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Introduction

One frequently encounters (real) semisimple graded Lie algebras in
various branches of differential geometry (e.g. [16], [9], [14], [18]). It is
therefore desirable to study semisimple graded Lie algebras, including
those which have been studied individually, in a unified way. One of
our concerns is to classify (finite-dimensional) semisimple graded Lie al-
gebras in a way that enables us to construct them. A graded Lie algebra
g of the form g = > 4. _, g is said to be of the v-th kind. The classification
of semisimple graded Lie algebras of the »-th kind was done by Kobayashi-
Nagano [4] for v = 1, and by J.H. Cheng [3] for v = 2 and dimg_, = 1.
The first aim of this paper is to obtain a classification theorem (Theorem
1.7) for semisimple graded Lie algebras, which establishes a bijective
correspondence between isomorphism classes of all gradations in a real
semisimple Lie algebra g and certain equivalence classes of partitions
(i, i,, ---, II,) of a restricted fundamental root system I7 of g. For
the complex semisimple case, a similar but weaker assertion has been
obtained by V.G. Kac [5]. Theorem 1.7 and its proof enable us to con-
struct all gradations in a semisimple Lie algebra. A graded Lie algebra
g = > v _.8: (not necessarily of finite dimension) is said to be of type a,,
if 3 < 16, and > .., g, are generated by g_, and g, respectively. In Theo-
rem 2.6 we give a necessary and sufficient condition for a gradation to be
of type a,. By using this, we will construct explicitly (up to isomorphisms)
all gradations of the first and the second kind in each classical real
simple Lie algebra (§§2.3 and 4.2).

Our second concern is the problem of classifying a wider class of
triple systems, called generalized Jordan triple systems which contain all

Received April 22, 1987.
81

https://doi.org/10.1017/5002776300000115X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000115X

82 S0JI KANEYUKI AND HIROSHI ASANO

Jordan triple systems as a special case. To this problem we apply the
classification and construction of semisimple graded Lie algebras given in
88 1 and 2. To a Jordan triple system there associates a graded Lie al-
gebra of the first kind [9]. I.L. Kantor [7] considered a similar situation
in a more general setting to obtain: To a generalized Jordan triple system
(U_,, B) there corresponds a graded Lie algebra #(B) which is not neces-
sarily of finite dimension. If the graded Lie algebra #(B) is of the v-th
kind (resp. classical), then we say that (U_,, B) is of the v»-th kind (resp.
classical). On the other hand, in our paper [1] we introduced the class
of compact generalized Jordan triple systems, as a natural generalization
of a similar concept for Jordan triple systems. Compact real simple Jordan
triple systems were classified by Loos [10]. The second aim of this paper
is to classify compact classical real simple generalized Jordan triple systems
of the v-th kind, where v = 1, 2 (Theorems 4.1 and 4.2). Our result covers
the above-mentioned result of Loos for classical ones. There are twelve
families of compact classical simple generalized Jordan triple systems of
the second kind. It turns out that the classification we are concerned is
equivalent to that of simple graded Lie algebras of the v-th kind endowed
with grade-reversing Cartan involutions (Theorem 3.14). In the course of
this reduction, we make use of a result on the equivalence of pairs of
an infinite-dimensional simple graded Lie algebra of type @, and a grade-
reversing involution (Theorem 3.12). In §5 we will give a method of
constructing noncompact generalized Jordan triple systems, starting from
compact ones.

Throughout this paper, all objects are assumed to be defined over the
real number field R, unless otherwise stated. The complexification of a
vector space V (resp. a Lie algebra g) is denoted by V¢ (resp. g°). H de-
notes the field of quaternions. Z denotes the ring of integers.

§1. Gradations of real semisimple Lie algebras

1.1. Let g = > 4e2z0: be a graded Lie algebra (or shortly GLA) over
R with finite or infinite dimension. We always assume that dimg, < o
for all k£ and that g_, # (0). The family of the subspaces (g;) is called
a gradation in the Lie algebra g. We say that an element Feg is a
characteristic element of the GLA g, if each subspace g, is the eigenspace
of the operator ad E for the eigenvalue k. Note that Eeg, Let (g,) and
(g7) be two gradations in g. We say that (g,) and (g}) are isomorphic, if
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the GLA’s ¢ = 3, g; and g = > g; are isomorphic, that is, there exists an
element a e Autg such that a(g,) = g; for all k. A GLA g = Y ,cz8: is
said to be of the v-th kind (v > 0), if g., %= (0) and g, = (0) for |k| >v. A
finite-dimensional real semisimple GLA g has a grade-reversing Cartan in-
volution [17], and consequently g is of the u-th kind for some ». Note
that the GLA g has a unique characteristic element E.

1.2. Let g = > g; be a real semisimple GLA of the u-th kind with
characteristic element E, and let r be a grade-reversing Cartan involution
of g. Then we have «(E) = — E. Let g =¥ + p be the Cartan decompo-
sition by z, where z|;, =1 and ¢}, = —1. Let us choose a maximal abelian
subspace a of p containing E. We then have

(L.1) acCgNyp.

Let 4 be the (restricted) root system of g with respect to a. We identify
4 with a subset of a with respect to the inner product {,» on a induced
by the Killing form of g, and we denote by g* the root space for « € 4 in
g. As a direct consequence of the decomposition of g into root spaces,
we have the following

LEmMA 1.1. Each graded subspace g, of g is expressed as

(12 g =) + 2 g,
{a,EY=0
gk—: Z ga (quO, lk|<l}),
{a,E)=Fk

where c(a) is the centralizer of a in g.
The above lemma shows that the gradation (g,) of g gives rise to a
partition of the root system 4:

(1.3) 4= )4,

k=—v
4, ={aed: {a, EY = k}.
Also one has

(14) A +4)NAC 4y,

in particular 4, is a closed subsystem of 4. Let us choose a linear order
in 4 in such a way that if « € 4 is positive then {«, E) is non-negative.
Let II be a simple root system of 4 relative to this linear order. Then
we have

(1.5) IcU4,.

k>0
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Putting I, = II N 4,, we get a partition of II:

1.6) Il =

ol
1 C3

1.,

0

where n is the number such that I, + @&, II, = @ for every k > n. Note
that II, is not empty, since dimg, = dimg_, # 0. It is easy to see that
II, is a fundamental system for the root system 4,.

DEeFINITION 1.2. Let I be a fundamental system of the root system 4.
If IT satisfies (1.5), then II is said to be compatible with the gradation

(@w)-

Let W be the Weyl group of the root system 4 and W, be the Weyl
group of the subsystem 4,. Since the subalgebra g, of g is stable under
the Cartan involution z, it is reductive; r induces a Cartan involution of
the derived (semisimple) subalgebra [g,, gJ. We have the decomposition

.7 G=fNng+ornNg.

Since a is a maximal abelian subspace of p N g, 4, is viewed as the
(restricted) root system of g, with respect to a. Let G = Adg. Let G,
and K* be the analytic subgroups of G generated by g, and N g,, respec-
tively. Then we have

(1-8) Wo = NK*(a)/CK*(a) )
where N .(a) (resp. Cx«(a)) is the normalizer (resp. centralizer) of a in K*.

LEmMA 1.3. Let II and II' be two fundamental systems of 4 which are
compatible with the gradation (g;) of . Let II = U I, and II' = U7, IT}
be the partitions of II and II' given in (1.6). Then there exists s ¢ W, such
that s(Il) = II’; in this case we have n = m and s(II,) = I, (1 < i < n).

Proof. For a fundamental system 2 of 4, we denote by 4*(2) (resp.
4-(2)) the set of positive (resp. negative) roots in 4 with respect to the
linear order determined by 2. We claim first that U,., 4, C 4*(II). Let
II ={a;, -+, a;}. Choose a root & = >, ma; € 4, (k > 1), where each m,
is assumed to be non-zero. Since « ¢ 4,, at least one «; in the above ex-
pression are in II — II,. Suppose « € 4-(II). Then each m,; is negative,
and hence we have k = {a, E) = > ,m{a;, E) < 0. But this contradicts
the assumption 2 > 1. Therefore we get o € 4*(II), which proves our claim.
Similarly U,., 4, € 4*(II') holds. Let us choose an element s € W, which
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sends 11, to II;. By (1.8), s has a representative in G, and so it comes
from a grade-preserving inner automorphism of g. Consequently s(E) =
E. Therefore, for a, ¢ I, (0 <i < n)

(1.9) (slar), EY = (s(aw), S(E)) = {aw, E) =i

Thus we have seen s(/I;) C 4,(0 < i < n), which implies that the funda-
mental system s(II) of 4 is compatible with the gradation (g,). The same
argument as for II shows that U,., 4, C 4*(s(])). Furthermore we see
s(Il) N 4, = II" N 4,. Therefore it follows that 4*(s(II)) = 4*({I’), which
implies s({T) = II'. Since s is induced by a grade-preserving automorphism
of g, we get s(4,) = 4, (1 < i <n), and consequently s(/I,) = II, A< i<n).

