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1. Introduction. In well behaved cases one expects the cohomology of a finite
complex to be a contravariant functor of its homology. However, orientable manifolds
have the special property that the cohomology is covariantly isomorphic to the
homology, and hence in particular the cohomology ring is self-dual. More precisely,
Poincaré duality states that taking the cap product with a fundamental class gives an
isomorphism between homology and cohomology of a manifold.

Classically, an n-manifold M is a topological space locally modelled on �n, and
the fundamental class of M is a homology class in Hn(M). Equivariantly, it is much
less clear how things should work. If we pick a point x of a smooth G-manifold, the
tangent space Vx is a representation of the isotropy group Gx, and its G-orbit is locally
modelled on G ×Gx Vx; both Gx and Vx depend on the point x. It may happen that
we have a W -manifold, in the sense that there is a single representation W so that
Vx is the restriction of W to Gx for all x, but this is very restrictive. Even if there are
fixed points x, the representations Vx at different points need not be equivalent. It is
therefore not clear even in which dimension we should hope to find a fundamental
class. In general one needs complicated apparatus to provide a suitable context [6], and
ordinary cohomology is especially complicated. Fortunately, particular examples can
be better behaved.

The purpose of the present paper is to look at the very concrete example of
linear complex projective spaces: these are not usually W -manifolds for any W , but we
observe that in equivariant K-theory there is a natural choice of fundamental class, and
we make the resulting Poincaré duality isomorphism explicit. In the non-equivariant
case this gives an elementary approach to the classical K-theory fundamental
class [3].
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2. Preliminaries.

2.1. Linear projective spaces. Let V be a unitary complex representation of a
finite group G. We write S(V ) for the unit sphere, D(V ) for the unit disc in V , and SV

for the one-point compactification, SV = D(V )/S(V ). We write T for the circle group
T = {λ ∈ � | |λ| = 1} and z for the natural representation of T .

DEFINITION 2.1. We write �P(V ) for the G-space of complex lines in V , so that

�P(V ) ∼= S(V ⊗ z)/T.

2.2. Equivariant stable homotopy theory. Although our principal results are
stated in terms of homology and cohomology, we often work in the equivariant stable
homotopy category. We summarise some standard results (see [1], [11] or [12, XVI §5]
for details). The relevance arises since equivariant homology and cohomology theories
are represented by G-spectra in the sense that for based G-spaces X ,

Ẽ∗
G(X) = [X, E]∗G and ẼG

∗ (X) = [S0, E ∧ X ]G∗ ,

where E is the representing G-spectrum of the theory.

LEMMA 2.2 (Change of groups [11, II.4.3 and II.6.5]). Let H be a subgroup of G,
and suppose that A is an H-spectrum and B is a G-spectrum. Then there are natural
isomorphisms

θ : [A, B]H
∼=−→ [G+ ∧H A, B]G and φ : [B, A]H

∼=−→ [B, G+ ∧H A]G. �

THEOREM 2.3 (Adams isomorphism [11, II.7.1]). Suppose B is a T-free (G × T)-
spectrum. For any G-spectrum A there is a natural isomorphism

[A, �B/T ]G ∼= [A, B]G×T ,

induced by a suitable transfer map. �

2.3. Spanier-Whitehead duality. Using function spectra we may define the
functional duality functor DX = F(X, S0) on G-spectra X . When restricted to finite
G-spectra, the natural map X −→ D2X is an equivalence, and one may give a more
concrete description: if X is a based G-space which embeds in the sphere S1⊕V , we
have

�V DX 	 S1⊕V\X,

where we have supressed notation for the suspension spectrum. The formal properties
of the category of G-spectra give a useful statement relating homology and cohomology.

LEMMA 2.4 (Spanier-Whitehead duality [11, III.2.9]). If X, Y are finite G-CW-
spectra and E is a G-spectrum, then

(i) there is an isomorphism SW : E∗
G(X)

∼=−→ EG
∗ (DX);

https://doi.org/10.1017/S0017089507003990 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003990
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(ii) a G-map f : X −→ Y gives rise to a commutative diagram

E∗
G(Y )

f ∗
��

SW ∼=
��

E∗
G(X)

SW∼=
��

EG
∗ (DY )

(Df )∗
�� EG

∗ (DX). �

2.4. Equivariant K-theory. We are concerned with the equivariant K-theory of
Atiyah and Segal [13] of finite G-CW-complexes, so that K0

G(X) is the Grothendieck
group of equivariant vector bundles over X , and K∗

G is R(G) in even degrees and
zero in odd degrees. We use the represented extension to arbitrary spectra: there is a
G-spectrum K so that for a based G-space X we have

K̃0
G(X) = [X, K ]G and K̃G

0 (X) = [S0, K ∧ X ]G.

