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Fragmentation of colliding liquid rims
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We present direct numerical simulations of the splashing process between two cylindrical
liquid rims. This belongs to a class of impact and collision problems with a wide
range of applications in science and engineering, and motivated here by splashing of
breaking ocean waves. Interfacial perturbations with a truncated white noise frequency
profile are introduced to the rims before their collision, whose subsequent morphological
development is simulated by solving the two-phase incompressible Navier–Stokes
equation with the adaptive mesh refinement technique, within the Basilisk software
environment. We first derive analytical solutions predicting the unsteady interfacial and
velocity profiles of the expanding sheet forming between the two rims, and develop scaling
laws for the evolution of the lamella rim under capillary deceleration. We then analyse the
formation and growth of transverse ligaments ejected from the lamella rims, which we
find to originate from the initial corrugated geometry of the perturbed rim surface. Novel
scaling models are proposed for predicting the decay of the ligament number density due
to the ongoing ligament merging phenomenon, and found to agree well with the numerical
results presented here. The role of the mechanism in breaking waves is discussed further
and necessary next steps in the problem are identified.

Key words: aerosols/atomisation, breakup/coalescence, air/sea interactions

1. Introduction

Liquid atomisation is a class of challenging multiphase problems (Obenauf & Sojka 2021)
featuring a large separation of scales and various interacting physical mechanisms, and
is of significance to numerous fields of application including meteorology (Villermaux
& Bossa 2009), ink-jet printing (Castrejón-Pita et al. 2015, 2021; Lohse 2022), internal
combustion engines (Yarin 2006) and pharmaceutical manufacturing (Mehta et al. 2017).
Within the context of air–sea interactions, liquid fragmentation is primarily associated
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with wave-breaking events, and gives rise to ocean sprays. These spray drops are
then transported within the atmospheric boundary layer while exchanging with the
latter moisture, momentum and heat during their lifetime; thus leaving their impact on
both global and regional climates (Lhuissier & Villermaux 2012; Veron 2015; Deike
2022). Atomisation involves topological changes of the liquid bulk driven by external
forces, typically followed by formation of corrugated ligaments subject to capillary
breakup, and ends with a number of fragments featuring a broad size distribution, the
knowledge of which is crucial for various areas of applications listed above (Villermaux
2007).

Among various types of liquid atomisation problems, the impact of liquid droplets
has received much scholarly attention for its ubiquitous presence, rich dynamics and
vast range of applications (Yarin 2006; Villermaux 2007; Cheng, Sun & Gordillo 2022)
since the pioneering experimental study of Worthington (1877). The impact process
features a competition between inertial and capillary forces, which, together with the
characteristics of the impacting object and the surrounding gas phase, shapes the final
outcome of the original droplet: bouncing, spreading or splashing. Empowered by the
rapid pace of sensor developments and increasing computational capacities, past works
have elucidated considerable details about the ephemeral kinematic and morphological
development of drops impacting with various types of surfaces (Cheng et al. 2022),
including liquid films (Thoraval et al. 2013), deep pools (Agbaglah et al. 2015; Wang
et al. 2023), smooth solid surfaces (Wildeman et al. 2016; Cimpeanu & Papageorgiou
2018), rough solid surfaces with friction (García-Geijo et al. 2021) or an identical droplet
(He, Xia & Zhang 2019; He, Yue & Zhang 2022). Some recent works have also probed
the dynamic properties of drop impact including the distribution of impact force and
stresses, providing an alternative approach to investigating the impact dynamics at early
times (Cheng et al. 2022). Specifically, there have been a series of recent experimental
works studying the high-speed impact of droplets with a surface of comparable size as a
canonical unsteady fragmentation problem (Wang & Bourouiba 2017, 2018, 2021, 2022;
Wang et al. 2018), providing valuable insights into various aspects of the impact process
in the limit of large impact Weber number We, including the self-similar evolution of the
liquid-phase thickness and velocity profile (Wang & Bourouiba 2017), the dynamics of the
rim bordering the expanding liquid sheet (Wang et al. 2018), the growth of liquid ligaments
and the detachment of liquid drops from their tips (Wang & Bourouiba 2018, 2021) and
the partition of mass, momentum and energy during the entire collision process (Wang &
Bourouiba 2022).