LEmMmA 1.4. Let 7, and =, be two grade-reversing Cartan involutions
of the GLA g = > :a,. Let g =¥, + p; be the Cartan decomposition by z,

@@ =1, 2), where t,,, =1 and <;|,, = — 1. Then there exists an element X,
eg, N p, N p, such that
(1.10) (exp X))z, (exp (— X)) = 4,

where the exponentials are taken in G.

Proof. Let B be the Killing form of g. Put Bi(X, Y) = — B(X, 7,(Y)),
i =12 Then B, and B, are Autg-invariant inner products on g. Let
Pos (g, B,) (resp. Sym (g, B,)) be the totality of positive definite symmetric
(resp. symmetric) operators on g relative to B,. Since z, and 7, are in-
volutive, it follows that 7z, e Pos (g, B,). Let C(E) be the algebraic sub-
group of Autg consisting of all elements g e Aut ¢ which commute with
ad E. Since r; is grade-reversing, we have r;,(ad E) = — (ad E)z,. There-
fore we have r,r, e C(E) N Pos(g, B,). By a result of Neher [11], there
exists X, e Lie C(E) N Sym (g, B;) = g, N Sym (g, B,) such that

(1.11) . T (ad XO)Ti = — ad XO y i == 1, 2,
(1.12) (exp Xy)r, (exp (— X)) = 4.
In view of (1.11), we get X, €g, N P N Pe-

1.3. Let g be a real semisimple Lie algebra and I/ be a fundamental
system of a restricted root system of g. By a partition of Il we mean a
disjoint union I7 = U?_,[I, such that [7, and /1, are not empty. Some of
the subsets II;, may be empty. The partition is sometimes denoted by
u, 1, ---, II,).
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DreFiniTION 1.5. Let g and g’ be real semisimple Lie algebras, and
let II and I’ be fundamental systems of restricted root systems of g and
g’, respectively. Partitions (/1,, - - -, II,) of IT and (II;, - - -, II},) of II’ are
said to be equivalent, if n = m and if there exists an isomorphism ¢ of
the Dynkin diagram of I7 to that of II’ sending II, to II} (0 < i < n).

The following theorem is a criterion as to whether two real semi-
simple GLA’s are isomorphic.

THEOREM 1.6. Let g = >, g, and ¢’ = > . g; be real semisimple GLA’s
of the v-th kind, and let II and II' be, respectively, fundamental systems of
restricted root systems of g and g’ compatible with the gradations. Let
(i, -+, I1,) and (I3, - - -, II,) be the partitions of I and II’ given in (1.6).
If the two GLA’s are isomorphic, then the above two partitions are equivalent.
The converse is true, if the Lie algebras g and g’ are isomorphic.

Proof. Let E (resp. E’) be the characteristic element of the GLA g
(resp. g"). Let 4 (resp. 4’) be the restricted root system of g (resp. g’) with
II (resp. II’) as a fundamental system. Since I7 and II’ are compatible
with the gradations, we can suppose that 4 (resp. 4’) is the root system
with respect to a maximal abelian subspace a (resp. a’) of the (— 1)-eigen-
space p (resp. p’) in g (resp. ¢’) under a grade-reversing Cartan involution
7 (resp. ') of g (resp. ¢') satisfying E ea (resp. E’ ca’). Let f and ¥ be the
(+ 1)-eigenspaces in g and g’ under r and 7/, respectively. Now let ¢ be
a grade-preserving isomorphism of g onto g’. ¢re~' is a grade-reversing
Cartan involution of ¢’. By Lemma 1.4, one can find an element X, eg}
such that ¢,: = (exp X))¢ satisfies

(1.13) ot =17'p,

where the exponential is taken in the adjoint group of g'. ¢, is a grade-
preserving isomorphism, since X, eg;. By (1.13) we have

(1~14) Sol(f) =¥, Sot(p) =y

Next we claim that there exists an element X, ef’ N g; such that ¢:: =
(exp X)), satisfies

(1.15) oa) = a’.
The reductive subalgebra g; of g’ can be decomposed by z’:
(1.16) g=¥Ng-+pNag.
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Since ¢, is grade-preserving, both ¢,(a) and o’ are maximal abelian sub-
spaces of p’ N gy (cf. (1.1)). Therefore, for the decomposition (1.16), one
can find X, et N g; such that ¢a) = (exp X)¢(a) = /. Note that ¢, is
still grade-preserving. Let 4 = Uj__, 4, and 4’ = U%__, 4/ be the parti-
tions given by (1.3). By (1.15) we have ¢(4) = 4’ and moreover

(1.17) ) = 4, Rl <w.

From this it follows that the fundamental system ¢,(II) of 4’ is compatible
with the gradation (g;). By (1.8) and Lemma 1.3, there exists an element
X; et N g such that ¢;: = (exp X,)g, sends /I to I’ and I, to II;(0<i <
n = m).

To prove the converse, let  be an isomorphism of (1, ---, II,) to
(I;, - - -, II}). Under the assumption, - extends to an isomorphism of g onto
g’, denoted again by . Let II = {a, ---, &} and II' ={B, ---, B;}. The
characteristic elements E and E’ are uniquely determined by the equations

(1.18) B, a;) =k, CKE', B =k

fora;ell,,0<k<n 1<i</ andforp,ell;, 0 <k<n,1<j<l, where
{ , ) denotes the inner products defined by the Killing forms of g and ¢'.
We may assume (a;) = 8; (1 < i < I) by renumbering roots in /I’. Then
we have

(1.19) CWE), By = (W(E), Yla)) =<E, ar) =k

for @, €Il,, or equivalently g, € II;. Comparing (1.19) with (1.18), we con-
clude (E) = E".

The following is a classification theorem for gradations in a semi-
simple Lie algebra.

TueoreEM 1.7. Let g be a real semisimple Lie algebra and II be o fixed
fundamental system of a fixed restricted root system 4 of g. Let % be the
set of isomorphism classes of gradations in ¢ and let & be the set of equi-
valence classes of partitions of II under the automorphism group of the
Dynkin diagram of II. Then there exists a bijection @ of ¥ to Z.

Proof. Choose a gradation (g;) of g. To this gradation one can as-
sociate a compatible fundamental system I7® (cf. Definition 1.2) and the
compatible partition (I, - .., II®) of II™ (cf. (1.6)). According to Satake
[13], there exists a € Adg such that a({I®) = II. Put II, = a({l[{"). Then
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a gives an equivalence between the two partitions (I, ---, [I{) and
(1,, ---,1I,). Choose another gradation (g;) of g which is isomorphic to
(g:) under ¢ € Autg. To (g;) there correspond a compatible fundamental
system II® and the compatible partition (IIQ?, - .., II®). There exists b e
Ad g such that b(II®) = II. Let II;, = b(II?). Then b gives an equivalence
of (IIY, ---, 1Y) to (I, ---, II,). From Theorem 1.6 and its proof it
follows that m = n and that ¢ can be modified to give an isomorphism @
(still contained in Autg) of I7® to II® which sends (IIQ?, ---, [I?) to
g, - .-, [IP). Therefore bp~'a~! induces an automorphism of the Dynkin
diagram of II which sends (X1, ---, II,) to (I}, ---, II)). Thus we can
define the mapping @ by putting

(1.20) (@) = T, - -, I1)],

where [ ] denotes the isomorphism (or equivalence) class. That @ is in-
jective follows from Theorem 1.6. We want to prove the surjectivity of
0. Let II ={a, ---, a;} and let (II,, ---, II,) be a partition of /1. We
write « € 4 in the form « = > }_, m(a)a;. For the partition (/1 ---, I1,),
let us define an integer-valued function A, on 4 in the following way:
(1.21) ha(e) = > mfa) + Zaj;]h mya) + - + nakév‘z‘z,.m"(a) .

a; €1

Let o, Bed. If « + Bed, then

(1-22) hil(a + }3) = hn(a) + hn(.@) .
Let us put
(1.23) &%= 2, 8, Dp#0,peZ,
hp@=p
g =o®) + >, g%,
hﬂ(a)=0

where a is the abelian subspace of g on which 4 is defined. Then we
have ¢ = > g,. By (1.22), (g,) is a gradation of g. Put

(1.24) 4, ={aed: hyla) = p}, peZ.
Then we get I, = II (N 4,. This implies that &([(g,)]) = [(I],, - - -, II,)].

