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A NOTE ON SPACES RELATED TO
NAMIOKA SPACES

J.P, LEE AND Z. PIOTROWSKI

Namioka proved that the following condition (*) given below holds,

if X is Cech-complete and Y is a locally compact, O-compact

space.

(*) Let X and Y be spaces, Z be a metric space and let

f : X x Y -»• Z be separately continuous. Then there is a dense,

G& set A in X such that A x Y c C(/) .

Following Christensen a space X is called Namioka if (*) is

true for any compact space Y . In this paper we introduce and

study a new class of spaces which is closely related to Namioka

spaces. Namely, we say that a space Y is co-Namioka if (*)

holds for any Namioka space X .

I. Introduction

There are many papers which deal with the classical problem of

determining the points of continuity for a separately continuous function;
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see for example [2], [4], [10] or [/I].

Throughout this paper, a space means a completely regular topological

one. The set of points of continuity of f will be denoted by C{f) .

In what follows, a general condition given below and denoted by (*),

will be called a continuity statement.

(*) Let X and Y be spaces, Z be a metric space and let

/ : X x y -»• Z be separately continuous. Then there is a dense, (?„ set

A in X such that A x y c C{f) .

Namioka [10] proved that (*) holds if X is strongly countable

complete (Sech-complete) and Y is locally compact and a-compact.

A space X is Namioka [3] if (*) is true for any compact space Y .

So all Cech-complete spaces are Namioka [70] see also [2] and [77],

where it is proved that some spaces defined by topological games are

Namioka.

LEMMA 1 ([5]). Let X be a Baire space.

(a) If A , A , ..., A , ... are dense, G's of X , then so is

oo

fl A. • (Theorem 10.1).
i=l *-

(b) A subset of X which is the complement of a first category set

contains a dense, C. subset of X (Exercise 6, p. 28l).

LEMMA 2 ([7 7], Theorem 3, p. 501). Namioka spaces are Baire.

II. Co-Namioka spaces

In the main results of [2] and [7 7] (which are of type (*)), the space

Y is assumed to be compact. So the following question arises.

What is a class W of spaces, strictly larger than the class C of

all compact spaces, such that (*) is true for any Namioka space X and

y e w ?

Let 5 be a "nice" subclass of Namioka spaces, for example LC - the

class of all locally compact spaces.

A space y will be called co-Namioka (respectively co-Namioka rel S)
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if (*) holds for any Namioka space X (respectively any space X from

S ).

Obviously, by this definition, compact spaces are co-Namioka;

furthermore, co-Namioka spaces are co-Namioka spaces rel S , for any

subclass of Namioka spaces W .

The following Proposition 1 was proved in [70] in case of strongly

countably complete spaces X . Our proof uses the method of Namioka and

relies heavily on Lemma 2.

PROPOSITION 1. Every locally compact a-compact space is co-Namioka.

Proof. Since Y is locally compact and a-compact there is a

sequence {l. : i = 1, 2, ...} of compact subsets of Y such that

CO

Y = U Int Y. ([5], Theorem 7.2, p. 2Ul). Since X is Namioka, for
i=l *

every i , there is a dense G. set A. in AT such that f\X x y is

o t*
continuous on A. x I. . But then, clearly, / is continuous at each

Xr Is

point of 0 A. x y . jjow by Lemma 1 (a), A = D A. is a dense, G

subset of X , the latter being Namioka, and hence, by Lemma 2, Baire. So

there is a dense, G- set A c X , with A x y c C(f) .
o

Proposition 1 suggests the question:

Must all co-Namioka spaces be Baire?

The following proposition that follows from [4], Theorem 2, p. 6U7,

Lemma 1 (b) and Lemma 2, answers this question in the negative.

PROPOSITION 2. Every second countable space is co-Namioka.

This means, in particular, that if X is the unit interval and Y is

the set Q of rational numbers, then (*) holds (!). Recall that

Christensen [3], Theorem 1, p. llU, showed that if X is the set Q of

rational numbers, Y is the unit interval and Z = C [Q , [-1, l]) , the

2
space of continuous functions from Q into [-1, l] equipped with the

pointwise topology \C [Q , [-1, l]j is compact metric), then there is a
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separately continuous / : X * Y -*• Z which does not satisfy (*).

Similarly, as in Proposition 2, it can be shown, using LI31, Theorem

2, p. ^38, Lemma 1 (b) and Lemma 2, that if we assume, additionally, that

the range Z of separately continuous functions considered in (*) is a

compact space, then every first countable space is co-Namioka.

In an attempt to generalize simultaneously both Propositions 1 and 2,

say to all Lindelof spaces (recall that in the class of locally compact

spaces, a space is O-compact if and only if it is Lindelof [5], Theorem

7.2, p. 2Ul) the following example ([J2], Remark (b), p. 2Ul) arises.

EXAMPLE 1. There is a hereditarily Lindelof and hereditarily

separable space which is not co-Namioka.

Proof. Let X and Z be the unit interval J and let Y be the

space C (I, I) of continuous functions from J into J equipped with

the pointwise topology. Then fix, y) = y(x) is the required function.