Equivariant K-theory has its version of the Thom isomorphism: if E is a bundle

over X then we have an isomorphism τ : K̃∗
G(X)

∼=−→ K̃∗
G(XE), where XE denotes the

Thom space of E. The isomorphism is made explicit in [13, §3], and this permits a
definition of the Euler class χ (V ) = i∗Vτ (1) ∈ K∗

G, where iV is the inclusion S0 ↪−→ SV .
In turn, this paves the way for the equivariant Bott periodicity.

THEOREM 2.5 (Equivariant Bott periodicity [13]). For a based G-space X, and a
complex representation V of G, multiplying by the Bott class τ (1) ∈ K̃0

G(SV ) gives a
natural isomorphism

K̃0
G(X)

∼=−→ K̃0
G(SV ∧ X).

Moreover, if dim�(V ) = n then

χ (V ) = 1 − λV + λ2V − · · · + (−1)nλnV ∈ R(G),

where λrV denotes the rth exterior power of V.

2.4.1. Restriction in equivariant K-theory. For H ≤ G, let π : G/H −→ G/G denote
projection. It is not hard to verify from the explicit form of the change of groups
isomorphisms that the restriction maps in homology and cohomology are represented
in the following sense.

LEMMA 2.6. There are commutative diagrams

K̃0
G(X)

ResG
H �� K̃0

H(X)

θ∼=
��

K̃0
G(G/G+ ∧ X)

(π∧1)∗
�� K̃0

G(G/H+ ∧ X)
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and

K̃G
0 (X)

ResG
H �� K̃H

0 (X)

φ∼=
��

K̃G
0 (G/G+ ∧ X)

(D(π)∧1)∗
�� K̃G

0 (G/H+ ∧ X). �

The restriction maps are not, in general, injective. However, one finds that

ResG
∗ : K0

G(�P(V ))
{ResG

H }−→
∏
H≤G

H cyclic

K0
H(�P(V )) (2.7)

and the analogous map in homology are both injective. This is easily deduced from the
corresponding statement about representation rings. For example, it follows from the
calculations in Subsection 4.1 that K0

G(�P(V )) and K0
H(�P(V )) are both free modules

on generators which map to each other under restriction. This is explained in more
detail in [14].

3. Equivariant Poincaré duality.

3.1. Orientation of topological G-manifolds. We work with smooth G-manifolds
M, for which the Slice Theorem [4, II Theorem 5.4] asserts that given x ∈ M
with isotropy Gx ≤ G, there is a neighbourhood U of the orbit Gx, which is G-
homeomorphic to G ×Gx Vx, where Vx is the tangent space to M at x.

LEMMA 3.1. Using the notation of the Slice Theorem, for each i there are
isomorphisms

(i) EG
i (M, M\Gx) ∼= EG

i (U, U\Gx);
(ii) EG

i (U, U\Gx) ∼= EG
i (G ×Gx Vx, (G ×Gx Vx)\Gx);

(iii) EG
i (G ×Gx Vx, (G ×Gx Vx)\Gx) ∼= ẼG

i (G+ ∧Gx SVx ).

Proof. For (i) and (ii), use excision. Part (iii) is equivalent to showing that

EGx
i (Vx, Vx \ {0}) ∼= ẼGx

i (SVx ),

and this follows since SVx \ {0} ∼=G Vx, which is contractible. �

Composing the three isomorphisms of Lemma 3.1, the outcome is that

EG
∗ (M, M\Gx) ∼= ẼGx∗ (SVx ). (3.2)

Provided we restrict to cohomology theories E∗
G and manifolds M so that the

modules ẼGx∗ (SVx ) that occur in this way are free on one generator, we may copy the
classical definitions.
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DEFINITION 3.3 (Fundamental classes). (i) A cohomology theory E∗
G(·) is said

to be complex stable if, for each complex representation V , there are classes
σV ∈ Ẽ|V |

G (SV ) giving isomorphisms

Ẽ∗
G(S|V | ∧ X)

∼=−→ Ẽ∗
G(SV ∧ X)

for any G-spectrum X . Note in particular that this means Ẽ∗
G(SV ) is a free

E∗
G-module on one generator.

(ii) Let M be a smooth G-manifold of dimension n, and let E∗
G(·) be a complex

stable cohomology theory. Consider the composite φGx below. The maps
labelled (i), (ii), (iii) are the corresponding isomorphisms of Lemma 3.1, φ

is the change of group isomorphism (Lemma 2.2) and

iGx
∗ : EG

∗ (M) ∼= EG
∗ (M,∅) −→ EG

∗ (M, M\Gx)

is the map induced by G-inclusion of the G-pairs (M,∅)
iGx

↪−→ (M, M\Gx).

