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Abstract

We determine the naturally reductive homogeneous real hypersurfaces in the family of curvature-adapted
real hypersurfaces in quaternionic projective space HI P" (n > 3). We conclude that the naturally reductive
curvature-adapted real hypersurfaces in HP" are Q-quasiumbilical and vice-versa. Further, we study the
same problem in quaternionic hyperbolic space HW"(n > 3).
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1. Introduction

A Riemannian manifold whose isometry group acts transitively on it is called a
Riemannian homogeneous space. In the class of homogeneous Riemannian manifolds,
naturally reductive spaces have good geometrical properties. They are defined by:

DEFINITION 1.1. Let M = G/ K be a Riemannian homogeneous space and g its
metric tensor, where G is a transitive group of isometries of M and K its isotropy
subgroup at some point p e M. Then (M, g) is said to be a naturally reductive
Riemannian homogeneous space if there exists a subspace m of the Lie algebra g of
G which satisfies the following conditions:

(i) fl = t « m ,
(ii) Ad(K)mcm,
(hi) g([X,Y]m,Z) + g(Y,[X,Z]m)=0, X,Y,Zem,
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where t is the Lie algebra of K and [X, Y]m denotes the m-component of [X, Y]. (In
the following we call these spaces naturally reductive homogeneous spaces.)

There is a criterion for homogeneity of a Riemannian manifold due to Ambrose
and Singer [1].

THEOREM 1.1 ([1]). A connected, complete and simply connected Riemannian
manifold M is homogeneous if and only if there exists a tensor field T of type (1, 2)
on M such that

(i) g(TxY,Z) + g(Y,TxZ)=O,
(ii) (WXR)(Y, Z) = [Tx, R(Y, Z)] - R(TXY, Z) - R(Y, TXZ),

(iii) (VxT)Y = [Tx,TY]-TTxY

for X,Y,Z e 3£(M).

Here V denotes the Levi Civita connection, R is the Riemannian curvature tensor
of (M, g) and X(M) is the Lie algebra of all C°° vector fields over M.

On the other hand, there is a criterion for naturally reductivity due to Tricerri and
Vanhecke [7].

THEOREM 1.2 ([7]). Under the same topological conditions for M, (M, g) is natu-
rally reductive homogeneous if and only if there exists a tensor field T of type (1,2)
on M such that

(i) g(TxY,Z) + g(Y, TXZ) = O,
(ii) (VXR)(Y, Z) = [Tx, R(Y, Z)] - R(TXY, Z) - R(Y, TXZ),

(iii) (VxT)Y = [Tx,Ty]-TTxY,
(iv) TXX = O

forX, Y,Z

In Theorem 1.1 and Theorem 1.2, if we put V :— V - T, then the conditions
(i), (ii) and (iii) are equivalent to Vg = 0, VR = 0 and V7 = 0, respectively.
Further, in both theorems, without the topological conditions of completeness and
simply connectedness, 'the only if part is always true. Furthermore, without these
topological conditions, the conditions (i)-(iii) of Theorem 1.1 give a criterion for local
homogeneity of M (for more details see [1] and [7]).

In all these cases, T is called a homogeneous structure.
Let M" (c) be an ^-dimensional (ji > 2) quaternionic Kahler manifold of constant

quatemionic sectional curvature c e R — {0}. The standard models for such spaces are
the quaternionic projective space HP"(c) (for c > 0) and the quaternionic hyperbolic
space HH"(c) (for c < 0). A connected real hypersurface M of M"(c) is said to be
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Q-quasiumbilical if its shape operator A is locally of the form

3

(1.1) AX = XX + ii^2r)k(X)£k, XeTM,
k=\

for some real-valued C°° functions k, \x (for definitions of £t and r\k see Section 2).
Pak ([6, Theorem 4]) proved that on every Q-quasiumbilical real hypersurface M in a
non-flat quatemionic space form M" (c) the functions k and /x are constant and satisfy
kfj, + c/4 — 0. All Q-quasiumbilical real hypersurfaces in HP"(c) and HHn(c) are
classified as follows:

THEOREM 1.3 ([2, 5]). Let M be a Q-quasiumbilical real hypersurface in UPn(c)
or HHn(c). Then M is locally congruent to one of the following spaces:

- a geodesic hypersphere of radius r e (0, n/yfc) in WP"(c);
- a geodesic hypersphere of radius r 6 R+ in UH"(c);
- a horosphere in HH"(c);
- a tube of radius r e R+ about the standard totally geodesic embedding of

HHn-1(c)inUHn(c).