Remark 1.8. The partition (1.6) has been considered by Kac [5] for
the complex semisimple case and is called the characteristic of the grada-
tion (g,). We will use this terminology for the real semisimple case.

DeriNITION 1.9. The gradation given in (1.23) is called the gradation
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defined by the partition (II,, - - -, II,).

Remark 1.10. Let g = > g, be a real semisimple GLA of the »-th kind
with characteristic element E, and let I7 be a fundamental system com-
patible with the gradation (g,). Let IT = U?_, [T, be the partition given
in (1.6). Then it follows easily that Aj(a) = {(a, E) holds, and hence the
gradation (g,) coincides with the gradation defined by the partition
1, -+, I,).

§2. Gradations of type «,

2.1. DerINITION 2.1. Let g = > ¢z 0: be a real GLA with dim g < oo.
We say that g is of type «, if the following conditions are satisfied:

2.1 8ok =821 8]y Qe =86 (R=1).

LEMMA 2.2. Let ¢ = >.g, be a real semisimple GLA of the v-th kind,
and let I = U7?_,II, be the characteristic of the gradation (g.). If (g.) is
of type «,, then I, = @ for k > 2.

Proof. Let E be the characteristic element of the gradation (g,). Note
that II, = & (cf. 1.2). Choose a root a; € II — II,. Suppose that {a;, E)=
k>1. Since (g,) is of type «,, we have

2.2) g% C g = [ge-s @il = 2[0% a1,

where the sum >} is taken over the roots g and 7 such that (B, E) =k
— 1, <1, EY=1. If [g* g] + (0), then 8 + 7 is a root. Taking account of
(1.2), we conclude that there exist two positive roots f, 7 such that «;, =
B+7,{E)=Fk—1and (7, E>=1. This contradicts the fact that «,
is simple. Therefore we have k = 1, or equivalently «; € IT,.

LEmMA 2.3. Let g be a complex semisimple Lie algebra, and II be a
fundamental system of a root system 4 of g. Let (Il,, II,) be a partition of
II. Then the gradation (g.) defined by (Il,, II)) (cf. Definition 1.9) is of

type .

Proof. Let II = {a,, -+, o,} and I, = {a;,, -+ -, &, }. We write x € 4 in
the form Y\_, m(a)a;. Then the function A, in (1.21) for the partition
(I1,, I1)) is given by

(2.3) hn(et) = g;m,-k(a).
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We define the function A on 4 by

15
(2.4) h(a) = 3 me).

Let 4 = U, 4, be the partition (1.3) induced by the gradation (g,). If we
put 4% = {a e 4,: h(a) = k}, then we have a partition of 4,:

(2.5) 4, = U 4P (p>0).
k>p
We claim
(2.6) gf C [g,, gp-l] , Be Ap (p>=2).

We want to prove this by induction on % in (2.5). Let us take e 4y
first. We have then A(B) = hy(f) = p, which implies that m,8) = 0 for

i+1, --,i,. Hence one can write § as
2.7 g = ;fi:‘l m; (B, .

Since 8 is in 4, (p > 2), B is positive but not simple. Consequently, there
exists a root «; € Il such that 8§ — @, is a root. Therefore, in view of the
expression (2.7), we have «, ¢ II,, that is, «; coincides with one of «,,
A<t<s), say a;. Set ¥ =p — a,,ed. We have then A,(¥) = hy(f) — 1
= p — 1. This implies 7 € 4,_,. Therefore we obtain g* = [g"*, ¢"] C [g,, 8,-1],
which proves (2.6) for g e 4%.

Suppose next that (2.6) is valid for all « € 45”, and choose g e 45"V,
By the same reason as above, g is positive but not simple. We have one
of the following two situations: a) There exists «,, € 1], such that g — «,,
€4, b) there exists «; € I, such that 8 — ¢, € 4. In the case a) we pro-
ceed as above to get the assertion (2.6). Suppose that b) occurs. Let
T=p8—a,ed. Then we have Ay(Y) = hy(f) = p and A(Y) = h(f) — 1 = m.
Hence 7 e 4{™. By the assumption of the induction, we get g C [g,, g,-4].
Therefore we obtain

(2.8) gf = [g%, g1 < [8%, I8y, 8p-11]1 < [80s 81, 8p-1l] C [81, 8,-1] -

Thus we have proved (2.6). The second equality of (2.1) is a direct con-
sequence of (2.6). The first one in (2.1) is immediately obtained from the
second by applying a grade-reversing Cartan involution.

2.2. Let g = > g, be a real semisimple GLA of the v-th kind. We
come back to the situation in 1.2 and preserve notations there. Let } be
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a Cartan subalgebra of g containing a. Then one can write §) = §* + q,
where §* = § N f. Let 4 be the root system of the complexification g¢
of g with respect to the Cartan subalgebra §)¢ (= the complexification of
H). B =ih* + a is the real part of §¢. We identify 4 with a subset of
B, via the inner product ¢ , ) defined by the Killing form of g°. Put Jg
= 4N i5*. Let ¢ be the conjugation of g¢ with respect to g, and let /7
be the g-fundamental system of 4 [13]. Let @ be the orthogonal projec-
tion of §, onto a with respect to { , ). 4: = w(d — dg) is a restricted
root system (or the root system of g with respect to a). Let us consider
the complexified GLA of g:

(2.9) q¢=2l8i,
where g¢ is the complexification of g,.

LEmMA 2.4. (i) The characteristic element E of g is also that of g°.
(i1) The following partition is valid:

(2.10) d=U 4,
k

where 4, = {aed: {a, EY = k}. (ili) We have

(2.11) dy = (@'(4) N A) U dg,
(2.12) dy=wU)N4d (k+0).
(iv) The subspace g¢ are expressed as

(2.13) of =bH°+ 2.4,

anTo

(2.14) =28 k%0,

where § is the root space in g° corresponding to « ¢ A.

Proof. The assertions (i), (ii) are immediate. Let e € 4, @(x) = 0 if
and only if @ € dg. If w(a) + 0, then w(x) € 4. Hence (w(a), E) = {a, E)
= 0, which implies @(«) € 4, Thus the inclusion C in (2.11) was obtained.
Similarly we have the converse inclusion. (2.12) can be proved analo-
gously. By (1.2) we have

(2.15) gf = @) + Tg;ﬁ(g’)c-

From the expression of c(a) in terms of the roots in Jdg (cf. [15]), we see
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that ¢(a)® = 5° + > .e7.3% On the other hand we have (g")¢ = >’ §*, where
the sum > is taken over the roots a € 4 satisfying @(a) = 7. Therefore,
from (2.11) and (2.15) we obtain (2.13). Similarly we have (2.14).

We can choose a g-fundamental system /7 = {«,, - - -, a,} of 4 in such
a way that the relation
(2.16) e E>>0 (1A<i<s)

is satisfied. /7 is compatible with the gradation (gf) of g¢. Let I1g = Il
N de. Then II = w(Ill — Il¢) is a fundamental system of 4. By (2.16) we
have (7, E) > 0 for each 7,€1l, and so II is compatible with the grada-
tion (g,) of g. Let I, =11 N 4, and II, = I N 4;,. Then the following
lemma is easily seen.

LEMMA 2.5. I, = (@*(I) N M) U Ilg,
ﬁk=aj'1(ﬂk)ﬂﬁ (k+0).

In particular, the number of II.’s in the partition II = U,Il, is equal to
the number of Il,’s in the partition Il = U, II,.

The next theorem gives a characterization of the gradations of type
a, in terms of their characteristics.

THEOREM 2.6. Letg = >, g, be a real semisimple GLA of the v-th kind,
and II = U?%_,II, be the characteristic of the gradation (g.). Then (g,) is
of type oy if and only if I, = & for every k > 2.

Proof. Suppose that II, = @ (k > 2). Consider the GLA ¢¢ = > g¢,
and let I7 = U?_,IT, be the characteristic of the gradation (g¢). Then, by
Lemma 2.5 and Theorem 1.6, we get /I, = @ (k> 2). Lemma 2.3 and
Remark 1.10 now imply that (gf) is of type «,. Hence, for £ > 1, we
have g¢., = [a%, ¢¢] = [g, 9:J¢, from which it follows that g., = [g,, g.]-
The converse assertion has been proved in Lemma 2.2.