EG
∗ (M)

iGx
∗

��

φGx �� ẼGx∗ (SVx )

EG
∗ (M, M\Gx)

∼=(i)
��

ẼG
∗ (G+ ∧Gx SVx )

∼= φ−1

��

EG
∗ (U, U\Gx)

∼=
(ii)

�� EG
∗ (G ×Gx Vx, (G ×Gx Vx)\Gx).

∼= (iii)

��
(3.4)

An element ξ ∈ EG
n (M) is a fundamental class for M if the image φGx(ξ ) is an

ẼGx∗ -module generator for ẼGx∗ (SVx ) for all x ∈ M, in which case one writes
[M] for such a ξ .

3.2. Poincaré duality. Before we can state the Poincaré duality theorem we must
first recall [11, III §3] how cap products work in the represented setting.

DEFINITION 3.5 (Cap products). Let E be a commutative ring G-spectrum with
multiplicative structure µ, and let X be a G-CW -complex. The cap product E∗

G(X) ⊗
EG

∗ (X) −→ EG
∗ (X) is defined by setting c ∩ h to be the composite

S
h−→ E ∧ X

1∧�−→ E ∧ X ∧ X
1∧c∧1−→ E ∧ E ∧ X

µ∧1−→ E ∧ X.

THEOREM 3.6 (Poincaré duality). Let E∗
G(·) be a complex stable cohomology theory.

If M is a smooth G-manifold with E∗
G-fundamental class [M] then there is an isomorphism

E∗
G(M)

∼=−→ EG
∗ (M)

given by capping with the fundamental class, precisely a 
−→ a ∩ [M] for a ∈ E∗
G(M).

Proof. The classical proof (see, for example, [8, §26]) proceeds by showing that
(−) ∩ [M] induces an isomorphism on larger and larger subsets of M, starting from
a point, and using Mayer-Vietoris sequences and excision. The only difference in our
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case is that we must start with a G-point, in other words the orbit Gx for x ∈ M. By
definition, the fundamental class provides exactly this input. �

4. Construction of the fundamental class.

4.1. Equivariant K-theory of �P(V ). Our computation of K∗
G(�P(V )) arises from

the based cofibre sequence

S(V ⊗ z)+ −→ D(V ⊗ z)+ −→ D(V ⊗ z)/S(V ⊗ z) ∼= SV⊗z (4.1)

and the following fundamental result of Atiyah and Segal [13].

THEOREM 4.2. Let G be a compact Lie group. Suppose N is a normal subgroup
which acts freely on the G-CW-complex X. Then the quotient X −→ X/N induces an
isomorphism K∗

G/N(X/N)
∼=−→ K∗

G(X). �

Applying K̃∗
G×T (−) to (4.1) and appealing to Theorem 4.2 gives the long exact

sequence

· · · −→ K̃0
G×T (SV⊗z) −→ K̃0

G×T −→ K̃0
G(�P(V )+) −→ K̃1

G×T (SV⊗z) −→ · · · .

PROPOSITION 4.3. We have K0
G(�P(V )) ∼= R(G)[z]

χ(V⊗z) .

Proof. We claim that the long exact sequence above gives a short exact sequence

0 −→ R(G × T)
ψ−→ R(G × T) −→ K̃0

G(�P(V )+) −→ 0. (4.4)

Indeed, by equivariant Bott periodicity K̃1
G×T (SV⊗z) ∼= K̃1

G×T (S0) = 0. The Thom
isomorphism tells us that K̃0

G×T (SV⊗z) ∼= K0
G×T and, by definition of the Euler class,

Im(ψ) is the ideal generated by χ (V ⊗ z). The fact that multiplication by the Euler
class is injective in (4.4) follows since K̃−1

G×T (SV⊗z) = 0. The first isomorphism theorem
now tells us that

K̃0
G(�P(V )+) ∼= R(G × T)

χ (V ⊗ z)
,

and we observe [2] that R(G × T) ∼= R(G)[z, z−1], from which the proposition
follows. �

When we come to consider homology, the Adams isomorphism takes the role of
Theorem 4.2 and we have a subtle dimension shift, viz

K̃G
0 (�P(V )+) ∼= K̃G×T

−1 (S(V ⊗ z)+).

Excepting this technical point, we find in a similar fashion a short exact sequence

0 −→ R(G × T)
ψ−→ R(G × T) −→ K̃G

0 (�P(V )+) −→ 0, (4.5)

in which ψ is again multiplication by the Euler class.
We now choose a notation which will be convenient for comparing results for

projective spaces of different representations in §5.
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PROPOSITION 4.6. We have KG
0 (�P(V )) ∼=

1
χ(V⊗z) R(G×T)

R(G×T) , where 1
χ(V⊗z) R(G × T)

is the R(G × T)-submodule generated by 1
χ(V⊗z) in the total ring of fractions of R(G × T).