Berndt and Vanhecke ([3]) proved

THEOREM 1.4 ([3, Theorem 3]). Let M be a Q-quasiumbilical real hypersurface in
MP"(c) or UH"(c). Then the tensor field T on M, which is locally given by

3

(1.2) Tx Y = k J2 (r)k(Y)<PkX - r,k(X)<pkY - gfaX, Y)t-k)
k=\

3

is a naturally reductive homogeneous structure on M.

There is a special class of real hypersurfaces in MP"(c) and MH"(c) formed
by the so-called curvature-adapted real hypersurfaces (for definitions see section 2).
This class includes all Q-quasiumbilical real hypersurfaces and they are classified by
Berndt [2].

In this paper we classify naturally reductive homogeneous real hypersurfaces in the
class of all curvature-adapted real hypersurfaces in HP"(c) and HH"(c). We prove

THEOREM 4.1. Let M be a simply connected curvature-adapted real hypersurface
in a quatemionic space form M"(c) (c ^ 0, n > 3). In the case c < 0, we further
assume that M has constant principal curvatures. Then M is naturally reductive
homogeneous space if and only ifM is Q-quasiumbilical.
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Furthermore, we obtain homogeneous structures on some curvature-adapted real
hypersurfaces in Mn(c) (c ^ 0). They include T of (1.2) as a special case. We
establish

THEOREM 4.2. On the real hypersurfaces P[(r), H[(r) and //3 in Mn(c), the fol-
lowing tensors T define homogeneous structures for all a € R:

3

(4.5) TXY=J2 toki.Y)4>kAX + *r,k(X)<t>kY - g(<f>kAX,
k=\

3

+ (a + a)£(^ + 1 (X)r ? , + 2 (10 - r?t+2(X)r?t
k=\

where a = 2cot 2r for P((r), a = 2coth2r/or H[(r) and a = 2 for H3 (for
definitions of the spaces P\(r), H\(r) and H3 see Section 2).

2. Preliminaries

Let M"(c) be an ^-dimensional quaternionic Kahler manifold of constant quater-
nionic sectional curvature c e OS — {0}. Let g be the Riemannian metric, V the Levi
Civita connection and 3 the quaternionic Kahler structure of M" (c). The Riemannian
curvature tensor R of M"(c) is locally of the form

(2.1) R(X, Y)Z = C-\ g(Y, Z)X - g(X, Z)Y

J^ {g(JkY, Z)JkX - g(JkX, Z)JkY- 2g(JkX, Y)JkZ) \ ,

J
where (Jt, J2, Jz) is a canonical local basis of 3 and X, Y, Z e TM (for more details
see [4]).

Let M be a connected real hypersurface of M"(c). We denote by g the induced
Riemannian metric on M, by V the Levi Civita connection of M and v a local unit
normal vector field along M in Mn(c).

The Gauss and Weingarten formulas are:

(2.2) VXY = VXY + g(AX, Y)v and Vxv = -AX

for vector fields X, Y on M.
We define on M local vector fields ft (k = 1,2, 3), their dual 1-forms r)k and tensor

fields <f>k of type (1, 1) as follows:

(2.3) fc = -Jkv, ijt(X) = g(X, ft), JkX = <f>kX + r,k(X)v, for X 6 TM.
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The tangent bundle TM of M is orthogonally decomposed by

(2.4) TM = D® D1, DL = span{£,, &, &}.

In the following, the index k has to be taken modulo three.
By the definition (2.3) we get the following relations:

£* = 0,

( 2 5 ) <p2
kX = -

<t>k<t>k+\X = 4>k+iX

4>k<t>k+lX = — <Pk+l

The equation of Gauss and the equation of Codazzi are locally of the form

(2.6) R(X,Y)Z = Ug(Y,Z)X-g(X,Z)Y

+ t l (g(<l>k Y' Z)<t>kX ~ 8{<t>kX> Z)<f>k Y ~ 2S^kX, Y)<t>kZ)
k=\

+ g(AY,Z)AX-g(AX,Z)AY
and

3

(2.7) ( V x A ) y - (V,A)X = jJ2 {nkiX^Y - r,k(Y)4>kX - 2g(<t>kX,

Here R and A are the curvature tensor and the shape operator of M.