Let II be a fundamental system of a restricted root system of a real
semisimple Lie algebra g. Two subsets 2,, 2, C II are said to be equivalent,
if there exists an automorphism a of the Dynkin diagram of II sending
2, to £2,. The equivalence class of 2, is denoted by [2,]. Combining
Theorem 2.6 with Theorem 1.7 we have the following

THEOREM 2.7. Let g be a real semisimple Lie algebra, and let I be
a fundamental system of a restricted root system of g. Let %, be the set
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of isomorphism classes of gradations of type «, in g, and let 2,, be the set
of equivalence classes of all non-empty subsets of II. Then there exists a
bijection @,, of %,, to Z,,.

Proof. Let [(g,)] denote the isomorphism class of the gradation (g,)
of g. By Theorem 2.6, the characteristic of (g;) is of the form II = II,
U II, (See also Theorem 1.6). By Theorem 1.6 we may define @, to be

(2.17) P[] = U]
Then Theorem 1.7 shows that @,, is bijective.

Now we will assume g to be real simple. Let ¢ be the same as in
Theorem 1.7, and let ¥* be the subset of ¥ consisting of isomorphism
classes of all gradations of the »-th kind in g. Let ¢ = ¢“ N %,,.

LEMmA 2.8. 9¥ =&Y holds for v =1, 2.
Proof. The case v =1 is trivial. For v = 2, see Tanaka [16].

Let II = {a;, +++, ;} be a fundamental system of a restricted root
system 4 of g, and 9 be the dominant root. We write 9 = >\, m,(Pa,.

Let
218) 29 ={[{a}]: m(9H =1 A<ig<},
79 = {{a}]: m(9) =2 (A<i<D}
U {l{a;, a;}1: m(H =my(H =1 A<i+#j<D}.

The next theorem gives the classification of real simple GLA’s of the v-th
kind (v = 1, 2).

THEOREM 2.9. For v = 1,2, there exists a bijection @ of %“ to P¥.

Proof. We define the map @ to be the map &,, in (2.17). Choose
an element [(g.)] € %, and let II = II, U II, be the characteristic of (g)
(cf. Lemma 2.8). By a property of the dominant root, we see 9¢€4,.
Therefore (9, EY = > i_;m,(9) = v, which implies that the cardinality of
II, is less than or equal to v. So the theorem is a direct consequence of
Theorem 2.7.

23. Let [II,]eZ®, v=1,2 and put II, = II — II,. For a partition
(I, I1)) of II, the function A, in (1.21) is given by hy(a) = > ..,cn, M)
for e e 4. Let us put 4, = {aed: hy(a) =k}, ke Z. Then, by Theorem
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2.9, we have the partition 4 = Uz, ., 4,. In this paragraph we will enu-
merate this kind of partitions for each irreducible classical root system 4
which give rise to all gradations of the »-th kind (v = 1, 2) of classical
real simple Lie algebras. We only give 4_, (0 < k < v), since 4, = — 4_,
holds.

1. Type A, (n>2)
={£@ —2x)1<:1<j<n}
H:{al, "',an—l}, Oy = X1 — X (1<i<n—1)a
=0+ - + ap-s.
a) The sets {a,} (1 < p < [n/2]) are complete representatives of Z®.
The partition of 4 for II, = {a,} is given by

219 4 ={F@x —x)1<i<j<porp+1<Ki<j<n},
d,={x,—x2:1<i<p, p+1<j<n}.

b) The sets {a,, a,.,} A <p<[n2],1<q<n-—2p) are complete
repesentatives of #®. The partition of 4 for II, := {«,, «,.,} is given by

220) A ={x(@ —x)1<i<j<porp+1<i<j<p+gq
or p+qg+1<i<j<n},
4, ={x, —x,:1<i<p,p+1<j<p+gq
orp+1<i<p+q,p+qg+1<j<n},
dy={x; —x:1<i<p,p+qg+1<j<n}.
2. Type B, (n>=2)
d={x@+x)(1<i<j<n), £x1A<i<n)}
O={a, -, &}, a; =% — %6, (1<i<n—1, a,= — %,
9=a + 2a, + -+ + ay).
The automorphism group of I7 is trivial in this case.
¢) 2% consists of a single set {#;}. The corresponding partition of 4
is given by

221) d={x@+x)2<i<j<n), xx@<i<n)},
A, ={x, +x 2<j<n) x}.

d) 2% consists of the sets {a;}, - - -, {a.}. The partition of 4 for II,
= {a,} (2 < k< n) is given by

229) d={+@—x)1<i<j<hk), £@+x)k+1<i<j<n),
ixi(k+1<i<n)}9
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Ady={x,+x,1<i<k k+1<j<n), x,1<i<h)},
Ay ={x, +x (1<i<j<k).

3. Type C, (n > 3)
A_{i(xlixj)(l\i<j<n)’ i2x1(1<i<n)}y
IIH=Aa, -+ .}, s =% — 2, A<i<n—1), ay = — 2%,
“9:2(011+ +01n—1)+05n-
The automorphism group of /I is trivial in this case.
e) P consists of a single set {#,}. The corresponding partition of
4 is given by

(2.23) 4y ={f(x —=x):1<i<j<n},
4, ={x, 42, A<i<j<n), 2x,(1<i<n)}.

f) 2® consists of the sets {a}, -, {@,_,}. The partition of 4 for
II = {a,} A < k< n-—1)is given by

224) 4dy={x(@x —x) A< l<] k), £(x;, +x) (k+1<i<j<n),
+ 2%, (k + 1 <i<n),

4 ={x,+x 1<i <k E+1<j<n),

Ay={x +u, A<i<j<h), 2w (1<i<h}.

4. Type BC, (n>1)
d={+@x+tx) 1<i<j<n), £x, £2 (1<i<n)}
={ay, -y}, e, =%, —% A<i<n—-1), a, =
=20, + -+ + 2a,.
The automorphism group of II is trivial in this case. 2% is empty.
g) P® consists of the sets {«}, - -+, {a,}. The partition of 4 for II,
= {a,} (1 <k < n)is given by

— Xn,

225) dy={x(@x —x)(Q<i<j<hkh), £@x *+x)k+1<i<j<n),
+x, +2x, (E+1<i<n),
d,={x,+ 2, A<i<k k+1<j<n), xQ<i<k)},
d,={x,+x 1<i<j<h),2x1A<i<k)}.

5. Type D, (n>4)

d={ft(x *+x) 1<i<j<n}

II ={a, -, as}, Ulz——xzn_“xi(l i<n—1),a = — Xny — Xp,

Q=0 + 2y + +++ + @ng) + Xnoy + e

The sets {a}, {an} are complete representatives of #® for n + 4, while
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{a} is for n = 4. The sets {ay}, - - -, {@u-2}, {@), @}, {@n-y, @} are complete
representatives of #® for n + 4, while {a,}, {a;, .} are for n = 4.
h) The partition of 4 for II, = {«,} is given by

(2.26) 4, ={x(x *+x,):2<i<j<n}, 4, ={x +x:2<j<n}.
1) The partition of 4 for /I, = {«,} is given by

2.27) 4, ={x(x; —x;): 1<i<j<n}, A~1={xi+xj:1<i<j<n}.
j) The partition of 4 for II, = {a,} 2 < k < n — 2) is given by

228) 4y={x@ —x)A<i<j<kh), £@xxtx)k+1<i<j<n),
A ={x,+x:1<i<k k+1<j<n},
d,={x, +x,:1<i<j<k}.

k) The partition of 4 for 17, = {a,_s, ,} is given by

(2.29) dy={x(x —x):1<i<j<n-—1},
4, ={x*+x,:1<i<n-—1},
d,={x, +x:1<i<j<n—1}.

1) The partition of 4 for II, = {a, a,} is given by

(2.30) dy={x(x —x): 2<i<j<n},
4= —x @<j<n), x+x 2<i<j<n),
4—2:{x1+x1 (2<J<n)}

Remark 2.10. Let g be a classical real simple Lie algebra, and let
(g, I1) denote the gradation of the »-th kind in g corresponding to I7..
By using a)-1) above, we see that (g, II,) satisfies v = 2 and dimg_, = 1,
if and only if (g, 1)) is one of the followings: (3l(n, R), {ay, a,_.}) (n = 3),
(Gu(p, @), {a) 1< p<q), Go(p, @), {w) @<p<q, Epn, R), {a}) (n>3),
(30*(2n), {a}) (n > 4). This reproduces the Cheng’s result stated in Intro-
duction for g classical.

§3. The Lie algebra #(B) and GJTS’s

3.1. For the later use we will mention some properties of a universal
graded Lie algebra and the GLA #(B) both due to Kantor [6], [7]. For
convenience, we denote by a,oa, the commutator product [a,, a,] in a Lie
algebra, and define ¢, - -- 0@, inductively by (a,c---0a,_)oa,. Let #_,
be a finite-dimensional vector space, and #_ be the free Lie algebra
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generated by #_, [2]. Let %_, be the subspace of #_. which is spanned
by elements of the form a,o ---oa,, where a,, ---, @, € %_,, Then one can
write %_ in the form of a GLA:

(3.1) U =

M

L
-

U_;.

