GROUPS OF BREADTH FOUR HAVE CLASS FIVE
by 1. D. MACDONALD
(Received 23 February, 1977)

A conjecture of reputable vintage states that ¢(G)=<b(G)+1 for a finite p-group G
of class ¢(G) and breadth b(G). This result has been proved in a medley of special cases
and in particular whenever b(G)=3. We now prove it for b(G)=4.

1. Introduction. Let G be a finite p-group and let C(x) denote the centraliser of the
element x in G. The breadth b(x) is defined by
p*¥=|G:C(x)|,
and the breadth b= b(G) of G is defined by
b = b(G)=max{b(x): x € G}.

Discussion of the conjecture that the class ¢(G) of the finite p-group G is bounded by
b(G)+1 may be found in the references, especially [6] and [7]. The result for b(G)=1
was proved by Burnside [1, pp. 125-6]. Knoche [5] proved that ¢(G)=b(G)+1 for
2=b(G)=3. Other special cases have been studied. The general case may yet prove to be
false. The results of [7] suggest that the cases with b(G) =6 may well be decisive because
counter-examples with b(G)=6 are there presented to settle certain closely-related
conjectures, which appear as Problems 3.5 and 3.6 in [6].

In this note we show that well-tried methods suffice to settle the case b(G)=4. More
precisely we prove:

THEOREM. If G is a finite p-group with b(G)=4 then ¢(G)=5.
2. Definitions and preliminaries. To prove the theorem we need the apparatus of
commutator manipulation. In this section we survey the necessary equipment and, to give

a taste of the argument, apply the methods to the case b(G)=3.
Let x, x5,..., X, . . . be elements of the group G. Then

[x1, x2]=x7'x3 1%, %,
and if n=2 then
[xI: x2) ceey xn+1]= [[xh x27 R ] xn]7 xn+1]'

We use the ‘“‘semicolon notation”, according to which

[xlr MR ] xp; xp+17 R ] xp+q]= [Cp, Cq],

[xlv L] xp; xp+1’ R | xp+q; xp+q+11 LI | xp+q+r]= [Cp’ Cq) Cr]a
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and so on, where
Cp = [xly R ] xp]’ cq = [xp+17 ML ] xp+q]1 ¢ = [xp+q+17 R ] xp+q+r]'

The terms y;(G) of the lower central series of G are defined by putting v,(G)=G
and

v(G)={x1,...,%]:%,€G,...,x,€G)

for i>1. The group G is said to have class n=c(G) if y,,,(G)=1 but v,(G)# 1. The
two-step centralisers C; corresponding to the lower central series are defined for 1=i<c
by

C=(xeG:if yey(G) then [x y]€y.5(G)).

Notice that C;# G, and that C, is normal in G, for 1=i<c.
Next we summarise some useful results. The multilinearity property of commutators

will be referred to (if at all) as (ML), at its frequent appearances; we are thinking of
statements like

[Y1Zn X3y vty xn]E[YD TR xn][zl’ Xoy o ey xn] mOd Yn+1-

(In fact what = really denotes in statements like u=v mod ¥, ,, or u=v mod v,.,(G) is
that the cosets uy,,,(G) and vy,.,(G) in G/v,.,(G) are equal.)
We denote by (JW) the result of a standard identity, namely

[Cp7 Cq; C,][Cq, Cr Cp][C,, Cp’ Cq]E 1 mOd Yp+q+r+1

or

[Cp7 [Cq? cr]]E[cp’ cq’ Cr][cp’ C,, Cq]_l mOd ‘Yp+q+r+l

where ¢, ¢, ¢, are defined as above.

Two consequences of (JW) are helpful. The first, (LN), states that a commutator of
the form [x,, ..., x,] is the product of commutators like [x,, y;, ..., y.~,] and its inverse,
mod 7V,.1, where {y, ..., yo_i}={%s, ..., x,1}. The second is denoted by (AB):

[x1, X3, X1, X]=[x;, X3, X5, x;] mod 5.

Now consider a finite p-group G with breadth b and class ¢ >b+1. We can make a
reduction by replacing G with G/v,.3(G), for an obvious inductive assumption allows us
to suppose that the breadth of G/v,.3(G) is not less than b. In other words, in proving the
theorem we may take c(G)= b(G)+2.

