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Abstract

A semiprime segment of a ring R is a pair P2 C P\ of semiprime ideals of R such that ("") /" C P2

for all ideals I of R with P2 C / C P\. In this paper semiprime segments with Pl a comparizer
ideal are classified as either simple, exceptional, or archimedean, extending to several classes of rings a
classification known for right chain rings. These three types of semiprime segments are also characterized
in terms of the pseudo-radical.

2000 Mathematics subject classification: primary 16D70, 16W99.

1. Introduction

A right chain ring is a ring whose right ideals are linearly ordered under inclusion. A
prime segment of a right chain ring R is an interval in the lattice of ideals of R defined
by a pair of neighbouring completely prime ideals.

In [5], it was proved that a prime segment P2 C P\ of a right chain ring R is either
simple in which case there are no further ideals in this segment or it is exceptional in
which case a prime ideal Q exists with P2 C Q C P\, or it is locally right invariant,
that is, Pxa c aP\ for all a e Pt\P2. A similar result was obtained in [3] where prime
segments of Dubrovin valuation rings were classified as either simple, exceptional,
or archimedean (that is, f]n€N(RaR)" — P2 for every a e F, \ P2), and in [4] prime
segments of skew fields were studied.

Recently, several papers showed that some features for right chain rings can be
carried over to rings R containing a comparizer ideal, that is, an ideal P such that for
any a,b € R, either aR c bR or bP c aR (see for instance [8-10,14,15]). In this
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paper we extend the classification of prime segments to these rings, and moreover, we
classify semiprime segments of arbitrary rings with identity (Theorem 3.2).

A semiprime segment of a ring R is a pair P2 C Pi of semiprime ideals of R such
that P|n=M ' " — ^2 f° r a ^ ideals I of R with P2 C 1 <Z P\. We show that every
semiprime segment P2 C Pi with P| a comparizer ideal is either simple, exceptional,
or archimedean (Theorem 4.1). We also characterize each of these three types of
semiprime segments using prime right ideals within the segment, that is, in terms of
the pseudo-radical (Corollary 4.4). To prove these results, in Section 2 and Section 3
we contribute some new insights to the general theory of ideals. As a consequence
we obtain the aforementioned results of [3] and [5].

Throughout this paper, R denotes a ring with identity, and the Jacobson radical of
R is denoted by J(R). If / is an ideal (right ideal) of R, then we write I<R(I <r R).
The symbol c stands for proper inclusion of sets.

2. Comparizer ideals

Let R be a ring and / a right ideal of R which is proper (that is, / ^ R). Then / is
called prime if for any a,b € R, aRb C / implies either a e I or b € / . If ab e I
implies either a e / or b e / , then / is called completely prime. Moreover, / is said
to be semiprime if aRa C / implies a € / .

Recall that a proper right ideal / of a ring R is said to be a waist if / is comparable
with each right ideal of R, that is, either A c / or / c A holds for each right ideal A
of R (see [1]). Obviously, every waist / of R is contained in all maximal right ideals
of /?, and thus / c J(R).

The following lemma is an immediate consequence of [9, Lemma 2.5] and the
definitions above.

LEMMA 2.1. If a completely prime right ideal P of a ring R is a waist, then P is
an ideal of R and aP = P holds for each a e R \ P.

A proper right ideal / of a ring R is called a comparizer (respectively, strongly
comparizer) right ideal [15] if for any a,b e R, either aR c bR or bl c aR
(respectively, either aR c bR or bl C al). In the following proposition we list
several properties of comparizer right ideals.

PROPOSITION 2.2. Let I be a comparizer right ideal of a ring R.

(i) If I = I2, then I is a waist of R.
(ii) / / / is a waist of R, then for each a € R the right ideal al is a waist of R.

(iii) All prime right ideals of R properly contained in I are waists of R.

(iv) / / / is a nonnilpotent ideal of R, then the ideal f~)neN I" is completely prime.
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(v) For every ideal Q ofR with Q C I, Q is semiprime if and only ifQ is prime.
(vi) If I = I2, then for each right ideal A of R with A C / there exists b e / such

that bl is a waist ofR and A C bl c / .

PROOF. Properties (i)-(v) follow from results of [15], Lemma 1.2 (i),
Lemma 1.2 (ii), Proposition 1.9, Theorem 2.3 and Corollary 2.7, respectively.

(vi) Using (i) and (ii) we obtain that / = \^jb€lbl. Since A d i , there exists
b e I with A c bl. If bl = I, then b € bl c bJ(R) and thus b = 0, leading to a
contradiction A c / = (0). Hence bl c I. •

Below we present several classes of rings with (strongly) comparizer ideals.

