̄!
A
σ = γσψ A, (20.88)

for the variable conjugate to ψ , and

!A
σ = h̄ψ

A
γσ , (20.89)

for the variable conjugate to ψ . The canonical values for these momenta are

! = h̄γ0ψ

! = h̄ψγ0 = ψ†. (20.90)

20.6 Conserved norm and probability

The linear nature of the Dirac action implies that the conserved current is
independent of derivatives. This means that the sign of the energy ih̄c∂0 cannot
change the sign of the conserved probability, thus the Dirac equation does not
suffer the problem of negative norms or probabilities as does the Klein–Gordon
equation.

To determine the conserved current, one considers the effect of an infinitesi-
mal x-independent phase transformation δ:

δS =
∫
(dx)

{
(ψe−is(−iδs)γ µ∂µ(e

isψ))

+ (ψe−is(−iδs)γ µ∂µ((−iδs)eisψ))

− (∂µ(ψe−is(−iδs))γ µ(eisψ))

− (∂µ(ψe−is(−iδs))γ µ((−iδs)eisψ))
}

(20.91)

Integrating by parts to remove derivatives from δs, and using the equations of
motion, one arrives at the simple expression

δS = h̄
∫

dσµ(ψγµψ)δs, (20.92)

which defines a conserved current δS = ∫
dσµ Jµδs. This motivates the

definition of an inner product given by

(ψ1, ψ2) = −1

2

∫
dσµ(ψ1γµψ2 + ψ2γµψ1), (20.93)
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20.7 Free-field solutions in n = 3 443

giving the norm of the field as

(ψ,ψ) = −
∫

dσµψγµψ. (20.94)

The canonical interpretation of this is

(ψ1, ψ2) = −1

2

∫
dσ(ψ1γ0ψ2 + ψ2γ0ψ1), (20.95)

which means that the norm may also be written

(ψ,ψ) = −
∫

dσψ†γ 0γ0ψ =
∫

dσψ†ψ. (20.96)

The norm of the field is defined separately on the manifold of positive and
negative energy solutions.

20.7 Free-field solutions in n = 3

The free-field equation is

(−ih̄cγ µ∂µ + mc2)αβψβ(x) = 0, (20.97)

where ψα(x) is a 2l-component vector for some l ≥ n/2, which lives on spinor
space (usually these indices are suppressed). In a given number of dimensions,
we may express this equation in terms of a representation of the γ -matrices. In
three dimensions we may use eqn. (20.18) to write(

ih̄∂t + mc2 ih̄cσ i∂i

−ih̄cσ i∂i −ih̄∂t + mc2

)
ψ = 0, (20.98)

where we suppress the α, β spinor indices. The blocks are now 2× 2 matrices,
and the spinor may also be written in terms of two two-component spinors u:

ψ =
(

u1

u2

)
. (20.99)

If we transform the spinors to momentum space,

ψ(x) =
∫

dn+1k

(2π)n+1
eikxψ(k), (20.100)

then the field equations may be written as( −p0c + mc2 −cσ i pi

cσ i pi p0c + mc2

)(
u1

u2

)
= 0, (20.101)
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where pµ = h̄kµ. This matrix equation has non-zero solutions for ψ only if the
determinant of the operator vanishes. Thus,

det = p2c2 + m2c4 = 0. (20.102)

Here one makes use of the fact that

(σ i pi )
2 = σ iσ j pi p j

=
(

1

2
[σ i , σ j ]+ 1

2
{σ i , σ j }

)
pi p j

= (iεi jkσk + δi j )pi p j

= pi pi . (20.103)

Eqn. (20.102) indicates that the solutions of the Dirac equation must satisfy the
relativistic energy relation. Thus the Dirac field also satisfies a Klein–Gordon
equation, which may be seen by operating on eqn. (20.97) with the conjugate of
the Dirac operator:

(ih̄cγ µ∂µ + mc2)(−ih̄cγ µ∂µ + mc2)ψ(x) = 0

(−h̄2c2 + m2)ψ = 0. (20.104)

The last line follows from eqn. (20.20). The vanishing of the determinant also
gives us a relation which will be useful later, namely

(p0c + mc2)

cσ i pi
= −cσ i pi

(−p0c + mc2)
. (20.105)

The 2× 2 components of eqn. (20.101) are now

(−p0c + mc2)u1 − c(σ i pi )u2 = 0

c(σ i pi )u1 + (p0c + mc2)u2 = 0, (20.106)

which implies that the two-component spinors u are linearly dependent:

u1 = c(σ i pi )

(−p0c + mc2)
u2,

u1 = −(p0c + mc2)

c(σ i pi )
u2. (20.107)

The consistency of these apparently contradictory relations is secured by the
determinant constraint in eqn. (20.105).