Since Z is parallel, there exist local one-forms q\, qi, q^ on Mn(c) such that

(2.8) VxJk = qk+2(X)Jk+i -qk+l(X)Jk+i

for all vector fields X on M"(c). Using (2.2), (2.3) and (2.8), we have

(2.9) (V*&) Y = r)k{Y)AX - g(AX, Y)$k + qk+2{X)4n+i Y - qk+l(X)<pk+2 Y,

(2.10) Vxf4 = qM(X)h+l - qk+l(X)^k+2 + <pkAX

and

(2.11) (Vxrik)Y= qk+z(X)r,k+i(Y) - qk+l(X)t,M(Y) + g(<pkAX, Y).

For a real hypersurface M of M"(c), the normal Jacobi operator Kv is defined by
Kv := /?(•, v)v e End(TA/). The definition of a curvature-adapted real hypersurface
is the following:

DEFINITION 2.1. Let M be a real hypersurface of M"(c). Then M is said to be a
curvature-adapted if the equation £„ o A = A o Kv holds.
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Berndt [2] classified curvature-adapted real hypersurfaces in HP" as follows:

THEOREM 2.1 (Berndt [2]). Let M be a connected curvature-adapted real hyper-
surface in HP" (n > 2). Then M is congruent to an open part of one of the following
real hypersurfaces in HP":

P[(r): a tube of some radius r € (0, n/2) around the canonically {totally geodesic)
embedded quaternionicprojective space HP1 for some / € {0,... , n — 1};
P2(r)\ a tube of some radius r € (0, n/4) around the canonically (totally geodesic)
embedded complex projective space CP".

For real hypersurfaces in UH", Berndt [2] obtained:

THEOREM 2.2 (Berndt [2]). Let M be a connected curvature-adapted real hyper-
surface in MHn (n > 2) with constant principal curvatures. Then M is congruent to
an open part of one of the following real hypersurfaces in H//":

H[(r): a tube of some radius r € R+ around the canonically (totally geodesic)
embedded quaternionic hyperbolic space HH' for some I e {0,... , n — 1};
H2(r): a tube of some radius r e K+ around the canonically (totally geodesic)
embedded complex hyperbolic space CH";

Hy. a horosphere in HH".

The eigenvalues (that is, the principal curvatures) ku k2, cc\, a2, «3 of the shape
operators A and their multiplicities m(k\), m(k2), m(ct\), m(a2), m(a3) of the spaces
in Theorem 2.1 and Theorem 2.2 are:

on = a2 - or3

a2 = a3 jt a,
w(X,)
m(k2)
w(a,)
m(a3)

Pi(r)
cotr

— tan r
2cot2r

4(n - I - 1)
4k
3

Piir)
cotr

— tanr
2cot2r

-2tan2r
2(n - 1)
2(n - 1)

1
2

H[(r)
cothr
tanhr

2coth2r

4(n-l- 1)
4k
3

H2(r)
cothr
tanhr

2coth2r
2tanh2r
2(n - 1)
2(n - 1)

1
2

1

2

4(n - 1)

3

Here Ai andJ.2 (ax,a2 and a3, respectively) belong to A\D (A\Di, respectively) (for
more details see [2] and [5]).

The model spaces in Theorem 2.1 and Theorem 2.2 are all homogeneous real
hypersurfaces in M"(c). P,°(r) and H^(r) are called geodesic hyperspheres.

For the second fundamental forms A of P[(r) and H[(r) we know the following:
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LEMMA 2.1 (Pak [6]). The second fundamental tensor A of P[{r) satisfies

(2.12) faA = A<t>k, k = 1, 2, 3 ,
3

(2.13) A2-axA-I = -Y,r}k®Sk,
k=\

3

(2.14) (VXA)Y = -J2{nk(Y)4>kX + g(4>kX,

Here I denotes the identity transformation of the tangent bundle TM.

LEMMA 2.2 (Pak [6]). The second fundamental tensor A ofH[{r) and H3 satisfies

(2.15) <pkA=A<j>k, k= 1,2,3,
3

(2.16) A2-axA + l

3

(2.17) (VXA)Y = J^ {r)k(Y)4>kX + g(4>kX,

3. Lemmas

In this section we prove some lemmas. In the following we assume that M is a
curvature-adapted real hypersurface in a quatemionic space form M"(c) (c = ±4,
n > 3). Further, we assume that M has constant principal curvatures when c < 0.

LEMMA 3.1. IfM is a naturally reductive homogeneous space, then (VwA)%k = 0
for all We TM.