EXAMPLE 1. A ring R is said to be a right chain ring if the lattice of right ideals of
R is linearly ordered by inclusion. Clearly, each proper right ideal of a right chain ring
R is a comparizer waist, and each proper ideal of R is a strongly comparizer waist.

EXAMPLE 2. A ring R is called a right pseudo-chain ring [14] if and only if whenever
aR 2 bR for a, b 6 R, then fee/? c aR for each non-unit c € R. These rings are a
common generalization of right chain rings and commutative pseudo-valuation rings
[2]. It is proved in [14, Theorem 2.1] that a ring R is a right pseudo-chain ring if and
only if R is a local ring and J(R) is a comparizer ideal of R. Hence, in any right
pseudo-chain ring R, J(R) is a completely prime strongly comparizer waist and each
proper right ideal of R is comparizer.

EXAMPLE 3. A ring R is called a right distributive ring if the lattice of right ideals of
R is distributive. By [13, Lemma 3.1 (ii)] and [16, Proposition 2.1], each completely
prime ideal P c J(R) of a right distributive ring R is a strongly comparizer waist.

EXAMPLE 4. A right Bezout ring is a ring in which all finitely generated right
ideals are principal. If R is a right Bezout ring, then all completely prime ideals of R
contained in J(R) are strongly comparizer waists ([15, Lemma 1.6]).

EXAMPLE 5. A ring R is called a ring with comparability [8] if for each completely
prime ideal P of R with P c J(R) and any a, b e R we have either aR c bR,
or bR C aR, or (a/?)S~' = (bR)S~l, where (aR)S~l = {x e R \ xs € aR for
some s e /? \ P}. Since the equality (a/?)S~' = (bR)S~l implies that aP = bP, it
follows that all completely prime ideals contained in the Jacobson radical of a ring
with comparability are strongly comparizer ([8, Remark 2.5]), and by [8, Lemma 1.3]
they are also waists.

From the examples above further examples of rings with completely prime strongly
comparizer waists can be constructed using the following.
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PROPOSITION 2.3. If P is a completely prime strongly comparizer waist of a ring T,
and R is a subring ofT containing P, then P is a completely prime strongly comparizer
waist of R.

PROOF. From Lemma 2.1 it follows that P is a completely prime waist of R. To
show that P is strongly comparizer in R, we consider any elements a,b € R with
bP g aP. Since P is strongly comparizer in T, a = bt for some teT.lftgP,
then Lemma 2.1 implies bP = btP=aP,a contradiction. Hence t € P C R and
thus aR c bR, which ends the proof. •

3. Classification of semiprime segments

Let P2 C Pi be semiprime ideals of a ring R satisfying f]neH I" C P2 for every
ideal I of R with P2 <Z 1 C P\. The interval P2 C P\ is then called a semiprime
segment of R. Later on we will need the following

LEMMA 3.1. If P2 C P\ is a semiprime segment of a ring R, then exactly one of the
following possibilities occurs.

(1) There are no further ideals of R between P2 and Pt, and P2 is comparable with
each ideal of R contained in P\.
(2) There exists a semiprime ideal Q of R such that P2 C Q C P\ and Q is

comparable with each ideal of R contained in P\.
(3) P{aR + RaP\ C RaRforalla 6 P, \ P2.
(4) P, = RaxR H h RanR + P2for some a, an € R with RatR C Pi, and
PiaR + RaP\ = RaR for some a € P, \ P2.

PROOF. Observe that if a € R and / is an ideal of R such that a € IaR + Ral,
then for any n € N, a e /"a/? + /?a/n , and so a € PL^N '"• m particular, if
P\ + ?2 C Pi, then the possibility (c) occurs. Therefore, to finish the proof we
assume that P,2 + P2 = P\. Let M be the sum of all ideals I of R with / c Pi. Then
P2 c M c P,. If M = P2 holds, then clearly the alternative (a) occurs.

Next assume that P2 C M C Pi, and let A be any ideal of R with A2 c M. Then
A2 c P,, and since P, is semiprime, we conclude that A c P,. The case A = Pi
leads to a contradiction, since then P{ = P,2 + P2 = A2 + P2 c M. Thus A C Pi and
A C M follows. Hence M is a semiprime ideal of R and (b) occurs.