The fact that Y is hereditarily Lindelof and hereditarily separable,

easily follows from the fact that 1 has a countable network. It can be

shown that C (J, J) is of first category in itself [7], and is not a

Frechet space and thus not first countable; this follows since C (I, R)

can be embedded in C (I, I) and since C (J, R) is not a fe-space ([6]

and [8]).

So, if not all Lindelof, even hereditarily Lindelof, spaces are co-

Namioka, then perhaps either all locally compact spaces that are also

paracompact or all k-spaces are co-Namioka? Again, the answer is no, even

if we assume that such a space is both complete and metric.

The following unpublished example, due to Brown, was originally

designed to answer Christensen's question [2] whether (*) holds for

complete metric spaces X and Y .

EXAMPLE 2. There is a complete metric, locally compact space which

is not co-Namioka.

Proof. Let X = [0, 1] , Y = U Y , Y = [0, l] and let
a€[0l)

Z = R .
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The set X x y , equipped in "the open-page-book topology", is the

free union of compact squares ("pages") X x y , with a € [0, l] .

Now let us order them in "a long line" and let us define, for every

a € [0, l] , a separately, but not jointly, continuous function

/ : X x y •*• Z , requiring though, that the point (or points) of

discontinuity of / is (respectively are spread out) somewhere in

{a} x Ya .

Now it is easy to see that if fix, y) = = / ix, y) for

(x, y) € X x y , then / does not satisfy (*). Hence y is not co-

Namioka, because X is Namioka.

We now arrive at the main problem of the paper.

PROBLEM 1. Characterize co-Namioka spaces.

Let us recall that a partial answer to this problem was obtained by

Talagrand and is the main result of [72], Theorem 3.1, p. 2Ul.

TALAGRAND'S THEOREM. If X is compact and Y is a special

K-analytio space, then {*) holds.

(in our terminology: Special K-analytic spaces are co-Namioka

rel C s where C stands for the class of compact spaces.)

The following problem is closely related to Talagrand's result and our

theorem.

PROBLEM 2. Do co-Namioka and co-Namioka rel(C) spaces coincide?

We shall prove the following:

THEOREM. If X is locally compact and Y is a k^-space, then (*)

holds.

A space X is called a k -space if X = U X with X compact
n=l n n

and increasing and if X has the weak topology of X 's ; then this

sequence X^ , Xn, ... is called a k -decomposition of X . k -spaces, asId to u)

O-compact spaces are Lindelb'f and paracompact; moreover, they are
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precisely hemicompact fc-spaces.

The set Q of rational numbers, with the usual topology is not a

k -space, although the same set Q with the Sorgenfrey topology is k

The first example of a non-Baire k -space is due to ArchangeI'skiT and

Frankl in [7].

Both special K-analytic and k -spaces contain, as Lindelof spaces,

those spaces that are both a-compact and locally compact. However, the

relation between special K-analytic and k -spaces is not completely

understood.

In the proof of our theorem we rely on the following Lemma 3; the

result shown in the lemma seems to be a part of folklore, however, we

decided to attach a short, hopefully, new proof; compare [5], Proof of

Theorem U.U, p. 263.

LEMMA 3. Let X be locally compact and let Y be a k -space.

Then the product topology of X x Y coincides with the weak topology of

the sets X x y where the Y 's are elements of some k decompositionn n J a) e

of 1 .

Proof. The space X , a locally compact space, admits the Alexandroff

compactification oX , and X is open in <xX . Therefore, every X x y

is open in aX x Y , for n = 1, 2, ... .

Next, let U be a subset of X x Y that intersects every

X x Y as an open set.
n

Then, for every n , the set (a£ x y J n U is open in aX x Y

Hence we get that U is open in aX x y . Obviously, U is then open in

X x Y . This finishes the proof of Lemma 3-

REMARK. Since locally compact spaces are characterized as open sub-

spaces of their Stone-Cech compactifications, [5], Theorem 8.3, P- 2^5, we

see no way of extending Lemma 3 with its present proof.

Proof of the theorem. Clearly, we are able to determine the points of

continuity of / restricted to (countably many) "layers" X x y ,
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n = 1, 2, ... . Now because the product topology of X x Y coincides with

the weak topology of X x Y (Lemma 3) we can find such a simultaneous

set, in X , whose Cartesian product with the space Y is contained in

C(f) . In other words, we apply Lemma 3 to any k -decomposition, which is

a countable family of compact subsets of Y .

In fact, f is continuous on A x Y , where A is a dense, G~

(in X ) and Y is a (compact) element of k -decomposition. Obviously,

f is continuous on f) A x Y and A = PI A is a dense, G<. , X

being locally compact. This proves our theorem.

Obviously, the countability of the family \A } is needed to get a

simultaneous dense, G,. set of points of continuity.

Similar arguments to those given in the proof of our theorem show the

following result that is closely related to Mirzoian's theorem [9].

PROPOSITION 3. Let X be locally compact, Y be a metric, k -

space, Z be compact metric and let a function f : X x y ->• z have all

its x-sections f continuous and its y-sections f continuous, for
x y

the y's belonging to a dense subset D of Y . Then ere is a residual

set A c X such that A x y c c(f) .
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