7

Let #*, be the dual space of #_, and let

3.2) U, = (Q@ " UX)Q U_,,

whose elements are viewed as %_,-valued (n + 1)-linear operators on %_,.
Put

(3.3) v, =3,

Then it is known [6] that, with respect to suitably defined bracket re-
lations, % becomes a GLA in which #_ is a graded subalgebra. The
GLA is called the universal graded Lie algebra (or simply UGLA) gener-
ated by #_.,. The assignment %_, — % has a functorial property in the
following sense: Let ¢ be a linear isomorphism of %_, onto another vector
space 7 _;. Then it is easy to see that ¢ naturally extends to a grade-
preserving Lie isomorphism ¢ of the UGLA % generated by %_, onto the
UGLA 7" generated by ¥ _,. Here ¢|,_ is the mapping, induced by o,
between the free Lie algebras #_ and ¥"_; ¢|,, comes from the mapping,
induced by ¢, between the tensor algebras over #_, and over 7 _,.

DerFiNiTION 3.1. A GLA U = Y7 _, U, is said to be of type « if it is
of type «, and if U, = >,,, U, contains no ideal of U expect (0) and
>is2 U_; contains no graded ideal of U other than (0).

DeriNiTiON 3.2, Let V=3 _ ..V, be a GLA. The subspace V_, +

V, + V, is called the local part of V and is denoted by loc(V). Let U =

2 _. U, be another GLA. A linear map ¢ of loc(V) into loc (U) is
called a homomorphism between the local parts, if it satisfies

(3.4) o([xi, x,D) = [p(x), o(x)] %€V, x,€V,,

where (i, j) = (0,0), (— 1, 0), (— 1,1) and (0, 1). Moreover, if ¢ is bijective,
then it is called an isomorphism.
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3.2, Let U_, be a (finite-dimensional) vector space and B: U_, X
U, X U.,— U_ be a trilinear mapping. Then the pair (U_,, B) (some-
times denoted by B for brevity) is called a triple system. We shall often
write (xyz) instead of B(x,y,2). A triple system (U_,, B) is called a
generalized Jordan triple system (or shortly GJTS), if the equality

(3.5) (uv(xyz)) = ((wvx)yz) — (x(vuy)z) + (xy(uvz))

is valid for u, v, x,y, ze U_,. Furthermore, if the additional condition
(3.6) (xyz) = (2yx) x,y, 2eU_,

is satisfied, then B is called a Jordan triple system (or simply JTS).

DerinITION 3.3. Let (U_,, B) and (V_,, B’) be two GJTS’s. We say
that a linear map ¢ of U_, into V_, is a homomorphism if ¢ satisfies

(3.7 o(B(x, ¥, 2)) = B'p(x), o(3), (2)  x,5,2eU.;.

Moreover, if ¢ is bijective, then ¢ is called an isomorphism. In this case,
(U.,, B) and (V_,, B’) are said to be isomorphic.

DerFiNiTION 3.4. Let (U_, B) be a GJTS. A subspace V of U_, is
called an ideal (resp. K-ideal) if

(3.8) BV, U.,U)+BU., V,U.)+BU_.,U,V)CcV
(resp. B(V,U_, U_.)) + BU_.,U_,,V)cC V)
is valid. (U_,, B) is called simple (resp. K-simple), if B is not a zero map
and if (U., B) has no non-trivial ideal (resp. K-ideal). We say that
(U_,, B) satisfies the condition (A) if B(U_., a, U_,) = 0 implies ¢ = 0.
Obviously K-simplicity implies simplicity, but the converse is not
always true (cf. [8], [1]). It is known [1] that simplicity implies the con-

dition (A).

Now let (U.,, B) be a GJTS and let # = > 3 _. %, be the UGLA
generated by #_,: = U_,. We put
(39) Lab(x) = B(a’ b’ x) = (abx) >

Rab(x) = B(x, a, b) = (xab) ’
Ba(x’ y) = B(x’ a, y) = (xay) .

Note that L,,, R,, € %, and B, ¢ %, Let U, be the subspace of %, con-
sisting of all operators B,, ac U_,, and let U, be the subspace of %,
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spanned by operators L,,, where a,bc U_,. In the UGLA % we have

(3'10) [Ba, b] = Lbu, a’ b € U—l ’
(3'11) [Lab’ Bc] = - B(bac) ’
(3-12) [La.ln Lcd] = L(abc)d - Lc(bad) .

Hence we get
(3'13) [U—ly Ul] = UO ’ [U(), UO] C l](), [UO, Ul] C Ul .

Let #,(B) be the (graded) subalgebra of # generated by the subspaces
U., and U, Z,(B) can be written as

(3.14) 2(B) =2 + 3 U..

It is of type «,. Furthermore it can be seen (Lemma 5 [6]) that >,., U,
contains no ideal of #(B) other than zero. Let D be a maximal graded
ideal of #(B) contained in > ,.,%_;. Note that such an ideal D is uni-
que. We define the GLA #(B) = > _.. V, to be

(3.15) Z(B) = Z2(B)/|D,

which is of type « (not necessarily of finite dimension) [7]. #(B) is uni-
quely determined by the given GJTS (U_,, B). We call #(B) the Kanior
algebra for B. By the definition, the subalgebra Z(B), = >.,.,V, is
canonically isomorphic to Z(B), = >,.,U;. So, in the sequel, we will
regard #(B), as a subalgebra of # via the above isomorphism. We need
the following

Taeorem 3.5 ([7], [6]). (1) Let (U_, B) be a GJTS. If (U, B) is
K-simple and if dim #(B) < oo, then the Lie algebra #(B) is simple.
(ii) Conversely, let V=3 5._..V, be a simple GLA of type «, and let
be a grade-reversing involutive automorphism of V. If we define a trilinear
map B, by

(3'16) Br(y’ x: Z) = [[T(x)r y]’ Z] ’ xa y} S V—l ’
then (V_,, B, is a K-simple GJTS.

3.3. In this paragraph, we construct a grade-reversing involutive
automorphism ¢, of #(B). This was done originally by Kantor [7], but the
proof given there is rather sketchy; so we give it rigorously by relaxing
the condition ‘“‘center-free” to the condition (A). Let (U., B) be a GJTS
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satisfying the condition (A), and let #(B) = >, _.. U, Consider the
mapping r: U_; — U;:

(3.17) (@) = B, .

The condition (A) implies that ¢ is a linear isomorphism of U_, onto U..
Let #'(B) = > 7_.. V, be the GLA which is obtained from #(B) by re-
versing the gradation, that is, by putting V, = U_, for each i. Let # =

e w and ¥ = 3 5 _. 7", be the UGLA’s generated by #_, = U_, and
v _,= V_, = U, respectively. Let us consider the two subalgebras
ZB) = >, U, Cc £B) and Z'(B)" = >, V.. Z(B)" is viewed as a
graded subalgebra of # (cf. the statement just before Theorem 3.5). Let
aeV,(i>1) and let

(3'18) F(a)(xly ""xi+1):aox1°"'oxi+17

where x,, -+, x;,,,€ V., =% _,. Then F(a) is a V_,-valued (i + 1)-linear
form on V_,, and hence F(a) e ¥;. We extend F linearly to the whole
Z(B)".

LemMmA 3.6. The mapping F is an injective grade-preserving homo-
morphism of £ (B)® into V", = D507 i

Proof. It is known [6] that F is a grade-preserving homomorphism.
We claim first that F|,, is injective. Let a € V, and suppose that F(a) = 0.
Then, from (3.10), (3.11), and (3.18), we have

(3.19) 0 = F(a)(z(w), =(v)) = [la, B.], B,] = Buay = ((uav))

for z(w), t(v) e ¥"., = V_, = U,. Since r: U_,— U, is a linear isomorphism,
we have that (uav) = 0 for all u, ve U_,, and hence, by the condition (A),
a = 0. Therefore Ker F is contained in > ;.. V,. It can be seen (cf. the
proof of Lemma 4 [6]) that Ker F is an ideal of the whole #'(B), that is,
Ker F is an ideal of #(B) contained in > ,._, U, Since Z(B) is of type
a, we have Ker F = (0).

By Lemma 3.6, we may identify #/(B)® with its F-image in ¥",. The
linear isomorphism 7z of %_, onto ¥"_, naturally extends to a grade-pre-
serving isomorphism ¢ of # onto ¥ (cf. 3.1).