In spite of the linear (first-order) derivative in the Dirac action, the deter-
minant condition for non-trivial solutions leads us straight back to a quadratic
constraint on the allowed spectrum of energy and momenta. This means that
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20.7 Free-field solutions in n = 3 445

both positive and negative energies are allowed in the Dirac equation, exactly
as in the Klein–Gordon case. The linear derivative does cure the negative
probabilities, however, as we show below.

The solutions of the Dirac equation may be written in various forms. A direct
attempt to apply the field equation constraint in a delta function, by analogy
with the scalar field, cannot work directly, since the delta function cannot have
a matrix argument. However, by introducing a projection operator (−γ µ pµc +
mc2)/2|p0|, it is possible to write

ψ(x) =
∫

dn+1k

(2π)n+1
eikx(−γ µ pµc + mc2)δ(p2c2 + m2c4) u(k),

(20.108)

where p = h̄k and u(k) is a mass shell spinor. The projection term ensures that
application of the Dirac operator leads to the squared mass shell constraint. By
inserting θ(±k0) alongside the delta function, one can also restrict this to the
manifold of positive or negative energy solutions, i.e.

ψ(x)(±) =
∫

dn+1k

(2π)n+1
eikxθ(∓k0)(−γ µ pµc + mc2)δ(p2c2 + m2c4) u±(k),

=
∫

dnk

(2π)n
eikx mc2

|k0| γ
0 u±(k), (20.109)

since

(−γ µ pµc + mc2) = 2mc2, (20.110)

when pµ is on the mass shell γ µ pµc+mc2 = 0. In the literature it is customary
to proceed by examining the positive and negative energy cases separately. As
we shall see below, solutions of the Dirac equation can be normalized on either
the positive or negative energy solution spaces.

It is more usual to consider positive and negative energy solutions to the Dirac
equation separately. To this end, there is sufficient freedom in the expression

ψ(±)(x) =
∫

dn+1k

(2π)n+1
eikxδ(p2c2 + m2c4)θ(∓k0)

(
u1

u2

)
N±(k)

=
∫

dnk

(2π)n
ei(kx−ωt)

2|E |ch̄

(
cσ i pi

(±E+mc2)

1

)
N±(k)u. (20.111)

The two-component spinors u are taken to be a linear combination of the spin
eigenfunctions for spin up and spin down, as measured conventionally along the
z axis

ui = c1

(
1
0

)
+ c2

(
0
1

)
, (20.112)
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where i = 1, 2 and c2
1+ c2

2 = 1. Unlike, the case of the Klein–Gordon equation,
both positive and negative energy solutions can be normalized to unity, although
this is not necessarily an interesting choice of normalization. An example:
consider the normalization of the positive energy solutions (−p0c = E),

1 = (ψ(+)(x), ψ(+)(x))
=

∫
dσ

∫
dn+1k

(2π)n+1

dn+1k ′

(2π)n+1

ei(k−k′)x

4E2c2h̄2 N 2
+

(
c2(σ i pi )

2

(E + mc2)
+ 1

)
|u|2

=
∫

dnk

(2π)n
N 2
+

4E2c2h̄2

(
2E

E + mc2

)
. (20.113)

Assuming a box normalization, where dnk/(2π)n ∼ L−n
∑

k , we have

N+ =
√

2Lnc2h̄2(E + mc2), (20.114)

and hence

ψ(+)(k) = Ln/2ei(kx−ωt)

√
(E + mc2)

2E

(
cσ i pi
(E+mc2)

1

)
χ(s), (20.115)

where

χ(
1
2 ) =

(
1
0

)
, χ(−

1
2 ) =

(
0
1

)
. (20.116)

20.8 Invariant normalization in p-space

The normalization of Dirac fields is a matter of some subtlety. Different
invariant normalizations are used for different purposes. The usual case is to
consider plane wave solutions, or wave-packets. Consider the probability on a
spacelike hyper-surface, transforming as the zeroth component of a vector:

ψ(x)γ0ψ(x) =
∫

dn+1k

(2π)n+1
u(k)† u(k) θ(∓k0)

× (−γ µ pµc + mc2) δ(p2c2 + m2c4)

=
∫

dnk

(2π)n
2mc2

2|p0| u(k)†u(k) = 1. (20.117)

The factor of 2mc2/2|p0| is required to ensure that the spinors satisfy the
equations of motion for the Dirac field. This indicates that the invariant
normalization for the spinors should be

u†(k)u(k) = |p0|
mc2

. (20.118)
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Consider now what this means for the product u(k)u(k). The field equations for
these, in momentum space, are:

(γ 0 p0c + γ i pi c + mc2)u(k) = 0

u(k)(γ 0 p0c + γ i pi c + mc2) = 0. (20.119)

Multiplying the first of these by u†, and using the fact that u = u†γ 0, gives:

u(γ 0 p0c + γ 0γ i pi c + mc2γ 0)u(k) = 0. (20.120)

Now, multiplying the second (adjoint) equation on the right hand side by γ 0u
and commuting γ 0 through the left hand side, one has:

u(p0c − γ 0γ i pi c + mc2γ 0)u(k) = 0. (20.121)

Thus, adding eqns. (20.121) and (20.120), leaves

2p0c uu + 2mc2 u†u = 0. (20.122)

Taking the normalization for u†u in eqn. (20.118), we find that

uu = −p0

|p0| =
E

|E | . (20.123)

Thus, a positive energy spinor is normalized with positive norm, whilst a
negative energy spinor has a negative norm, in momentum space. It is custom to
refer to the positive and negative energy spinors as u(k) and v(k), respectively.
Accordingly, one takes the invariant normalization to be

ur us = δrs

vrvs = −δrs, (20.124)

with spinor indices shown.

20.9 Formal solution by Green functions

The formal solution to the free equations of motion (V = 0) may be written

ψ(x) =
∫
(dx ′)S(x, x ′)J (x ′), (20.125)

and the conjugate form

ψ†(x) =
∫
(dx ′)J †(x ′)S(x ′, x). (20.126)
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20.10 Expressions for the Green functions

The Green functions can be obtained from the corresponding Green functions
for the scalar field; see section 5.6:

(−ih̄cγ µ∂µ + mc2)(ih̄cγ µ∂µ + mc2) =
−h̄2c2 + m2c4 + 1

2
[γ µ, γ ν]∂µ∂ν, (20.127)

and the latter term vanishes when operating on non-singular objects. It follows
for the free field that

(ih̄cγ µ∂µ + mc2)G(±)(x, x ′) = S(±)(x, x ′) (20.128)

(ih̄cγ µ∂µ + mc2)GF(x, x ′) = SF(x, x ′) (20.129)

(−ih̄cγ µ∂µ + mc2)S(±)(x, x ′) = 0 (20.130)

(−ih̄cγ µ∂µ + mc2)SF(x, x ′) = δ(x, x ′). (20.131)

20.11 The energy–momentum tensor

The application of Noether’s theorem for spacetime translations leads to a
symmetrical energy–momentum tensor. In accordance with the other fields, the
zero–zero component of the energy–momentum tensor has the interpretation
of an energy density or Hamiltonian density. This is to be distinguished from
the differential Hamiltonian operator, which generates the time evolution of the
field. We have,

θ00 = ∂L
∂(∂0ψ)

(∂0ψ)+ (∂0ψ)
∂L

∂(∂0ψ)
− Lg00

= − ih̄c

2
ψγ0(∂0ψ)+ ih̄c

2
(∂0ψ)γ0ψ + L. (20.132)

Using the equation of motion (20.2), the integral of this quantity over all space
may be written as∫

dσθ00 =
∫

dσψ(−ih̄cγ i∂i + mc2 + V )ψ

= (ψ, HDψ), (20.133)

where we have used (γ 0)2 = 1. This expression is formally the expectation
value of the differential Hamiltonian operator, but it is also used as the definition
of a ‘field theoretical’ Hamiltonian. In the second quantization, where the fields
are operator-valued, this expression is referred to as the Hamiltonian operator
and may be thought of as generating the time evolution of the fully quantized
field.
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The spacetime components of the energy–momentum tensor are not explicitly
symmetrical. This is a consequence of the linear derivative in the field equation
(20.2). However, the off-diagonal components can be shown to be equal
provided the field satisfies the equations of motion. We have