Lemma 3.1 of [6] shows that C,;U. ..U C,_, # G implies that c< b+ 1. But C, <, for
1<i<c, as (LN) clearly implies. We shall prove that if 3=b=4 then c<b+1 by first
establishing: if 3=b=<4 and c=b+2 then C,U...UC, ., #G.

Let us consider the case of a finite p-group G with b{G)=3 and ¢(G) =35, and let us
suppose that G=C,UC;UC,. It is a known fact that if D=C,NC;NC, then G/D is
non-cyclic of order 4, and though this is due to Scorza (1926), according to [3], a more
convenient reference is [4].
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Therefore p=2, G ={(a, b, D), C,={a, D), C;=(b, D), C,={ab, D). Let x,, ..., x5
be elements of G for which w=[x,, ..., xs]# 1. Clearly D does not contain x; or x; or
xs, and without losing generality we may take x; = b, x, = a. If we work mod ys(G) then

[xh X2, b’ a]E[xly X2; b> a][xla x27 a, b] (JW)
But [x,, x5, a, b]=1 since for instance a € C,. Further
[x1, X2 b, a]=[a, b; x,, x,]

and another application of (JW), whose details we suppress, shows that if x, or x, lies in
D, and so in both C, and G, then [a, b; x;, x,]=1. So we may assume that x; = a, x,= b,
in which case by (AB),

[x1, X2, X3, Xx4]=1[a, b, b, al=[a, b, a, b].

Since a € C,, it follows that w= 1. This is a contradiction, and shows that G# C,U C,U
C,. The result that if b =3 then ¢ <4 follows as explained above.

3. Proof of the theorem: the redundant case. In order to prove the theorem we
suppose that G is a finite p-group with b(G)=4, ¢(G)=6, and G=C,U C,U C,UC,.
The calculations in this case will be presented in a more succinct form than above.

A complication immediately arises, for G may be the union of just three of the
proper subgroups C(2=<i=5), and disposing of this case is not trivial. Consideration of
subcases is necessary. We always suppose that w# 1 where

w =[x, X2, X3, Xa, X5, X6).

(i) Suppose that G=C,UC,UCs. Put D=C,NC,NCs, Cy=(a, D), C,=(b, D),
Cs=(ab, D). We take x,=b, xs=a, x¢=a.

Our first aim is to show that no x; lies in D. By (LN), if some x; € D then we can take
i=1. We have

[x1, X2, X3, b, al=[x4, X2, x3; b, a] IW; aeCy)
and
w={[x,, x5, x3; b, a; al
=[a, b, a; x;, X5, X3)[X1, X5, X3, a; b, a]  (IW).
The former of these commutators is trivial because x, € C;N C,N Cs—note that JW) is
used here—and the latter because a € C;. So if x;€ D then w=1.
This means that we can take x,=a, x,=b. But if x;=a then (AB) gives w=1; so

x3=b. Then
w=[a, b, b, b, a, a]
=[a, b, b; a, b; a]* IW; ae Gy
=[a, b, a; a, b, b][a, b, b, a; a, b]™? aw)
=[a, b, a; [a, b), b)] (ae Gy)
=[a, b, a; a, b; blla, b, a, b; a, bI' (W)
=1 (AB; ae Gy).
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(ii) Suppose that G=C,UC,UCs. Put D=C,NC,NCs, C,=(a, D), C,={b, D),
Cs={ab, D). We take x3;=b, xs=a, x¢=a.
Note that since
[x11 X2, b]E[b X3, xl][b X1, x2]—1 mod Ya

we have w=1if x,e D and x,e D; or if x,e D and x, = a. Indeed we can suppose that
x,€ D or x,=a, and that x,=b.
Let us next consider x,. If x,€ D then
w=[x,, b, b, x4, a, a]

=[xy, b, b; x4, a; allx,, b, b, a, x4, a] Iw)

=[xy, b, b; x4, a; a] (xs€ Cy)
=[X4, aa a; xly b’ b]—l[xly b’ b’ a; X4, a] (JW)
=1 (ae C,; x,€ C,NCs).

Next suppose that x, = a. If ¢ and d are commutators of weight 2 then modulo ys we have
[c.d,al=ld, a,c]'[c,a,d] (W)

and in our case, with a € C,, we have w = 1. We conclude therefore that we can take x,=b
without losing any generality.

