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Abstract

Ordered vector spaces more general than vector lattices are represented as function spaces with
‘almost’ the pointwise order. The ‘pseudo-lattice’ property which is necessary (and sufficient in the
finite-dimensional case) for the representation is also studied in relation to the lattice property.

Subject classification (Amer. Math. Soc. (MOS) 1970): 06 A 65.

Representation of an ordered vector space as a space of functions works well
when the space is an Archimedean lattice. Also if the space is ‘locally finite dimen-
sional’ and has the Riesz decomposition property we have shown in Metzler (1969)
that it can be represented as a ‘selected order space’ of functions. The representa-
tions of spaces with the decomposition property form a proper subclass of the
selected order spaces and in this paper we investigate the problem of characterizing
those spaces having selected order space representations. The order property
characterizing these spaces is given here and spaces having this property are
christened pseudo-lattices. Geometrically, in finite dimensions, these spaces
correspond to those with positive cones such that if any interior element of a face
is positive then the whole interior of the face is positive. We also show that if we
take a natural ‘closure’ of the positive cone of a pseudo-lattice we obtain the positive
cone of a lattice.

Let V be a directed ordered vector space with positive cone ¥'*. (Notation is
that of Metzler (1975) except that we assume that ¥ *N(—¥V*) = {0} unlike the
assumption there.) We say V is a pseudo-lattice if, for every pair (x,y)e Vtx V*,
there exists a positive element z such that: (i) forallpe V, p >{x,y} implies p+ax >z
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for all «>0 (the least property); and (ii) z+ax>{x,y} for all a>0 (the upper
property). Clearly if « were allowed to be zero then z would just be the usual least
upper bound.

For any positive element x, we define (V*),=\o»o(—ax+¥*) and let
V™ = Usier+(V*),. It can be shown. easily that ¥ is Archimedean if and only if
vt =Vv*~ (Metzler (1969), p. 3). It is also clear that V is almost Archimedean if
and only if (V*),N—(V*), ={0} for all xe V*\{0}.

THEOREM 1. If V is an almost Archimedean pseudo-lattice then (V,V*™) is an
Archimedean lattice and there is exactly one z having the least and upper properties
for each (x,y); it is x v y (sup taken in the V*~ order).

PROOF. Since V is directed, to show that V with the ¥+~ order is a lattice, it is
sufficient to show any two elements of ¥ * have a least upper bound. Let x, y and z
be as in the definition of pseudo-lattice. We will show that z = x v y by showing
that z+¥V*~ = (x+V* )N+ V*~). Suppose bez+V*~. Then there is de V*
such that b+adez+ V™ for all a>0 and this shows that

{b—x+a(d+x),b—y+oa(d+x)c¥V?
foralla>0. Thusb—xe(V*),,andb—ye(V'*),, . and so
be(x+V)N(p+V*).

This gives the inclusion z+ VY~ c(x+V* )n(y+V*").

Now suppose that ae(x+V* ™ )N(y+¥V* ™). Then there are elements m and
nin V*~ such that ¢ = x+m = y+n. By definition of ¥*~ there are p,,p, in V'*
such that m+ap, e V* and n+ap,e V* for all a>0. If we let p = p, +p, we have
{m,m}+ap<V™* for all a>0. Therefore a+oap=x+m+op =y+n+ap and we
see that a+ape(x+ V" )N(y+ V™) for all «>0. Hence a+ap+axecz+ V™ for all
a> 0 by the least property. This means a—ze(V*),,, so acz+¥V*~. We conclude
x+V*IOING+VI)cz+ vV,

Now if z’ also has the least and upper properties with respect to x and y then
ZH+VT = (x+V* )N+ V) =z+V* ", Therefore {z—z', z’—z}< ¥*~ which
means there exists g ¥'* such that {z—2’, z’—z}<(V'*),. We conclude z = z' since
V is almost Archimedean.