PROOF. Since the condition (ii) of Theorem 1.2 is satisfied, we have

3

(3.1) 0 = (VWR)(X, Y)Z = J^ {g«yw<t>k)Y, Z)4>kX + g(<l>kY, Z)(Vw</>t)X
k=l

- g«Vw<fik)X, Z)cf>kY- g(<t>kX, Z){Vw<t>k)Y

-2g((Vwd>k)X, Y)<t>kZ - 2g{<j>kX, Y)(Vw</>k)Z}

Y, Z)AX + g(A Y, Z)(VWA)X

, Z)A Y - g(AX, Z)(VWA)Y.

By Theorem 2.1 and Theorem 2.2 we only have to consider the following two cases.
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Case I. ak £0{k= 1,2,3).
Substituting Y = Z = & in (3.1), we get

(3.2) 0 = 3g«Vw<l>k+l)X, $k)$M

+ ak(VwA)X -

Here we use the fact that g((VwA)$k, &) = *(V*&, (a*/ - A)&) = 0.
Substituting a vector X e D and taking the inner product of both sides of (3.2)

with Y e D, we are led to

(3.3) g((ywA)X, Y) = 0 , for X , Y e D , W e 7 M ,

because ak ^ 0.
Next, substituting Y = Z 6 D, X = & and W € TM in (3.1) and using (3.3), we

arrive at

Suppose (VyyA)^ ^ 0. Then we can choose a principal vector F e D such that
(VyyA)£t does not belong to span{ Y, <j>\ Y, fa Y, fa Y}, since n > 3. By the table in
Section 2, g(A Y, Y) ^ 0 is satisfied for all our model spaces. This is a contradiction.
So, we obtain (VwA)%k = 0.
Case n . a t = 0 (Jfc = 1,2,3).

In this case, substituting X = £t and Y = Z e Din (3.1), we have

3

- 3 X ! S((VW>()&, 100/ y + «(A Y, 10(VwA)ft - «((VwA)f4, y)A Y = 0.

Using the analogous argument as in Case I, we have the assertion. •

LEMMA 3.2. IfM is naturally reductive homogeneous space, then g(Vw%k, £*) = 0
and g(Vw$k, X) = 0 are satisfied for all X e D and W e TM.

PROOF. Since g(%k,$k) = 1, using the condition (i) of Theorem 1.2, we deduce
wfjk, %k) = 0. By Lemma 3.1, we arrive at

(3.4) 0 = g((ywA)t-k, X) = «(V^ t , (akl - A)X).

Choose a principal curvature vector X e D satisfying AX =AX. Further, substituting
this X in the right-hand side of (3.4), we are led to (ak — k)g(Vw^k, X) = 0. Since
k ^ at , we get the assertion. D
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Now, we define the following local 1-forms p k + l and p k + 2 by

(3.5) pk+l(X) := -g(V*fc, fc+2), p*+2(X) := g(Vxfc, fc+1).

Then, by Lemma 3.2, we obtain Vx$k = pk+2(X)%k+l - pk+l(X)$k+2.

LEMMA 3.3. Let M be a naturally reductive homogeneous space. Then we have

PROOF. According to Lemma 3.2, we have

This proves the first equation. The second and third equations can be proved analo-
gously. •

LEMMA 3.4. IfM is naturally reductive homogeneous, then we have

- p M ( W ) c f > k + 2 X , f o r X , W e TM.

PROOF. By Lemma 3.3, we only need to prove the equation for X e D. Substituting
X 6 D, Y = £t and Z = fi+1 in (3.1) and using Lemma 3.1 and Lemma 3.3, we
deduce

0 = g((Vw<t>k)t;k, t;k+l)4>kX

= -Pk+x{W)<t>kX+pk{W)<t>MX + {Vw<pk+2)X.

This proves the lemma. •

Now we define local 1-forms rk+i and rk+2 as follows:

rk+x{X) := qk+x{X)-pk+x{X), rk+2(X) := qk+2(X) - pk+2(X).

Then, by (2.9) and (2.10), we get the following:

LEMMA 3.5. If M is naturally reductive homogeneous, then we obtain

Tx$k = rk+2(X)i;k+l - rk+l(X)i;k+2 + (j)kAX,

(Tx • 4>k)Y = rk+2(X)<t>k+xY - rk+l(X)<pk+2Y + m(Y)AX - g(AX, Y)$k.
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LEMMA 3.6. IfM is naturally reductive homogeneous, then the following relations
hold:

<pkAX = A<pkX, X e D,

= 0 (*=1,2 ,3) .