We are finally left with the case M = P,, and we assume that (c) does not occur.
We want to show that (d) holds. Since M = P1; for every p e P\ there exist
ax, ..., an € /? such that p = ax + • • • + an and RatR C Pi for each i. Thus, if
RpR = Px for some p e Pt, then (d) occurs. Assume that RpR C P\ for every
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p 6 Pi. Since (c) does not occur, a e PxaR + RaP{ for some a € Pi \ P2 and
we can write a = £ , /?,#/•; + ]T\ Sjaqj for some pt, qj e Pi and r,, sj € R. Set
/ = £,- RpiR + T,j RqjR- Thena 6 IaR + Ral. If I + P2 C P,, then by the remark
at the beginning of the proof, we obtain a e P2, a contradiction. Thus / + P2 — Pi
and (d) occurs.

It is easy to see that the alternatives (a)-(d) are mutually exclusive. •

In the following theorem we classify semiprime segments of arbitrary rings.

THEOREM 3.2. If P2 C Pi is a semiprime segment of a ring R, then exactly one of
the following possibilities occurs.

(i) The semiprime segment P2 C Pi is simple; that is, there are no further ideals
ofR between P2 and Pit and P2 is comparable with each ideal of R contained in Pt.

(ii) The semiprime segment P2 C Pi is exceptional; that is, there exists a semiprime
ideal Q of R such that P2 c Q C Pi and Q is comparable with each ideal of R
contained in Px.

(iii) The semiprime segment P2 C Pi is archimedean; that is, for every a e P\\P2

there exists an ideal I of R with a € / C P, and P|n€N /" ^ Pi-
(iv) The semiprime segment P2 C Pi is decomposable; that is, the semiprime

segment P2 C Pi is not archimedean and Pi = A + B for some ideals A, B of R
properly contained in Pi.

PROOF. All possible cases are listed in Lemma 3.1. Clearly, in the case (a) the
semiprime segment P2 C Pi is simple, in the case (b) it is exceptional, and in the case
(d) it is either archimedean or decomposable.

Assume that the possibility (c) occurs and the semiprime segment P2 C Pi is not
archimedean. If for all a e Pt\ P2, we have (RaR)2 + P2 C Pi, then

f](RaR)n c f]((RaR)2 + P2)" c P2,

so the semiprime segment P2 C Pi is archimedean, a contradiction. Hence for some
a € P, \ P2, (RaR)2 + P2 = P,. Since by (c), (RaR)2 c PxaR C RaR c P,, the
semiprime segment P2 C Pi is decomposable.

It is easy to verify that the alternatives (i)-(iv) are mutually exclusive. •

Each of the types of semiprime segments listed in Theorem 3.2 is possible. Indeed,
in the ring Z30 of integers modulo 30, the semiprime segment (0) c 6Z3O is simple,
and the semiprime segment 6230 C 2230 is decomposable. Moreover, if 2,2) is the
localization of the ring of integers 1 at 22, then the set 2(2) x 2(2) with componentwise
addition and multiplication defined by

x2y2)
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is a ring in which the semiprime segment (0) c (0) x Z(2) is exceptional, and the
semiprime segment (0) c (0) x 22(2) is archimedean.

Next we apply Theorem 3.2 to the class of Dubrovin valuation rings. Let R be a
Dubrovin valuation ring; that is, R is a Bezout order in a simple artinian ring A and
R/J(R) is simple artinian. A prime ideal P of R is called a Goldie prime if the factor
ring R/P is Goldie. A prime segment of R is defined as a pair of Goldie primes
P2 C P\ of R such that no further Goldie prime exists between P2 and Pi (see [3]).
Since the ideals of a Dubrovin valuation ring R are linearly ordered by inclusion, and
for every proper ideal / of R, the ideal f]neN I" is Goldie prime (see [3, Theorem 5]),
it follows that all prime segments of R are also semiprime segments. Thus as a special
case of Theorem 3.2 we obtain the following well known classification.

COROLLARY 3.3 ([3, Theorem 6]). For a prime segment P2 C Pi of a Dubrovin
valuation ring R, exactly one of the following possibilities occurs.

(i) The prime segment P2 C P\ is simple.
(ii) The prime segment P2 C P\ is exceptional. In this case there exists a prime

ideal Q of R with P2 <Z Q C P\ that is not a Goldie prime.
(iii) The prime segment P2 C P\ is archimedean.

Examples can be found in [3] showing that each of the alternatives listed in Corollary
3.3 is possible.