θ0i = ∂L
∂(∂0ψ)

(∂iψ)+ (∂iψ)
∂L

∂(∂0ψ)

= − ih̄c

2
ψγ0(∂iψ)+ ih̄c

2
(∂iψ)γ0ψ. (20.134)

Taking the integral over all space allows us to integrate by parts, giving∫
dσθ0i = −ih̄c

∫
dσψγ0∂iψ

= −(ψ, pi cψ), (20.135)

where pi = −ih̄∂i . Thus, this component is identified with the momentum in
the field. Switching the order of the indices, we have

θ0i = ∂L
∂(∂ iψ)

(∂0ψ)+ (∂0ψ)
∂L

∂(∂ iψ)

= − ih̄c

2
ψγi (∂0ψ)+ ih̄c

2
(∂0ψ)γiψ. (20.136)

This is clearly not the same as eqn. (20.134). However on using the field
equation and its conjugate in eqns. (20.2) and (20.5), it may be shown that

θi0 = ih̄c

2
ψ(γiγ

0γ j
→
∂ j −γ j

←
∂ j γ

0γi )ψ − 1

2
{γi , γ

0}(mc2 + V )ψψ,

(20.137)

so that the integral over all space can be integrated by parts to give∫
dσθi0 =

∫
dσ

{
ih̄c

2
ψγ 0{γi , γ

j }∂ jψ − 1

2
{γi , γ

0}(mc2 + V )ψψ

}
.

(20.138)

On using the anti-commutation relations for the γ -matrices, we find∫
dσθi0 = −ih̄c

∫
dσψγ0∂iψ =

∫
dσθ0i . (20.139)

The diagonal space components are given by

θi i = ∂L
∂(∂ iψ)

(∂iψ)+ (∂iψ)
∂L

∂(∂ iψ)

= − ih̄c

2
ψγi (∂iψ)+ L, (20.140)
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where i is not summed. The off-diagonal space components are

θi j = ∂L
∂(∂ iψ)

(∂ jψ)+ (∂ jψ)
∂L

∂(∂ iψ)

= − ih̄c

2

(
ψγi∂ jψ − (∂iψ)γ jψ

)
, (20.141)

where i �= j . Although not explicitly symmetrical in this form, the integral over
all space of this quantity is symmetrical by partial integration. Note that the
trace of the space components is given in n + 1 dimensions by∑

i

θi i = H+ (mc2 + V )ψψ + (n − 1)L, (20.142)

so that the total trace of the energy–momentum tensor is

θµµ = gµνθµν = (mc2 + V )ψψ + (n − 1)L. (20.143)

This vanishes for m = V = 0 in 1+ 1 dimensions.

20.12 Spinor electrodynamics

The action for spinor electrodynamics is

SQED =
∫
(dx)

{
ψ
(
− 1

2
ih̄c(γ µ

→
Dµ −γ µ

←
Dµ

†

)+ mc2
)
ψ

+ 1

4µ0
FµνFµν

}
. (20.144)

This is the basis of the quantum theory of electrodynamics for electrons (QED).
Pauli [104] has shown that the Dirac action may be modified by a term of the

form

S → S +
∫
(dx) ψ

1

2

µc2

h̄
σρλFρλψ, (20.145)

whereupon the field behaves as though it has an additional (anomalous) mag-
netic moment eh̄/2m. Later, Foldy investigated generalizations of the Dirac
action which preserve Lorentz invariance and gauge invariance [51]. One
makes two restrictions: linearity in Aµ (weak field) and finiteness in the zero
momentum limit (independent of ∂µψ). The result is

S → S +
∫
(dx)ψ

[
c
∞∑

i=0

(
αi

i γ µAµ + 1

2
βnσ

µν i Fµν

)]
ψ,

(20.146)
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where αi , βi are constants representing anomalous charge and magnetic mo-
ments respectively.

There is a number of problems for which spinor electrodynamics can be
solved exactly. These include:

• the spherically symmetrical Coulomb potential [31, 38, 62, 75, 98];

• the homogeneous magnetic field [73, 81, 106, 109];

• the field of an electromagnetic plane wave [131].

A review of these is given in many books. See, for example, ref. [8].
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