Proof. Just replace the short exact sequence (4.5) with the isomorphic short exact
sequence

0 −→ R(G × T) ↪−→ 1
χ (V ⊗ z)

R(G × T) −→ K̃G
0 (�P(V )+) −→ 0. (4.7)

�

4.2. Duality from the Universal Coefficient Theorem. It is convenient to record a
simple case of the algebraic relation between homology and cohomology. For any ring
G-spectrum E and any G-spectrum Y we have a natural map

pY : E∗
G(Y ) −→ HomEG∗ (EG

∗ (Y ), EG
∗ ).

A suitable Universal Coefficient Theorem (UCT) would state that pY is an isomorphism
if EG

∗ (X) is projective as an EG
∗ -module. In equivariant topology the existence of such

a UCT is more than the formality it is non-equivariantly [7], for a variety of linked
reasons. From one point of view, the issue is that on the one hand the usual building
blocks of G-spaces are the orbits G/H, whilst on the other E∗

G(G/H) ∼= E∗
H is unlikely

to be projective. For these reasons, the sort of UCT that exists for formal reasons [10, 9]
is based on Mackey functor valued homology and cohomology. Since this does not
directly discuss pY , additional work is required, which relies upon special properties of
the cohomology theory, or the group of equivariance, or the space. For K-theory, one
does expect a UCT for general G-spaces, but for present purposes we will be content
to prove the very special case that concerns us.

LEMMA 4.8. If X = �P(V ) then we have isomorphisms

K∗
G(X)

∼=−→ HomKG∗ (KG
∗ (X), KG

∗ )

and

KG
∗ (X)

∼=−→ HomK∗
G
(K∗

G(X), K∗
G).

Proof. Taking E = K , pX gives the first comparison map, and applying Spanier-
Whitehead duality to pDX gives the second.

First, we prove that if V is a sum of one dimensional representations the map pX

is an isomorphism. The same argument shows pDX is an isomorphism. We argue by
induction on the dimension of V . If V is one dimensional then �P(V ) is a point and
the conclusion is clear. Now suppose that V = W ⊕ α with α one dimensional, and
that p�P(W ) is known to be an isomorphism. There is a cofibre sequence

�P(W ) −→ �P(V ) −→ SW⊗α−1
,

which induces a short exact sequence of free K∗
G-modules in both homology
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and cohomology. Since pSW⊗α−1 is an isomorphism, we conclude that p�P(V ) is an
isomorphism as required.

This shows that p�P(V ) is an isomorphism for all V if G is abelian, and we now
consider the general case. We have a commutative square

K∗
G(X)

pX
��

��

HomKG∗ (KG
∗ (X), KG

∗ )

��∏
H≤G

H cyclic

K∗
H(X) ∼= ��

∏
H≤G

H cyclic

HomKH∗ (KH
∗ (X), KH

∗ ).

Since the left hand vertical is the monomorphism (2.7), it follows that pX is a
monomorphism. The same applies to pDX .

We also have a commutative square

KG
∗ (X)

∼= ��

∼=
��

KG
∗ (D2X)

��

HomKG∗ (HomKG∗ (KG
∗ (X), KG

∗ ), KG
∗ )

(pX )∗
�� HomKG∗ (K∗

G(X), KG
∗ ).

The top horizontal is an isomorphism because X is finite, so that the natural
map X

	−→ D2X is an equivalence. The left hand vertical is an isomorphism
because KG

∗ (X) is a finitely generated free module. The right hand vertical is
pDX , combined with Spanier-Whitehead duality, so that the composite obtained by
travelling the square first horizontally, then vertically, is the second comparison
map. This shows that the second comparison map is the algebraic dual of pX .
Since pX is a monomorphism, duality shows that the second comparison map is
an epimorphism, and hence an isomorphism. The first comparison map is dealt with
similarly. �

REMARK 4.9. There is an alternative approach to the duality statement which is
perhaps more illuminating from the algebraic point of view. Writing R = R(G) and
S = R(G × T), and χ = χ (V ⊗ z) we calculated the homology

KG
0 (�2�P(V )) = S/χ

from the short exact sequence arising from the sequence of G × T-spaces S0 −→
SV⊗z −→ �S(V ⊗ z)+, which we regard as a projective resolution over S. This means
that the cohomology of S(V ⊗ z)+ −→ S0 −→ SV⊗z shows that

K0
G(�P(V )) = Ext1

S(S/χ, S).

Thus the UCT duality statement is

Ext1
S(S/χ, S) ∼= HomR(S/χ, R),
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and one can write down the isomorphism explicitly in these terms. Furthermore, the
short exact sequence

0 −→ S
χ−→ S −→ Ext1

S(S/χ, S) −→ 0

can be viewed as an exact sequence of R-modules; since the R-modules are all free,
applying (·)∗ = HomR(·, R) we see the more elementary isomorphism

Ext1
S(S/χ, S)∗ ∼= HomR(S/χ, R)

which corresponds to Poincaré duality. By contrast with topology, from the algebraic
point of view, it is the UCT that is the more subtle statement, and Poincaré duality
that is formal.