LEmmaA 3.7. |y, =77' is wvalid. Furthermore ¢ sends %(B)® to
L' (B)".
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Proof. Choose B,eU, C % (acU_) and let #(B,) = B’c¥",. Then,
by the naturality of # we have

(3.20) B'(z(w), z(v)) = (B, v)) u,velU_,
from which it follows that
(321) B/(Bu’ Bv) = T((uav)) = B(ua.v) = F(a)(Bu, Bv) = a(Bua Bv) .

B, and B, being arbitrary, we get #(B,) = B’ = @, which implies that
tly, =7~'. Hence #(U,) = ¢'(U) =U_, = V,. Since Z(B) is of type «a,
the subalgebra Z(B)® (resp. Z/(B)®) is generated by U, (resp. V) in %
(resp. ¥°). Therefore we conclude that # sends Z(B)® to Z/(B)®.

Now we define 7, as
[t on Z(B)",
27+ on Z(B). := U, = L(B)®.
i<-1

(3.22)

From Lemma 3.7, we have that r; is an involutive linear endomorphism
of Z(B). + #(B)" and that r; is a Lie homomorphism both on Z(B)®
and on #(B).. We extend 7z, to an involutive linear endomorphism
(denoted again by z) of the whole #(B) by putting

(3-23) TB(Lab) = — Ly, L,,ecU.

The following proposition is a variation of Proposition 6’ in Kantor
[7], in which we relax an assumption in the original one.

ProrositioN 3.8, Let (U_,, B) be a GJTS satisfying the condition (A).
Then the linear endomorphism t, defined by (3.22) and (3.23) is a grade-
reversing involutive automorphism of #(B).

Proof. By using (3.22) and (3.23), and by following Kantor [7] (p.
428), we can show that r, is a homomorphism.

tp is called the grade-reversing canonical involution of Z(B).

3.4. Let (U_, B) be a GJTS satisfying the condition (A). If the GLA
ZL(B) is of the v-th kind, then we say that (U., B) is of the v-th kind.
Note that B is a JTS if and only if v =1 [7]. The symmetric bilinear
form 75 [19] on U_, defined by

(3.24) 7s(x,9) = $ Tr 2R,, + 2R,, — L,, — L,,)
is called the trace form of the GJTS (U_, B). If r, is positive definite,
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then (U_,, B) is said to be compact. When v =1, our definition of
“compactness” is the same as that for JTS’s. Suppose that (U_,, B) is a
GJTS of the first or the second kind satisfying the condition (A). Then
it is known [1] that (U_,, B) is compact if and only if .Z(B) is semisimple
and 75 is a Cartan involution. Suppose that (U_,, B) is compact of the
first or the second kind. Then (U_,, B) is simple if and only if it is K-
simple ([1]).

3.5. In this paragraph we treat infinite-dimensional simple GLA’s.
Let g = > _..g; be a simple GLA of type «, and = be a grade-reversing
involutive automorphism of g. Then (g_,, B, is a K-simple GJTS (cf.
Theorem 3.5), and hence it satisfies the condition (A) (cf. 3.2). Therefore
the Kantor algebra #(B,) admits the grade-reversing canonical involution
7. Consider the UGLA % = 3 _.. %, generated by #_, = g_, and con-
sider the subalgebra Z(B,) of # given in (3.14). We then have

Lemma 3.9. loc(g) = loc (Z(B.)).

Proof. Let Z(B) = %_ + >, U,. Let ¢_, be the identity map of
g, onto #_,. We define ¢,: g, — U, be ¢,(z(w)) = (B,), for ueg_,. Then,
since 7 (w) = (B.), (cf. (3.22)), we have ¢, = r5c7". 75 is a bijection of
., =%_, to U,, and so ¢, is a linear isomorphism of g, onto U, Since
g is simple, we easily see [g_;, ;] = g,. We define ¢,: g,— U, by putting
o[z(w), v]) = L,, (u,veg_,). We claim that ¢, is a bijection. First note
that the representation p: g, — ad,_,g, is faithful. Indeed, suppose the
contrary; choose a non-zero element xeg, such that [x,g_;] = 0. Then
> kase(ad g))* (ad go)'x is a non-zero ideal of g. But this is impossible, since
g is simple. That ¢, is surjective is trivial. Choose an element a =
>u_i Ade(wy), vl eg, (A, € R), and suppose ¢ia@) = 0. Then, for every xeg_,
= %_,, we have [a, x] = >3, 2 [[z(w), v], x] = pa A Bv;, ug, x) = 37, xiLviut(x)
= ¢a)x = 0. Since p is faithful, we get a = 0. Thus ¢, is a bijection.
We shall prove that the linear bijection ¢ = ¢_; X ¢, X ¢, is an isomorphism
of loc (g) onto loc(Z(B.)). Let xeg_, and y = [«(w), v] €g,, Where u,ve
g-.. Then we have

o-([y, 2]) = [y, x] = [[c(w), v], x] = B, u, x) = L,.(%)
= [va x] = [§00<y), (P—l(x)] .

Let u,veg_,. Then, for xeg_, = %_, we get
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[o(e(@), o ()](®) = (B, V(%) = Buv, u, x) = Ly (x)
= o)[c(w), v])(x) .

Let weg.,. Then we have

e[y, c))) = ollz(w), v], 7W)]) = ,(=({[u, (v)], w]))
= (Bww.ew1,o1 -

On the other hand, by using (3.11), we get

[eo(3), ()] = [pi([(w), v]), oe(wh] = [Lya, (B,
= - (Br)(uvw) .

Furthermore — (uvw) = — BJ(u, v, w) = [[u, (v)], w]. Thus we have proved
o[y, cW)]) = leo(y), pi(z(w))]. Using the above equalities, one can show
that gi([x, 1) = [p(x), e()] for x, y € go.

LEmmaA 3.10. Let g = 37 _..g; be a real simple GLA of type «, Let
7 be a grade-reversing involutive automorphism of g, and let #(B,) be the
Kantor algebra for the GJTS (g_,, B.). Then there exists a grade-preserv-
ing isomorphism ¢ of g onto #(B,) such that

(3.25) OT =T,

Proof. Let % = >3 _..%; be the UGLA such that % , =g_,. For a
GLA § =37 _.5;, we put §, = Dusehs and b =35 15, We define a
map F of g, to %, quite analogously as in (3.18). Note that (3.18) is
meaningful for i = 0. Since g is simple of type «, the map F is an in-
jective grade-preserving homomorphism [6]. An easy computation shows
that F coincides with ¢, X ¢, on g, +g,. Let £(B)=>72_.U. We
identify £(B,), with Z(B.). C %,. Then, as is seen in the proof of
Lemma 3.9, we have F(g, + g,) = U, + U,. Considering that g and Z(B,)
are both of type «, we conclude that the GLA’s g, and #(B,), are iso-
morphic under F. The map F’ := ¢, Fr is a grade-preserving isomorphism
of g_ onto #(B,).. We define a map ¢ to be F on g, and to be F’ on
g-. Then ¢ is a grade-preserving linear isomorphism of g onto #(B,). ¢
is an isomorphism between loc(g) and loc(Z(B.), and it is also bracket-
preserving on g, and on g.. By using these properties we can conclude
inductively that ¢ is bracket-preserving on the whole g. In order to show
(3.25), it is enough to verify it for an element of loc (g). Let a = [¢(w), v]
€g,, where u,veg_,. In view of (3.23) and the definition of ¢, we have
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or([z(w), v]) = —o([z(v), ul) = — Ly, = t5(Lu) = t5,9([z(w), v]). We can eas-
ily see (3.25) for the case aeg, or aeg_,.

Lemma 3.11. Let (U, B) and (U”,, B') be two GJTS’s satisfying the
condition (A). Then an isomorphism + of (U_,, B) onto (U’,, B’) induces a
grade-preserving isomorphism Z£(\) of £(B) onto #(B’). Furthermore

(3.26) L(p)es = w0 L),

where tp and 7y are the grade-reversing canonical involutions of £(B) and
L(B’) respectively.

Proof. Let % =32 _.% and % = 3.2 _.%, be the UGLA’s such
that #_, = U_, and %', = U’,. + extends to an isomorphism v+ of % onto
' (cf. 3.1). Let L(B) =%_ + 25U, and Z(B) = %. + >..., U} be the
subalgebras in (3.14). All objects in loc (Z(B’)) are denoted by the same
notations as the corresponding ones in loc (&Z,(B)) but with primes. Since
y is an isomorphism between the two GJTS’s, we have (J(B,))(y(w), (1))
= (B, (&, v)) = Bl@,(y(w), (v), u, veU_,. This implies v(B,) = B},
Also we get y(L,;) = L,y @ be U_,. These arguments show that +
sends loc (Z(B)) to loc (Z(B’)). Noting that Z(B) and Z(B’) are of type
@, we have that 4 sends #,(B) to #(B’). Therefore v induces a grade-
preserving isomorphism Z(v) of £(B) onto L(B’) (cf. (3.15)). To see (3.26)
it suffices to check it on loc (#(B)). Let us identify loc(Z(B)) with
loc (Z4(B)) etc. For L,, € U,, we have Z(y)ts(L,;) = LN —Lya) = — Lioyp
= 3Ly emy) = 1L ()(Ly,). The remaining cases are also easily derived.