PROOF. By Lemma 3.5, we have

(3.6) (Tit -4>k)Y = r t+2(&)fc+i Y - rk+1 (&)fc+2 Y.

On the other hand, using the condition (iv) of Theorem 1.2, we obtain

(rft • <pk) Y = r f e (0 t y) - <&(7^
- A K

Combining this with (3.6), we have

(3.7) 4>kA<j>k Y+A Y = rk+l($k)<pk+2 Y-rk+1^k)<j>k+l Y+ (rM(Y)-rk+2(<pk Y))$k

+ (rk+2(Y)

Substituting Y = (f>kX in (3.7), we arrive at

(3.8) (A<pk - (PkA)X = rk+1$k)4>k+lX

rk+2(X) -

+ (rk+z{<t>kX) - rk+l{X) +

Further, taking a principal curvature vector X € D i n (3.8), then the left-hand
side of (3.8) belongs to span{0*X} and the right-hand side of (3.8) belongs to
span{<£,t+iX, 4>k+2X, £t+i, !-k+2). So, we conclude that (A<f>k — ()>kA)X = 0, for X e D
and rt+i(£t) = rk+2{£k) — 0. This proves Lemma 3.6. D

4. Proof of the theorem

We now prove our main theorem.

THEOREM 4.1. Let M be a simply connected curvature-adapted real hypersurface
in a quaternionic space form M"(c) (c ^ 0, n > 3). In the case c < 0, we further
assume that M has constant principal curvatures. Then M is naturally reductive
homogeneous space if and only if M is Q-quasiumbilical.
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PROOF. We only need to prove the only if part, since the if part is known by
Theorem 1.4. According to Lemma 3.5 and Lemma 3.6, we get the following equation
for X, Y e D:

g(T(u2(<t>kY), X) = -g(<t>kY, T^X) = g(<t>kY, Tx^k+2) = -gtfk+iA Y, X)

and g(4>kT^+2 Y, X) = g((pk+lA Y, X). Therefore, we obtain

(4.1) g((T$t+2 • <}>k)Y, X) = -2g(<pk+lA Y, X).

On the other hand, we also have

(4.2) g{(TiM • fa) Y, X) = rk+2(HM)g{<t>M Y, X).

So, from (4.1)-(4.2), when we define a local smooth function A. by A = —rk+2(%k+2)/2,
we then deduce

(4.3) <t>k+xAY = k<t>k+xY, for YeD.

Substituting Y = <j>k+\X, X e Din both sides of (4.3), we arrive at

(4.4) AX = AX, X e D.

In our model spaces, only Q-quasiumbilical real hypersurfaces satisfy (4.4). This
proves the theorem. •

REMARK. According to the argument in the proof of Theorem 4.1, we conclude
that all the functions rk<£k) coincide with the constant A = cot r for c > 0 (A = coth r
for c < 0, respectively).

Concerning homogeneous structure tensors, we have the following:

THEOREM 4.2. On the real hypersurfaces P[{r), H\(r) and H3 in M"(c), the fol-
lowing tensors T define homogeneous structures for all a € R:

(4.5) TXY =
k=\

3

+ (a + a)^2(rlk+i(X)r]k+2(Y)-r1k+2(X)r,k+i(Ymk,

where a — 2 cot2r for P{(r), a = 2 coth 2rfor H*{r) and a = 2 for //3, respectively.
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PROOF. We have to prove (i)-(iii) of Theorem 1.1. By a straightforward calculation,
we get

(4.6) Vg = 0.

Using (2.5), Lemma 2.1 and Lemma 2.2, we obtain

(4.7) VA = 0.

Further, by a straightforward calculation, we have

(4.8) (Vx4>k) Y = yk+2(X)4>M Y - yM (X)4>k+2 Y,

where yk+l(X) = qk+l(X) - 2a i)k+1(X), yk+2(X) =jk+2(X) - 2a r)k+2{X). There-
fore, using (2.6), (4.6), (4.7) and (4.8), we are led to V/? = 0.

Finally, we shall prove V T — 0. By a straightforward calculation, we get

(4.9) V*& = yk+2(X)i-k+l -

(4.10) Vxr)k = yk+2(X)r)k+i - Yk+\(X)r)k+2.

Therefore, using (4.6), (4.7), (4.8), (4.9) and (4.10), we arrive at (V* T)YZ = 0. The
theorem is now proved by all the above arguments. •

REMARK. In the case of a Q-quasiumbilical real hypersurface the structure T of
Theorem 4.2 reduces to (1.2) if we put a = — A.
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