4.3. The fundamental class. The following identification of the fundamental class
is the key result of the paper.

THEOREM 4.10. Let G be a finite group and V a complex representation of G with
dim�(V ) = n. Then 1

χ(V⊗z) ∈ KG
0 (�P(V )) is a fundamental class in equivariant K-theory

for �P(V ).

We break our proof into convenient pieces as follows. For brevity we write Vz for
V ⊗ z, etc.

LEMMA 4.11. The notation is compatible with restriction, in the sense that for any
subgroup H of G, we have ResG

H

(
1

χ(Vz)

)
= 1

χ(Vz) .

Proof. If we use 4.5 to say KG
0 (�P(V )) = R(G × T)/(χ (Vz)) the element 1/χ (Vz)

corresponds to the unit of R(G × T). The lemma simply states that the restriction of
the unit in R(G × T) is the unit in R(H × T). �

LEMMA 4.12. If x ∈ �P(V ) is G-fixed, then iGx
∗ ( 1

χ(Vz) ) is an R(G × T)-generator for
KG

0 (�P(V ), �P(V )\Gx).

Proof. The point x represents a line in V , and since it is fixed, this is a 1-dimensional
representation α of G, and we have V ∼= W ⊕ α for some W . Thus

�P(V )\Gx = �P(V ) \ �P(α) 	 �P(W ),

so we are required to prove that KG×T
−1 (S(Vz), S(Wz))) is R(G × T)-generated by

iGx
∗ ( 1

χ (Vz) ).
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We have a commutative diagram

0

��

0 �� K̃G×T
0 (S0)

χ(Wz)
�� K̃G×T

0 (SWz) ��

χ(αz)

��

K̃G×T
−1 (S(Wz)+) ��

��

0

0 �� K̃G×T
0 (S0)

χ(Vz)
�� K̃G×T

0 (SVz)
a ��

b
��

K̃G×T
−1 (S(Vz)+) ��

c
��

0

KG×T
−1 (S(Vz), S(Wz))

��

KG×T
−1 (S(Vz), S(Wz))

0

in which the rows and columns are exact. (The rows are (4.5), the centre column is the
homology sequence of the G-triple (D(Vz), S(Vz), S(Wz)) and the right-hand column
comes from the G-pair (S(Vz), S(Wz)).) Writing β for the Bott class in K̃G×T

0 (SVz), we
must show that ca(β) = b(β) is an R(G × T)-generator. This is clear, since β obviously
R(G × T)-generates K̃G×T

0 (SVz). �

LEMMA 4.13. Under the hypothesis of Lemma 4.12, iGx
∗ ( 1

χ(Vz) ) is an R(G)-generator
for KG

0 (�P(V ), �P(V )\Gx).

Proof. We work in cohomology, where the module structure is transparent, and
the result in homology follows via duality. Our proof now amounts to showing that
the action of z ∈ R(G × T) on K0

G×T (S(Vz), S(Wz)) is the same as that of α−1 ∈ R(G).
We have an equivalence

S(Vz)/S(Wz) 	 S(αz)+ ∧ SWz,

and writing κ = ker (αz) we have S(αz) ∼= (G × T)/κ so we may work in K0
κ (SWz).

Finally, we identify κ with G by the isomorphism f : G
∼=−→ κ defined by f (g) =

(g, α(g)−1). Thus f ∗(Wz) = Wα−1. The result now follows by considering the
commutative diagram

K̃0
G×T × K̃0

G×T ((G × T)/κ+ ∧ SWz) m ��

ResG×T
κ ×θ−1

��

K̃0
G×T ((G × T)/κ+ ∧ SWz)

∼= θ−1

��

K̃0
κ × K̃0

κ (SWz)
m ��

f ∗ ∼=
��

K̃0
κ (SWz)

f ∗∼=
��

K̃0
G × K̃0

G(SWα−1
)

m �� K̃0
G(SWα−1

),

in which m is the module structure. �
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LEMMA 4.14. Suppose x ∈ �P(V ) has isotropy H = Gx < G. Given B ⊆ A ⊆
�P(V ), write iA

B for the inclusion of G-pairs

iA
B : (�P(V ), �P(V )\A) ↪−→ (�P(V ), �P(V )\B).

Writing iB for i�P(V )
B , we have a commutative diagram

KG
0 (�P(V ))

iGx
∗ ��

ResG
H

��

KG
0 (�P(V ), �P(V )\Gx)

ResG
H

��

∼=
(3.2)

�� KH
0

KH
0 (�P(V ))

iGx
∗ �� KH

0 (�P(V ), �P(V )\Gx)

(iGx
Hx)∗

��

KH
0 (�P(V ))

iHx
∗ �� KH

0 (�P(V ), �P(V )\Hx)
∼=

(3.2)
�� KH

0 .