To see that V is Archimedean in the V*~ order, suppose that ye V*~ and
xen 'y—V*~ for all n=1,2,.... Choose ze ¥V* such that y+azeV* for all
«>0 and such that y—x+4ze V* (since V is directed such a z can be found). Then
nly—x+(+z)=@—x)+iz+n Y (y+inz)e V" for all n. Now

+2)vin ly—x+y+z)=n"'y—x+y+z

since n™!y—xe V™~ and the left side is the least upper bound in the ¥*~ order.
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Noting that y+z and n~'y—x+y+z are both in ¥* we can apply the upper
property in the following equality:

—x+n 'Qy+2)=n"y—x+n" '+ =n"'y—x+y+z+ (0" -1 (y+2)
=[+2)v (™ y—x+y+2)]-(+2)+n"(y+2)
ev?t

for all n. Thus we conclude that —xe ¥ *~ which means that V' *~ is Archimedean.
We note that this theorem shows that the asymmetry in the definition of pseudo-
lattice (z + ax rather than z+ay) is only apparent in the almost Archimedean case.

THEOREM 2. If V is a pseudo-lattice such that the element z of the definition is
unique for every pair of positive elements then V is almost Archimedean.

PROOF. Suppose —ab<a<ab for beV* and «>0. We must show a =0 to
conclude that V is almost Archimedean. We note first the easily proved fact that
these inequalities are equivalent to the statement ra+5>0 for all real r.

We will show that a+b and —a+ b both have the least and upper properties with
respect to the pair (a+b, —a+b) and uniqueness then gives a+b= —a+b
yielding a = 0.

Clearly a+ b and —a+ b have the least property with respect to (a+b,—a+b) and
we need only show each has the upper property. We note that a+b>a+b, while
a+b—(—a+b)+afa+b) = a(((2/x)+1)a+b)eV*. Similarly, —a+b>—a+b,
while (—a+b)—(a+b)+ala+b) = a((1 —(2/x))a+b)e V™.

Changing the definition in Metzler (1969) slightly we define a selected order space
W to be a directed ordered linear space of functions on a set M such that W is
contained in the cone of nonnegative functions and such that any nonnegative
function in W with the same support as a function in W™ is also in W*. (Note:
support f = sptf = {me M: f(m)#0}.) A geometric example of this is given by the
case M ={1,2,3}. Then W* would be the interior of the positive octant in R3
together with the origin and some or all of the edges and some or all of the faces.
The ‘support’ property above ensures that if any interior element of a face is in
W™ then the entire interior is in W™,

THEOREM 3. Every selected order space V with the property that the V* ™~ ordering
is a lattice ordering is an almost Archimedean pseudo-lattice.

ProOF. We show first that, if V is a selected order space, then V' * "~ is the cone
of nonnegative functions in V. Given feV*~ there exists ge¥V* such that
f+oageV?* for all >0. Thus (f+ag)(m)>0 for all «>0 which shows f is non-
negative. Conversely if A€V is non-negative then, since V is directed, there exist
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p and g in V* such that h = p—q. It is easy to see that spt(%+oap) = sptp for all
o>0 so we have A+ape V" which gives he V' ~. We note that the almost Archi-
medean property follows from the fact that ¥*~ is the cone of nonnegative
functions in V.

Given x and y in V'*, we will show that xv y, taken in the ¥~ (pointwise)
order, has the least and upper properties with respect to x and y. Considering the
least property first, if ac(x+ V*)N(y+ V'*), then let

h=a—(xvy)+ox =(a—x+ax)A(a—y+ax)

for a>0. Then spth = spt(a—x+ax)Nspt(a—y+ax) = spt{a)nspt(a—y+ax).
(Note that a(m)>0 if and only if a(m)— x(m)+ax(m)>0 since a—xe¥V™*.) Now
the last term equals

sptan[spt (a— y)Uspt (ax)] = [sptanspt(a— y)JU[spt ansptox]
= spt(@— y)V spt (ax) = spt(@a—y+ax).

Since a—y+axe V' we see that he V'*. Thus x v y has the least property.
For the upper property let g =xvy+ax—x. Then g =[0v(y—x)]+ax and

sptg = spt[0v (y —x)]Uspt (ax) = {me M: y(m)> x(m)}u{me M: x(m)> 0}
=spt(x+y);
s0 ge V*. Finally, if f = xv y+ax—y then f = (x—y) vO+ax and
spt f = [spt((x—y) v 0)]uspt (ax) = {m: x(m) > y(m)}u{m: x(m)>0} = sptx

and so feV'* also.