THEOREM 3.12. Letg = >.2 _.g, and ¢’ = D7 _..g; be two real simple
GLA’s of type a,. Let v and ¢’ be grade-reversing involutive automorphisms
of g and g’, respectively. Then the GJTS’s (g_;, B,) and (g’,, B..) are iso-
morphic if and only if there exists a grade-preserving isomorphism 6 of g
onto g’ such that
(3.27) Oz = 7'4.

Proof. As is seen from what was pointed out at the beginning of this
paragraph, #(B,) and #(B,) admit the grade-reversing canonical involu-
tions 7z, and zg,, respectively. Suppose that there exists an isomorphism
¢ of (g-,, B,) onto (g’,, B.). By Lemma 3.11, we obtain the grade-pre-
serving isomorphism #(y) of #(B,) onto #(B.) satisfying

(3.28) LYyes, = 5.l W).
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On the other hand, by Lemma 3.10, one can find grade-preserving iso-
morphisms ¢: g — Z(B,) and ¢': ¢’ — £(B,) which satisfy the conditions
ot = 150 and ¢'v’ = r5.0". Consequently the composite map 6 = ¢’ 'L (y)p
is seen to be the desired one. The converse assertion is easily seen.

3.6. We apply the results in 3.5 to the finite-dimensional case.

DerFinITION 3.13. Let g = >, g, be a real simple GLA of the first or the
second kind, and z be a grade-reversing Cartan involution of g. The pair
(g, v) is called an admissible pair. We say that two admissible pairs (g, 7)
and (g’, ') are isomorphic, if there exists a grade-preserving isomorphism
¢ of g onto g’ such that gr = </¢.

We have the following classification theorem for compact GJTS’s of
the first or the second kind.

THEOREM 3.14. Let # be the set of isomorphism classes of compact real
simple GJTS’s of the first or the second kind, and let </ be the set of iso-
morphism classes of admissible pairs. Then there exists a bijection ¥ of
</ onto 4.

Proof. As was mentioned in 3.4, for a compact real GJTS of the first
or the second kind, simplicity and K-simplicity are identical. Let (g, 7)
be an admissible pair, and let g = > *__,g; (v = 1, 2). The condition v =1, 2
implies that g is of type «, (cf. Lemma 2.8). Hence, by Theorem 3.5 and
Lemma 3.10, the pair (g_,, B.) is a simple GJTS of the v-th kind (v = 1, 2).
Furthermore, since ¢ is a Cartan involution, (g_,, B.) is compact (cf. 3.4).
We put

(3.29) (l@s, DD = [8-, B,

where [ ] denotes an isomorphism class. From Theorem 3.12 it follows
that 7: o — % is well-defined and injective. Now choose an element
[(U., B)]le#. Since (U_,, B) is simple of the v-th kind, #(B) is simple of
the v-th kind (cf. 3.4 and Theorem 3.5). #(B) admits the grade-reversing
canonical involution r,, which is a Cartan involution by the assumption
for (U_,, B). Consequently the pair (#(B), r;) is admissible. Furthermore,
for x,y,ze U_, we have

(3'30) B(y, x’ Z) = Bz(y’ Z) = [[B.m y]’ Z] = [[TB(x)7 y]7 Z] ’
which implies B = B.,. Therefore we get ¥ ([(L(B), z»)]) = [(U_,, B)].
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§4. Classification of compact classical simple GJTS’s

4.1. A real GJTS (U.,, B) is called classical simple, if #(B) is clas-
sical simple. In order to classify all compact classical simple GJTS’s of
the first or the second kind, we have to determine the set .« (cf. Theorem
3.14). This will be carried out by

(4.1) finding all gradations of the »-th kind (v = 1, 2) in each real
simple Lie algebra g up to isomorphisms and by

(4.2) classifying all grade-reversing Cartan involutions for each gra-
dation in g, up to conjugacy under automorphisms of the gradation.

(4.2) has been settled in Lemma 1.4; there exists a single conjugacy class
of grade-reversing Cartan involutions for each gradation. (4.1) will be
settled in 4.2 by using the results in 2.3. The next task is to determine
g., explicitly for each gradation (g,) and to find explicitly a grade-revers-
ing Cartan involution. Thus we will be able to compute the GJTS’s B,
we are seeking (cf. (3.29)), by means of (3.16).

4.2, We refer to Takeuchi [15] for the realizations of classical real
simple Lie algebras g and the choices of the maximal abelian subspaces
a, on which the root systems 4 in 2.3 are defined. We can then compute
a root vector corresponding to each « e 4; by virtue of (1.23), (1.24) and

L L ! l 1 71 1
Lio| —1 1/0|—1
Il o |—1
L1l o ) 111} o |-1
l 0 1 T To
A1), I2), I3),
Ll A L L I, I 1
Lio|—1]—2 Lol —1 |2 ol-1[—-2V
LIt o | —1 l 0 | -1 -2

l2 1 O ‘—'1

L2l 1 0

(IIl)h. l2,13 (IIZ)h, 12 (Hg)l
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2.3 one can find all the graded subspaces of g. It turns out by case-by-
case checking that, for classical real simple Lie algebras g, every grada-
tion of the first or the second kind falls into one of the six types given
in the page 106. For each diagram above the big square indicates an
element of g, a matrix. The integer % put in each divided portion indicates
that that portion lies in the graded subspace g;. The number beside each
edge denotes the size of the portion. A shaded portion indicates that
that portion does not belong to g.

We use the following notations for the matrices: X* = ‘X, where X
is a real or complex matrix. E, denotes the unit matrix of degree I
J, = (a;;) is the ! X [ matrix with a;; = 6,,,,-;.

N I A -
Jz= s JL=EL®J1’ JL=JL®E2,

K, =diag(v—-1,—+v-1), K, =J,® K,,

0 0 J,
A,.,=10 E_, 0|(p<q), A,,=A4A,,QF,.
J, 0 0

We also use the following notations for the vector spaces: M, (K) denotes
the vector space of p X q matrices with entries in K, where K = R or C.
M, (H) = {X e M,,,(C): XJ, = J X},

SH)(C) = {Xegl(n, C): J,X*J, = — X},

SH)(H) ={XeM, (H): JIX*J, = — X},

Alt)(K) = {Xegl(n,K): J,'XJ, = — X}, K=R or C,

H)(H) = {Xegl@n, C): XJ, = J,X, X*K, + K,X = 0},

Sym(K) = {X egl(n, K): J,'XJ, = X}, K= R or C.

Table I (resp. Table II) is the list of all possible gradations of the
first (resp. second) kind (up to isomorphisms) in classical real simple Lie
algebras g and the corresponding graded subspaces g_,. Note that every
gradation of the first or the second kind is determined by II, (cf. 2.3).

Let (g;) be an arbitrary gradation in a real simple Lie algebra g
listed in Table I or II. It is easy to see that if we put (X)) = — X*

(X €g), then ¢ is a grade-reversing Cartan involution of the GLA g = >, g..
Table III (resp. Table IV) is the list of JTS’s (resp. GJTS’s of the second
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Table III
-1 B(Y, X, Z)
1 M, .. (C) YX*Z + ZX*Y
2 M, (R Y'XZ + Z'XY
3 M,, (H) YX*Z + ZX*Y
4 M, 4, (C) YX*Z + ZX*Y — ZeJy 'Y XSy,
5 M, R)  YXZ+ Z:XY — ZA, ., YXA, .,
6 Sym;(C) YX*Z + ZX*Y
7 Syml(R) Y'XZ + ZXY
8 SH/(C) YX*Z + ZX*Y
9 SHYH) YX*Z + ZX*Y
10 HYH) YX*Z + ZX*Y
11 M, ,,(C) YX*Z + ZX*Y — ZJyy )t YX o,
12 Alt(C) YX*Z + ZX*Y
13 M, ;. _(R) Y'XZ + Z' XY — ZdJ,, 'YX,
14 Alt)(R) Y'XZ + Z'XY
Table IV
g-1 B(Y, X, Z)