(4.15)

Proof. Commutativity of the left hand squares in the diagram is obvious by
naturality. For the right hand square, use Lemma 3.1 to write out the isomorphism
(3.2) in full. �

Proof of Theorem 4.10. Equivariant Bott periodicity means that we can work
everywhere in degree zero. Let x ∈ �P(V ). Suppose x has isotropy H ≤ G. By
Lemma 4.14 it suffices to show that (iHx)∗ResG

H ( 1
χ(Vz) ) is a generator. Now Lemma

4.11 allows us to use Lemma 4.13 to complete the proof. �

5. Calculations with the fundamental class.

5.1. The abelian world. For the time being, let us impose the restriction that G
be a finite abelian group A. Given an n-dimensional complex representation V of A,
we can write V = α1 ⊕ · · · ⊕ αn for one dimensional summands αi. Following [5] we
choose a complete flag

F = (
0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V

)
(5.1)

in which Vi/Vi−1 = αi. This choice gives rise to an R(A)-basis

{1, yV1
, yV2

, . . . , yVn−1}

for K0
A(�P(V )), in which

yVi = yα1 yα2 · · · yαi and yαj = 1 − αjz.

We write {βF
0 , . . . , βF

n−1} for the dual R(A)-basis for

KA
0 (�P(V )) ∼= HomR(A)(K0

A(�P(V )), R(A)),

so that

βF
i (yVj

) = δj
i .
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THEOREM 5.2. The fundamental class is given by

1
χ (V ⊗ z)

= βF
0 + · · · + βF

n−1. (5.3)

REMARKS 5.4. (i) Since the left hand side of (5.3) is a topological invariant of V , so
too is the right hand side and we may abbreviate to β0 + · · · + βn−1 without
ambiguity. It is striking that although the individual βF

i depend on the flag
F , this sum does not.

(ii) This generalises Adams’s classical identification of the (non-equivariant)
K-theory fundamental class [3, Theorem III.11.15], and provides a more
elementary proof (Adams’s alternating signs arise by choosing the opposite
orientation).

(iii) One can give a direct, algebraic proof that β0 + · · · + βn−1 is independent
of flag, without relating it to 1

χ(V⊗z) . We refer to [14, Proposition 3.5.13] for
details. Furthermore, in [14] it is shown directly that taking the cap product
with β0 + · · · + βn−1 gives a duality isomorphism.

Proof of Theorem 5.2. It suffices to prove the result if A is the n-torus Tn and V =
z1 ⊕ · · · ⊕ zn, where zi(λ1, . . . , λn) = λi. This is because the pullback of z1 ⊕ · · · ⊕ zn

along the homomorphism α : A −→ Tn, in which α(a) = (α1(a), . . . , αn(a)), is α1 ⊕
· · · ⊕ αn.

The proof proceeds by induction on n = dim�(V ). The initial step is obvious, so
now suppose the theorem holds for representations of dimension smaller than n > 1.
For 1 ≤ i ≤ n, we have Tn-inclusions

ji : �P(z1 ⊕ · · · ⊕ zi−1 ⊕ zi+1 ⊕ · · · ⊕ zn) ↪−→ �P(V ),

and we write

ιi = 1
χ ((z1 ⊕ · · · ⊕ zi−1 ⊕ zi+1 ⊕ · · · ⊕ zn) ⊗ z)

∈ KTn

0 (�P(z1 ⊕ · · · ⊕ zi−1 ⊕ zi+1 ⊕ · · · ⊕ zn)).

Writing 〈−,−〉 for the Kronecker pairing we have

〈yz1 · · · yzi , (jn)∗(ιn)〉 = 〈(jn)∗(yz1 · · · yzi ), ιn〉
= 〈yz1 · · · yzi , ιn〉
=

{
1 0 ≤ i ≤ n − 2
0 i = n − 1

, (5.5)

from which

(jn)∗(ιn) = βF
0 + · · · + βF

n−2. (5.6)

In the final step of (5.5), we use the inductive hypothesis for 0 ≤ i ≤ n − 2, and for
i = n − 1, the fact that yz1 yz2 · · · yzn−1 = 0. Similarly, one finds that

(jn−1)∗(ιn−1) = βF
0 + · · · + βF

n−2 + (1 − zn−1z−1
n )βF

n−1. (5.7)
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Taking a linear combination of (5.6) and (5.7), we find that

(jn−1)∗(ιn−1) − zn−1z−1
n (jn)∗(ιn) = (

1 − zn−1z−1
n

)(
βF

0 + · · · + βF
n−1

)
.