Let R be a right chain ring. A prime segment of R is defined as a pair P2 c Pi
of completely prime ideals of R such that no further completely prime ideal exists
between P2 and Pi (see [5]). Since for every nonnilpotent proper ideal / of /?, the ideal
PlneN ' " ' s completely prime (see Proposition 2.2 (iv)), it follows that every prime
segment of R is a semiprime segment. Thus we can apply Theorem 3.2 to obtain the
following well known classification of prime segments of right chain rings.

COROLLARY 3.4 ([5, Theorem 1.14]). For a prime segment P2 c Pi of aright chain
ring R, exactly one of the following possibilities occurs.

(i) The prime segment P2 C Pi is simple.
(ii) The prime segment P2 C Pi is exceptional. In this case there exists a prime

ideal Q of R with P2 C Q C Pi that is not completely prime.
(iii) The prime segment P2 C Pi is locally right invariant; that is, Pi a C a Pi for

every a € Pi \ P2.

PROOF. By Theorem 3.2, we only need to show that if the semiprime segment
P2 C Pi is archimedean, then it is locally right invariant. Let a e P( \ P2 and p e Pi.
If a Pi c paP\, then since the semiprime segment P2 C Pi is archimedean, we obtain

a Pi c p|p"flP, c f](RPR)n c P2,
neN neN
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a contradiction. Hence paR c aR and P\a c aR follows. Let r e R be such that
pa = ar. If r & Pu then applying Lemma 2.1 we obtain aP{ = arP{ = paP\, which
is impossible, as we noted earlier. Thus Pxa C a P , , D

Clearly, in each rank one commutative valuation domain R with maximal ideal
M, the prime segment (0) C M is locally right invariant and thus archimedean.
Examples of right chain rings with simple segments were given by Mathiak [12] and
Dubrovin [6], and a right chain domain with an exceptional segment was constructed
by Dubrovin in [7]. Thus all types of prime segments described in Corollary 3.4 are
possible.

4. Classification of comparizer semiprime segments

As we have seen in Corollary 3.4, prime segments of a right chain ring are classified
as either simple, exceptional, or locally right invariant. In this section we extend the
classification to semiprime segments P2 C Pi of any ring with P\ a completely prime
strongly comparizer waist (examples of such rings were given in Section 2).

In the following theorem we classify semiprime segments P2 C P\ with P{ a
comparizer ideal. We recall that any neighbouring completely prime ideals P2 C P\
with Pi a comparizer ideal form a semiprime segment (Proposition 2.2 (iii)-(iv)).

THEOREM 4.1. Let P2 C Pi be a semiprime segment of a ring R. If P{ is a
comparizer ideal of R, then exactly one of the following possibilities occurs.

(i) The semiprime segment P2 C Pi is simple. In this case P\ is a completely
prime waist of R.

(ii) The semiprime segment P2 C Pi is exceptional. In this case there exists a
prime waist Q < R with P2 C Q C Pi such that there are no further ideals of R
between Q and P\. Moreover, Pi and P2 are completely prime waists of R.

(iii) The semiprime segment P2 C Pi is archimedean. In this case Pi a Pi C aR
for every a € Pi \ P2, and P2 is a completely prime waist of R. If furthermore Pi is a
waist of R, then Pi a Pi C aPx for every a 6 P\\ P2.

PROOF. From (v) and (iii) of Proposition 2.2 it follows that P2 is a waist of R.
If for some a e P, \ P2 we have a e PtaR + RaPu then a e f]nsH P," and thus
necessarily Pj = P,2. This observation and Proposition 2.2 (vi) imply that one of
the alternatives (a), (b), or (c) listed in Lemma 3.1 occurs. Clearly, if (a) occurs,
then applying (i) and (iv) of Proposition 2.2 we obtain the possibility (i). If (b)
occurs, then there exists a semiprime ideal Q with P2 C Q C Pi, and Q is a prime
ideal and a waist by Proposition 2.2 (v) and (iii). Moreover, by Proposition 2.2,
Pi and P2 are completely prime waists of P.. Finally, if (c) occurs, then for every
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a e P\\ P2, aR £ P\aR, and since Pi is comparizer, PiaP{ c aR follows. In
particular, f)neN(RaR)n c P2, which implies that the semiprime segment P2 C P\ is
archimedean with P2 a completely prime waist. Assume that Pi is a waist and suppose
that pa P\ 2 a Pt for some p € Pi. Then by Proposition 2.2 (ii), a Pi C p a p, and we
obtain aP{ c P|n€N p"aPx c r |BeN (/?/>/?)" c P2, a contradiction. D

To prove the following corollary it is enough to apply again the arguments of
Corollary 3.4.