Finally we can take x, = a by the following reasoning. If (LN) is applied to [x,, b, b, b,
a] then this element becomes a product (modulo ys) of commutators of the form
[a,...]*", all of which are trivial when both b and x, lie in C,. Therefore x, ¢ D, and as
above we have x,=a. Then

w=[a, b, b, b, a, a]
=[a, b, b; a, b; a] '[a, b, b, a, b, a] (IW)
={a, b, a; a, b, b][a, b, b, a; a, b]! IJw)
=1 (ae ).

Note that [a, b, b, a]=1 because ae€ C,.

(iif) The cases in which Cj is redundant and C; is redundant may be combined. Make
the obvious definitions of D and put C,=(a, D), C;=(b, D). We take x;=b, x,=a; and
applying (JW) twice to

[x1, x5; a, b][a, b; x;, x,]=1mod s
we obtain

[xl’ Xz, 4, b][xh X2, b) a]_l[a’ b’ X1y x2][a1 b) x21 xl]_l = 1

It is clear that if x,€ D then w=1. So by (LN), every entry of w may be chosen from
{a, b}. But in that case [a, b, b, a]l=[a, b, a, b]=1, and we are finished.

4. Proof of the theorem: the irredundant case. In this section we suppose that G is
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a finite p-group with b(G)=4, c¢(G)=6, and G = C,U C;U C,U C; as above, but G is
not the union of any three of the C.. Put D= C,N C;NC,N Cs. We have to consider the
possibilities for G/D and, just as important, for each C/D.

Fortunately the structure of a group covered by four proper subgroups has been given
by Greco [3] and by Neumann [8]. For convenience we use the latter reference. Thus
either p=2 and |G:D|=8, or p=3 and |G:D|=9.

Because the results of [8] do not give us the coverings of G/D in the various cases we
shall need a little elaboration. Let H be a finite p-group which is irredundantly the union
of its proper subgroups S,, S,, Ss, S, whose intersection is trivial. Suppose first that p=2
and that H is elementary abelian, H =(a, b, ¢). We may choose a, b, ¢ so that S, =(a, b)
and S, =(q, c) (see the table on p. 239 of [8]). Some juggling shows that in case (i) of that
table we can choose a, b, ¢ so that

S;=(a,b), S;=(a,c), S3=(bc), S,={abc). (1)
Case (ii) which is simpler yields
Sl = (a, b)) s2 = (ay C), S3 = (bC), s4 = (abC). (2)

Another possibility is that H is abelian of order 8 and H =(a, b) with a*=5b*=1.
Though case (i) does not occur now, case (ii) gives

Si=(a), S;=(ab), S;=(b), S,=(a®h). 3)
Finally we may have p=3 and H=(q, b) of order 9 with
Si=(a), S;=(ab), S;={(a’h), S,=(b). C))

Our next move is to cut down the number of possibilities embodied in (1)—(4) by
borrowing some arguments of Gallian [2]. Suppose that x is an element of G such that
x¢ C, U Cs. Since x£ C,, b(xys) < b(xye); since x£ Cs, b(xye) < b(x) <4—here we are using
that part of Lemma 2.1 of [6] stated as Lemma 2 of [2]. So b(xys)=2. It follows that
c({xys: x€ C,U Cs)) <3, by Theorem 2 of [§] also to be found as Lemma 1 of [2]. Because
K={(xe G:x2& C,U Cs) therefore has c(K)=35, we see that K# G. (In rough terms we can
say that “C, and Cs; must not be too small.”)

This at once implies that (4) does not occur. Neither does (3), though this is less
obvious. First we note that if 4<i<35 then C/D must have order 4. Next we lose no
generality in taking b e C,, a’be Cs, a€ C,, abe Cs. As usual in these calculations we put

w =[x, X3, X3, X4, X5, Xc]# 1,

and we assume that x;=a, xs=b. Suppose every x; lies in {a, b} and take x, = a, x,=b.
Since ab e Cs, we lose no generality in putting xs = b. Thus

w=[a, b, a, x4, b, b].

If x,=b we find that w=1 by applying (AB) to [a, b, a, x,] and noting that be C,. If
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x,=a then

w=[a, b, a; a, b; b]la, b, a, b, a, b] JW)

=[a, b, a; a, b; b] (AB; be Cy)
=[a, b, b; a, b, a] [a, b, a, b; a, b] Iw)
=1 (AB; be G,).

Thus the final stage of the argument requires x, € D. If x,=b then
[x1, X2, @, b][xy, x5, b, a]'[a, b, x;, x,][a, b, x5, x,J" =1 mod s

gives w=1, while if x,=a then

W=[X1, Xy, a; a, b’ a] (JW, aeC4)
=[a, b; x4, X35 a; al Y[a, b, a; x,, x5 a] (IW)
=1 (x,e D).