We have already seen that every almost Archimedean pseudo-lattice ¥ has the
property that V'*~ gives a lattice order. The main purpose of this paper is to show
that the converse of the previous theorem holds in a ‘finite-dimensional’ case.
Designating the set (x— ¥ *)NV* by [0, x] we say that an element x in ¥V * is finitely
generating if span [0, x] is finite-dimensional. We let F denote the set of finitely
generating elements of V.

For our representation result we first need a result on extremal functionals which
is of interest in itself.

THEOREM 4. Let V be a directed ordered vector space which is almost Archimedean.
If V is a pseudo-lattice or if V has the Riesz decomposition property, then the restriction
of any extremal functional defined on the whole space to any order-convex directed
subspace is still extremal.

PROOF. Let W be an order-convex directed subspace of ¥ and let f be extremal

on V. If we designate f|, by g we will prove that g is extremal on W by showing that
Hayes’ criterion (Jameson (1970), p. 31) holds. Given xe WnV* and yeV*
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suppose z€V is such that {x,y}>z. If V has the Riesz property, then there
exists ge ¥ such that {0,z} <g<{x,y} and we have g W, since 0<g<x and W is
order convex. If V is a pseudo-lattice, let ¢ = (x+y)—(x v y) (where x v y is taken
in the ¥'*~ order). Then {x,y}>z implies {y,x}<x+y—z which gives g+ax>z
for all a >0 by the least property of x v y. Similarly, g+ ax >0. On the other hand,

we have
y—(xvy—x+oax) y
g—oax=(x+y)—(xvy+oax) = <

x—(xvy—y+ax) x

which shows ge W since —ax<g<x+ax and W is order-convex. In either case
we have, for xe WnV* and ye V'*,

* sup{f(2): {x,y}>ze V} = sup{f(g): {x,y}=qe W}
Thus Hayes’ criterion for extremality is satisfied for {x,y}< WnV™* and since
W is assumed directed any pair in W can be translated to WnV ™.

THEOREM 5. Let (V,u) be an almost Archimedean order unit space and suppose
that V has the Riesz decomposition property or that V is a pseudo-lattice. Then the
representation V—V<REY-% described in Metzler (1975), p. 431, is such that
the image of F—F is a selected order space. (E(V,u) is the set of extremal linear
functionals which send u to 1.)

Proor. We will show first that if xeF and W = span [0, x] then
W=Z={geREV:®: sptgc spt£}.

We remark that P* is composed of nonnegative functions and that V-V is
one-to-one since ¥ is almost Archimedean (Metzler (1975), p. 431).

Let n = card (spt £) and let {z,, ...,z <[0, x] be a basis for W. Since this basis
maps to a linearly independent subset of Z we see that k<n.

Now if V is a pseudo-lattice or if ¥ has the Riesz decomposition property it is
easy to see that the same is true of W. Either of these properties implies that the
dual of W is a vector lattice and hence (Metzler (1969), p. 6) any set of extremal
functionals in the dual of W such that no functional in the set is a multiple of any
other one is a linearly independent set. Suppose {f, g} <sptx and f}, = agl|y for
some a > 0. Then by (*), established in the proof of the previous theorem, we have,
for r sufficiently large,

fw) = fw) A f(rx) = sup{f(q): {u,rx}>qe W}
= sup{xg(q): {u,rx} g€ W} = ag(u) A ag(rx) = ag(u).

Since f(u) = g(u) = 1 we conclude that o« = 1. Now for any pin ¥'* and r sufficiently
large we have, using (*) again, f(p) = f(p) Af(rx) = g(p) Ag(rx) = g(p). Thus f=g
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on V' and we see that f = g on ¥, since V is directed. Then no functional in the
restriction of spt(£) to W is a multiple of any other and we conclude that n<k
by linear independence. Hence n is equal to k.

Now if yeV is such that § is nonnegative and spt(y) = spt(£) we note first
that e Z = W. All extremal linear functionals on W, by the linear independence
argument above, will be multiples of those in spt (£). Since these are all positive on y
we conclude (Metzler (1975), p. 431) that y>ax for « sufficiently small, and so
yeWNV™ as required.

As was seen in Metzler (1975), in the case when V has the Riesz decomposition
property, we have the additional property that, for x and y in F, x A y (pointwise
order) is also a positive element. The converse also holds in any selected order space.
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