We now simplify the left hand side, using the fact that

(jn)∗(ιn) = 1
χ ((V/zn) ⊗ z)

= χ (zn ⊗ z)
χ (V ⊗ z)

and similarly for (jn−1)∗(ιn−1). Since

χ (zn−1 ⊗ z)
χ (V ⊗ z)

− zn−1z−1
n

χ (zn ⊗ z)
χ (V ⊗ z)

= (1 − zn−1z−1
n )

1
χ (V ⊗ z)

,

we obtain

(
1 − zn−1z−1

n

) 1
χ (V ⊗ z)

= (1 − zn−1z−1
n )(βF

0 + · · · + βF
n−1).

The result follows, since 1 − zn−1z−1
n is not a zero divisor in R(Tn × T). �

5.2. The non-abelian world. The proofs of §5.1 break down in the non-abelian
case because V may not have a decomposition into one-dimensional representations
and we cannot choose a flag as in (5.1).

NOTATION 5.8. Recall that K0
G(�P(V )) ∼= R(G)[z]/(χ (V ⊗ z)) (irrespective of

whether G is abelian). Observe that

B = {(1 − z)i | 0 ≤ i ≤ n − 1}

is always a basis for K0
G(�P(V )). (Whereas the construction of § 5.1 gives a basis for

any complex orientable theory, the fact that B gives a basis is a special feature of
K-theory). We write {βB

0 , . . . , βB
n−1} for the corresponding dual basis for KG

0 (�P(V )).

Happily, it turns out that in the abelian case, the explicit proof mentioned in
Remarks 5.4 (iii) gives

1
χ (V ⊗ z)

=
n−1∑
i=0

βi =
n−1∑
i=0

βB
i . (5.9)

LEMMA 5.10. If H ≤ G then we have ResG
H (βB

i ) = βB
i for i = 0, . . . , n − 1. �

The proof involves considering the interaction of restriction with the Kronecker
pairing. Details may be found in [14, §4.4].

THEOREM 5.11. Let V be a complex representation, dim� V = n, of the finite group
G. Take B = {(1 − z)i}n−1

i=0 as a basis for K0
G(�P(V )) and let the dual basis for KG

0 (�P(V ))
be {βB

i }n−1
i=0 . Then

n−1∑
i=0

βB
i = 1

χ (V ⊗ z)
.
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Proof. We use Lemma 5.10 to see that ResG
H (

∑n−1
i=0 βB

i ) = ∑n−1
i=0 βB

i and Lemma
4.11 to see that ResG

H ( 1
χ(V⊗z) ) = 1

χ(V⊗z) for each H ≤ G. Taking the product over cyclic
subgroups, and using (5.9),

ResG
∗

( n−1∑
i=0

βB
i

)
= ResG

∗

(
1

χ (V ⊗ z)

)
.

The theorem now follows from the injectivity of ResG
∗ . �

5.3. Perfect pairings. Recall that if M, N are modules over the commutative ring
R then a bilinear map b : M ⊗ N −→ R is a perfect pairing if

M −→ HomR(N, R)
m 
−→ (n 
−→ b(m ⊗ n))

defines an isomorphism of R-modules M
∼=−→ HomR(N, R).

NOTATION 5.12. We define a pairing �−,−� : K0
G(�P(V )) ⊗ K0

G(�P(V )) −→ R(G)
by �x, y� = 〈xy, 1

χ(V⊗z) 〉.
THEOREM 5.13. The pairing

�−,−� : K0
G(�P(V )) ⊗ K0

G(�P(V )) −→ R(G)

is perfect, and the corresponding isomorphism

K0
G(�P(V ))

∼=−→ HomR(G)
(
K0

G(�P(V )), R(G)
) = KG

0 (�P(V ))

is a Poincaré duality isomorphism.

Proof. One can show directly that �−,−� is perfect in the abelian case, but it is far
more satisfactory (and general) to observe that the map

K0
G(�P(V ))

∩ξ−→ HomR(G)
(
K0

G(�P(V )), R(G)
) = KG

0 (�P(V )),

in which x
∩ξ
−→ (y 
−→ 〈xy, ξ 〉), is capping with ξ ∈ KG

0 (�P(V )) – in other words
∩ξ (x) = x ∩ ξ . This is easily verified, using Lemma 4.8 and the definition of the cap
product. �

6. Examples. We conclude by explaining how to compute the pairing �−,−� of
Notation 5.12 for any �P(V ). We make the results explicit in dimensions ≤ 4.