So (3) does not occur.

In cases (1) and (2) G has at least three generators, and we make a remark which will
be important later: we can assume that the case when G is generated by two elements has
been disposed of.

Gallian’s argument shows that in both (1) and (2) we can take C,=(a, b, D),
Cs=(a, ¢, D). Correspondingly we can assume that xs = c, xs= b in the usual way. In fact,
we get more by applying (LN) to [x,, ..., X4, c]; we may suppose that in addition x, = c.
So

w= [C, X2, X3, X4, €, b]

We proceed to dispose of the subcase of (1) in which C, = (b, ¢, D}, C;=(abc, D). We
can suppose that x; = a. Since

[C: ba a][b, a’ C][ar C’ b]E 1 mOd ‘Y4’
the composition of C, shows that [c, b, a]=1 mod v,, and so if x,=b then w=1. So

w=[¢, a, a, x4, ¢, b].

If x,= b then
[c, a, a, b, c]=[c, a; a; b, c] (JW; be Cy)
=[b, ¢, a; ¢, allb, ¢; ¢, a; a]* (W)
=1

because [b,c,al=1 and because a€C,. If x,=c then w=1 by (AB) and ceC,.
Therefore the fact that abc € C; shows that if x,=a then w=1.
The subcase does not occur then, and we recapitulate by rewriting (1) and (2) as

C2=(abc’ D)y C3=<b7 ¢, D>, C4=<a1 b’ D)) C5=<a) (&% D)’ (1’)
C2=<abc) D)y C3=<bc7 D)) C4=(a7 b1 D)v C5=<a7 ¢, D)' (2')
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Note that interchanging C, and C; in (2') gives nothing essentially new.
In (1) we have w=/[c, x,, X3, a, ¢, b]. First suppose that x,=a. If x3=c then (AB)
gives w=1. If x;=>b then

w={c a, b, a, ¢, b]

=[c, a; b, a; c; b] JW; be Cy)
=[b, a, ¢; ¢, a; b] '[¢, a, ¢; b, a; B] (W)
=[b, a, ¢, a, ¢, b] JW; aeC,; beC,).

However both [b, a, a, a, ¢, b] and [b, a, b, a, ¢, b] are trivial, because (LN) can be applied
to [b, a, x, a, c] and the composition of C, used. The fact that abc € C, then shows that
w = 1. Next we suppose that x; = a. In that case abc € C, implies that w=1. So if x,=a
then w=1,
If x,=b then we apply (LN) to [c, b, x5, a]; when x3=>b or ¢ we have [¢, b, x5, a]=1
because of C;, and so w=1. It follows that if x;=a then w=1 because abc e C,.
To complete the case (1°) we discuss the implications of taking x,e D. Mod s,

[c, x5, x3, al=[c, %, a, x;3][c, X35 x5, a] (W)
E[c: x2’ a’ x3]

because x,€ NC; gives [x3, a; ¢, x,]=1; so if x3=b or ¢ then w=1 in view of C;, and
consequently if x;=a then w=1 because abce€ C,. Thus if x,€ D then w=1.
In case (2') we have w=][c, x,, X3, X4, ¢, b]. First suppose that x,=a. It suffices to
prove that w=1 whenever x5, x,€{q, c} in view of C, and C;. But this is obvious.
Secondly suppose that x, = b. If x,= b then ¢(G)<6 by a remark above (note that we
may assume x;=b or c¢), so we take x,= a. Mod y¢ we have

[C’ b’ X3, a’ C]E[C, b’ x3; a, C] (JW, aec C4)
=[a, ¢, x3; ¢, blla, ¢; ¢, b; x:]71 (IW)
=[a, ¢, x3; ¢, b] (x;€ C),

provided we assume (as we may) that x;=a or b. So
w= [a: C, X3, ba Ca b]_1

since be C,, and w=1 follows because the case x,=a was dealt with in the previous
paragraph.
Thirdly suppose that x, € D. We may take

w=[c, x5, X3; X4, €5 b]
because x, = a or b in view of C;, and so x, & C,. Next we apply (LN) to (¢, X5, X3, [x4, c]].

The fact that x,€ D then shows that w=1.
This completes the case (2) and with it the proof of the theorem.
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