Y. X¥Z, + ZX}Y, — Z, Y, X¥
Y.X{Z, + Z,X}Y, — X¥Y\Z,
Y'XZ + Z'X)Y, — ZY,'X,
Y!X,Z, + Z;)X,Y, — ‘X, Y, Z,
YX¥Z + ZXFY, — 2, Y, X}
Y. X7, + Z,X}Y, — XIY\Z,

1 M, (C) X M,,_,(C) {
2 M, (R) X M,,_, (R) {

3 M, (H) X My, (H) {

4 M z0-2:(C) YX*Z + ZX*Y — Zeyngesit YX Iy
5 M, ,u(R) YXZ + ZXY — ZA, 1, ' YXA, ;i
6 My, 0(C) YX*Z + ZX*Y + Zd,_ 'YX, _,
7 M, 1, (R) Y'XZ + Z'XY + Zd,_ ' YXd,_,
8 M, 4._2(C) YX*Z + ZX*Y — Zpy_ 3 Y* Xy o
9 M, s 0i(H) YX*Z + ZX*Y — ZJ} 0 Y* X 0

10 M, 00 0(H) YX*Z + ZX*Y + ZK,, 0 Y*XK,, _,,

11 M, ,,,(C) YX*Z + ZX*Y — ZA, 0 Y¥XA, 1oot
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12 M, olH) YX*Z 4 ZX*Y — ZA} 0 Y* XA, o
13 Mlc,Zn—ZIHl(H) ) YX*Z + ZX*Y + ZKM—ZIHIY*XKM—ZIHI
14 M, ., .(C) YX*Z + ZX*Y — Zepy 0t YX Ty o

Y.X{Z, + ZX}Y, — Z,Y, X¥

YZX52, + Z,X}Y, — X¥YZy — ZJ, ' Y X,
16 M, ., (R) Y'XZ + Z'XY — ZJy, 0! YX I, o

Y'X\Z + Z'XY, — ZY,'X,

Y X2, + Z;' XY, — K\V\Z, — Zod, 'Y X\, s

15 M1,n-1(C) X Alt;—l(c) {

17 M, (R) X Alt, (R) {

kind) (g.,, B.) which are obtained from the gradations given in Table I

(resp. Table IT). In Table IV, if g_, is a direct product of two vector spaces V,

and V,, then an element X e g_, is denoted by (X, X,) or {Xl, where X; e V..
X

2

From Table IIT we have the following

THEOREM 4.1. Compact classical real simple JTS’s (U_,, B) are classi-
fied (up to isomorphisms) as follows:

(1) U.=M,(K), K=R, C, H; p<gq,
B(Y, X, Z) = YX*Z + ZX*Y .
(2) U.,=Sym,(K), K=R, C; n>3,
B(Y, X, Z) = YX*Z + ZX*Y.
(3) U.,=Alt,(K), K=R, C; n>5,
B(Y, X, Z) = YX*Z + ZX*Y.
(4) U,=SH)(K), K=C,H;n>3for K=C, n>2 for K=H,
B(Y,X,7Z) = YX*Z + ZX*Y.
(56) U..=HH), n=3,
B(Y,X,Z) = YX*Z + ZX*Y.
(6) U.i=M,(C), n>3, n+*4,
B(Y, X, Z) = YX*Z + ZX*Y — ZJ,'YXd,.
(7) U.,=M,,.(R),0<p<qor3<p=gq,
B(Y,X,Z) = Y'XZ + Z'XY — ZA, 'YXA, ,.

It is easy to see that the above result is essentially the same as the
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one in Loos [10]. From Table IV we have

THEOREM 4.2. Compact classical real simple GJTS’s (U_,, B) of the
second kind are classified (up to isomorphisms) as follows:

(1) U—l = Mp,q(K)XMq.T(K)’ K= R’ Ca H,

1<p<[—’21], p<r, p+qg+r=n,

B(Y, X, Z) = (Y. X}¥Z, + ZX}Y, — Z,Y, X},
Y, X¥Z, + Z,X}Y, — X¥Y\Z,),
where

X=X,X), Y=Y, Y), Z=(2,Z).
(2) U—-l = Mk,p+q—2k(K)’ K= R: C’
2<k<p<q or2<k<p=q (>4 for K=R,
1<k<p<q or1<k<p=q (=4 forK=C,
B(Y,X,Z) = YX*Z + ZX*Y — ZA, - Y*XA, ¢ (-
(3) U—l = k,p+q—2k(H)’
1<k<p<q or 1Kk<p=gq,
B(Y,X,Z) = YX*Z 4+ ZX*Y — ZA,_ .+ Y*XA} ¢ qx -
(4) U—1= k,m—ZE(C)7

2<k<n for m=2n+1,
2<k<n—-1 for m =2n (n > 4),

B(Y, X, Z) = YX*Z + ZX*Y — ZJ, 'YX, o .
(5) U—) = k,m—2k(H)7

1<k<n for m=2n+4+1(n>2),
1<k<n-1 for m =2n (n > 3),

B(Y, X, Z) = YX*Z + ZX*Y + ZK, _,,Y*XK, _,, .
(6) U.,= M,:..(K), K=R,C,
1<k<n—-1{m=>3)),
B(Y, X, Z) = YX*Z + ZX*Y + ZJ,_ ' YXd0_; .
(7) U.,=M,, (K) X Alt,_ ,(K), K=R,C; n>5,
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B(Y, X, Z) = (Y X}Z, + ZX}Y, — Z, Y, X¥,
Y, X$Z, + Z,X3Y — X*Y,Z, — Z,J, 'Y, X\ J,_),
where
X=X,X), Y=U,Y), Z=(Z,Z).

§5. e-modifications of compact simple GJTS’s

We will give here a method of constructing noncompact simple
GJTS’s, starting from compact simple GJTS’s. Let (U_,, B) be a compact
real simple GJTS of the y-th kind (v = 1,2). Then we have the admis-
sible pair (Z(B), ;) (cf. the proof of Theorem 3.14). #(B) is a simple
GLA of type «, of the v-th kind (v = 1,2). For brevity we put g = #(B)
and =175 Let g=3%__,a;. and let E be its characteristic element.
Note that g_, = U_,. r is a grade-reversing Cartan involution of g. We
choose a maximal abelian subspace a containing E satisfying (1.1). Let
4 be the root system of g with respect to a. Now consider a signature
¢ of roots in 4 in the sense of Oshima-Sekiguchi [12], and let 7, be the
e-modification of z. 7., is also an involutive automorphism of g.

ProrosiTioN 5.1. Let
(5.1) B(Y,X,Z2) =[[z(X), Y], Z] X Y,ZeU.,.
Then (U_,, B,) is a noncompact simple GJTS of the v-th kind (v = 1, 2).

Proof. In view of the definition of 7, [12], it follows that z, coincides
with ¢ on a. Hence we have 7.(E) = — E and consequently z, is a
grade-reversing involutive automorphism of g. By Theorem 3.5, (U.,, B,)
is a K-simple GJTS and hence it is simple (cf. 3.4). Consequently (U_,, B,)
satisfies the condition (A). The GLA .#(B.) admits the grade-reversing
canonical involution z,, (cf. Proposition 3.8). By Lemma 3.10, there ex-
ists a grade-preserving isomorphism ¢ of g onto #(B.) such that ¢r. =
tpp. Since z. is not a Cartan involution, z is not either. Therefore B,
is not compact [1].

We say that (U_,, B,) is an e-modification of (U.,, B).

Remark 5.2. Let g = D>, g, be a simple GLA of type «, of the v-th
kind (v = 1,2). Let ¢ be a grade-reversing Cartan involution of g and
7. be an e-modification of z. The proof of the above theorem shows that
B, in (5.1) is a noncompact simple GJTS of the y-th kind (v = 1, 2).
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ExampLE 5.3. Let us consider the gradation (II2),, of g = 3u(4, 4) (cf.
Table II). In this case g_, = M, (C). A grade-reversing Cartan involu-
tion is given by 7 such that «(X) = — X*, X € 3u(4,4). The correspond-
ing compact simple GJTS is found in Table IV. Let IT = {a,, @y, as, @i} be
a fundamental system for 4 compatible with the gradation. We define
a signature ¢ by e(a) = — 1 and e(a;,) =1 for i = 2, 3,4 ([12]). By easy
computations we can verify that 7.(X) = Az(X)A for X ¢ 3u(4, 4), where
A = diag(— 1, E;, — 1). By direct computations we see for X, Y, Z ¢
M, (C)

(5-2) Bs(Y» )(, Z) = YX*ImZ + ZX*L.}Y - ZJ4Y*I1,1XJ4 s

where I,, = diag(— 1,1). The above B, provides an example of non-
compact simple GJTS’s.
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