COROLLARY 4.2. Let P2 C Pj be an archimedean semiprime segment of a ring R.
If Pi is a strongly comparizer ideal of R, then P\a C aR for every a e P\ \ P2. If
furthermore P\ is a completely prime waist ofR, then the semiprime segment P2 C Pi
is locally right invariant; that is, Pxa C aPyfor every a € P\\ P2.

Let R be a ring and / an ideal of R. The pseudo-radical ps(/) determined by the
ideal / is defined as the intersection of all prime right ideals of R properly containing / ;
that is, p ( / ) = f]{P <r R | P is prime and / C P) (see [11]). We will apply the
operator '(P2, P|)-closure' described below to determine the pseudo-radical ps(P2) in
the case of a simple semiprime segment P2 C P\-

Let P2, Pi be ideals of a ring R and / a right ideal of R. We define the
(P2, P\)-closure of / as 7 = {a € R | aPx c / P , + P2}. It is easy to see that
/ c 7 and 7 is the largest right ideal of R such that 7P, + P2 = / Pi + P2. Hence
/ = / , which justifies the name '(P2, PO-closure'.

LEMMA 4.3. Let P2 C Pi be ideals of a ring R such that P, ^ R and there are no
further ideals of R between P2 and P\.

(i) If P2 is prime and I is a right ideal of R with P2 C I C P\, then I is a prime
right ideal of R.

(ii) 7/P2 is semiprime, then ps(P2) = P2.

PROOF, (i) We noted earlier that / is a right ideal of R. If we have 1 6 / , then
P\ 9 I Pi + Pi £ I C Pi, a contradiction. Hence 7 ^ R. To finish the proof we
assume that xRy c / and y & I. Then y g P2 and since the ideal P2 is prime, we
deduce P2 C RyP\ + P2 £ P\. Thus RyP{ + P2 = P,, and x e 7follows.

(ii) The ideal P2, being semiprime, is the intersection of prime ideals containing P2,
and thus ps(P2) = P2 follows for the case when P2 is not prime. Hence we assume
that P2 is prime and we set A = ps(P2). Without loss of generality we can assume
that P2 = (0) and then we have to show that A = (0). If Pi g J(R), then
P\J(R) £ P\ H J{R) = (0) and consequently J(R) = (0). Since all maximal
right ideals of a ring are prime, it follows that A = (0). Next we consider the case
when P, c J(R). Suppose that A ^ (0) and let a e A \ (0). Since R is prime, there
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exists an element b e aP\ \ (0). If b € bP\, then b 6 bJ(R) and we obtain b = 0,
a contradiction. Thus (0) c bPt C A. and (i) implies that a € A c. bPx. Hence
b € aP\ QbPx, which is impossible as is shown above. Therefore, A = (0). •

It is easy to see that under assumptions of the above lemma, if furthermore P2 is
prime, then for a right ideal I of R with P2 C / C P\ we have / = / if and only if
/ is prime. Hence in this case the operator '(P2, Pi)-closure' not only generates but
also identifies prime right ideals lying between P2 and Pi.

We conclude this paper with the following result which shows that semiprime
segments can also be classified by the use of the pseudo-radical.

COROLLARY 4.4. Let P2 C Pi be a semiprime segment of a ring R. If Pi is a
comparizer ideal of R, then

(i) The semiprime segment P2 C Pi is simple if and only i/ps(P2) = P2.
(ii) The semiprime segment P2 C Pi is exceptional if and only if P2 C ps(P2) C Pi-

(iii) The semiprime segment P2 C Pi is archimedean if and only i/ps(P2) = P\.

PROOF. By Theorem 4.1, it is enough to prove necessity in each case (i)-(iii).
(i) We apply Lemma 4.3 (ii).
(ii) Let Q be the ideal of R described in Theorem 4.1 (ii). Then Q is a waist and

by Proposition 2.2 (iii) there are no further prime right ideals of R between P2 and Q.
Hence ps(P2) = Q.

(iii) Since Pi is semiprime, Pi coincides with the intersection of all prime ideals
of R containing Pu and thus p(P2) c P,. Suppose that p(P2) C P,. Then
there exists a prime right ideal / of R such that P2 C / and P, % I. Hence by [15,
Proposition 1.9], P2 c / C Pi and/is a waist of P.. Let a e P , \ / , then/ c RaRand
I ^ C\n^H^a^n follows. Since the segment is archimedean, the last containment
implies / c p2, a contradiction. •
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