As observed above, K0
G(�P(V )) ∼= R(G)[z]/χ (Vz), and we use the basis

{1, y, y2, . . . , yn−1} if V is of dimension n, where y = 1 − z. As described above
�a, b� = ε(ab) where

ε(a0 + a1y + · · · + an−1yn−1) = a0 + a1 + · · · + an−1 ∈ R(G).
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Given s ≥ 0, we therefore need to find expressions for yn+s in terms of the basis: in fact
if

yn+s =
n−1∑
j=0

λs
j y

j,

we will find recursive formulae for λs
j , and then

�yi, yj� = ε(yi+j) = λs
0 + · · · + λs

n−1,

if i + j = n + s.
We first apply the splitting principle to obtain a formula for χ (Vz) in terms of y,

and we use notation suggested by the theory of equivariant formal group laws. Indeed
if α is one dimensional,

χ (αz) = 1 − αz = e(α) + αy = α(y − e(α−1)),

where e(α) = 1 − α. Now, if V = α1 ⊕ · · · ⊕ αn is a sum of one dimensional
representations,

det(V )−1χ (Vz) =
n∏

i=1

(y − e(α−1
i )) = σn + σn−1y + · · · + σ1yn−1 + yn,

where we have used the elementary symmetric polynomials

σj = σj
( − e

(
α−1

1

)
,−e

(
α−1

2

)
, . . . ,−e

(
α−1

n

))
.

Since the σj are symmetric, the coefficients can be expressed in terms of exterior powers.
Explicitly, writing V∗ for the dual representation of V , we have the formula

σm = λm(V∗) −
(

n − m + 1
n − m

)
λm−1(V∗) +

(
n − m + 2

n − m

)
λm−2(V∗) − · · ·

· · · + (−1)m−1
(

n − 1
n − m

)
λ1(V∗) + (−1)m

(
n

n − m

)
.

Thus we have an equality

det(V )−1χ (Vz) = σn + σn−1y + · · · + σ1yn−1 + yn,

between elements of R(G × T): we have verified it when V is a sum of one dimensional
representations, and it therefore holds in general by the splitting principle.

Thus the condition χ (Vz) = 0 is equivalent to

yn = −(σn + σn−1y + · · · + σ1yn−1),

or λ0
j = −σn−j. Now

yn+s+1 = yyn+s =
n−1∑
j=1

λs
j−1yj − λs

n−1

n−1∑
j=0

σn−jyj,
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or, interpreting λs
−1 as zero,

λs+1
j = λs

j−1 − λs
n−1σn−j.

When adding up, it is useful to note that 1 − e(α) = α, so in particular

det(V )−1 = 1 + σ1 + σ2 + · · · + σn.

Then we find

ε(yn) = 1 − det(V )−1.

Similarly,

ε(yn+s+1) = ε(yn+s) − λs
n−1 det(V )−1,

and an inductive argument then shows

ε(yn+s) = 1 − 1
det(V )

(
1 + λ0

n−1 + · · · + λs−1
n−1

)
.

More explicitly, if we interpret σn+s as zero for s > 0,

λ0
j = −σn−j, λ1

j = −σn−j+1 + σ1σn−j, λ2
j = −σn−j+2 + σ1σn−j+1 + (

σ2 − σ 2
1

)
σn−j,

and so

ε(yn) = 1 − 1
det(V )

,

ε(yn+1) = 1 − 1
det(V )

(1 − σ1),

ε(yn+2) = 1 − 1
det(V )

(
1 − (σ1 + σ2) + σ 2

1

)
,

ε(yn+3) = 1 − 1
det(V )

(
1 − (σ1 + σ2 + σ3) + (

2σ1σ2 + σ 2
1

) − σ 3
1

)
.

Below are the results of the pairing �−,−� for �P(V ) when V is of small dimension.
(For brevity, we write δ∗ for det(V∗) = 1/ det(V )).

1 y
1 1 1
y 1 1 − δ∗

Pairing for dim(V ) = 2

1 y y2

1 1 1 1
y 1 1 1 − δ∗

y2 1 1 − δ∗ 1 − δ∗(4 − V∗)

Pairing for dim V = 3
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1 y y2 y3

1 1 1 1 1
y 1 1 1 1 − δ∗

y2 1 1 1 − δ∗ 1 − δ∗(5 − V∗)
y3 1 1 − δ∗ 1 − δ∗(5 − V∗) 1 − δ∗(14 − 6V∗ + (V∗)2 − λ2(V∗))

Pairing for dim V = 4
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spectral sequences, Proc. London Math. Soc. (3) 92(2) (2006), 505–544.

11. L. G. Lewis, Jr., J. P. May, M. Steinberger and J. E. McClure, Equivariant stable homotopy
theory Lecture Notes in Mathematics. No. 1213 (Springer-Verlag, 1986).

12. J. P. May, Equivariant homotopy and cohomology theory (CBMS, 1996).
13. Graeme Segal, Equivariant K-theory. Inst. Hautes Études Sci. Publ. Math. 34 (1968),

129–151.
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