However, the impact-induced fragmentation of liquid bulks featuring non-spherical
initial shapes is also attested to, which has received considerably less attention and remains
less understood compared with drop impact problems (Liu et al. 2021). Among these is the
collision of liquid rims, which has seen some recent investigations experimentally (Néel,
Lhuissier & Villermaux 2020) and numerically (Agbaglah 2021) and is also the focus of
the present work. In the two works cited above, an initially intact liquid film is perforated
to form small holes, which then expand under surface tension and develop bordering rims
travelling at the Taylor–Culick velocity (Taylor 1959; Culick 1960). Neighbouring film
holes merge with one another when their bordering rims collide, oscillate and break up
into small fragments, a process commonly observed during the rupture of films, which
may be induced by rapid radial expansion of liquid shells (Vledouts et al. 2016) or the
inflation of a liquid drop interacting with a surrounding airflow (Jackiw & Ashgriz 2022;
Ling & Mahmood 2023; Tang, Adcock & Mostert 2023). Agbaglah (2021) placed the
two holes immediately adjacent to each other so that the two liquid rims collide at low
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We values and the fused liquid bridge is found to pinch off under oscillation and form
only a few small droplets. Néel et al. (2020) were able to investigate the rim collision
phenomena by varying the initial distance between the two perforation sites, thus varying
the impact We value within the range of 50 ≤ We ≤ 200. Apart from the primary capillary
breakup mechanism of fused liquid bridges as discussed by Agbaglah (2021), Néel et al.
(2020) also identified a critical We value of 66 beyond which the decelerating transverse
lamella rims develop elongating ligaments under the Rayleigh–Taylor (RT) instability,
which then produce many secondary fine drops under capillary instabilities featuring a
skewed size distribution. Additionally, there have been some early theoretical analyses on
the capillary-driven coalescence of two liquid cylinders (Hopper 1993a,b; Eggers, Lister &
Stone 1999); however, these are conducted at the creeping flow limit with negligible liquid
bulk velocity, and thus may not be directly applicable to the current problem featuring
finite collision speeds.

Apart from its presence during the rupture of thin films, the collision of liquid
rims is also of specific interest due to its strong resemblance to the secondary wave
splashing phenomena observed in ocean wave-breaking events (Kiger & Duncan 2012;
Mostert et al. 2022; Erinin et al. 2023a). Namely, two consecutive well-defined splashing
phases have been identified (Kiger & Duncan 2012) during the lifetime of a deep-water
plunging breaker. The first is the ‘forward splashing’ mechanism occurring right upon the
reconnection of the overturning wave front and the sea surface below, which according
to Mostert et al. (2022) only produces small amounts of droplets. After this, as shown in
figure 1(d), the wave bulk catches up with the decelerated splash-up generated from the
initial impact at a relative speed ur close to the phase speed of the unbroken wave Ug.
At the indentation region between these two structures, the shape of the wave bulk and
the splash-up can be approximated as two cylinders, whose cross-sections feature radii
of curvature rb and rs, which are typically different. The rapid closure of the indentation
region leads to the ‘secondary splashing’ phenomenon, which is characterised by a wall
of vertically projected small droplets along the transverse direction as reproduced in
figure 1(a–c), accompanied by air entrainment within the former indentation region (Kiger
& Duncan 2012). Under experimental conditions, fragments generated via this mechanism
comprise approximately one third of the total number of droplets produced over the
entire wave-breaking process (Erinin et al. 2023a); Mostert et al. (2022) found that this
splashing mechanism produces many fragments and can be curbed by strong surface
tension (or small Bond numbers Bo). While Wang et al. (2016) noted the connection
between the corrugated surface of the splash-up and the vortical structures beneath the
wave surface, to our knowledge no existing study has analysed the physical mechanism
governing the formation of these fragments, and their contribution to the overall droplet
distribution associated with wave breaking remains unknown (Andreas et al. 1995; Kiger
& Duncan 2012; Veron 2015). Furthermore, this splashing mechanism is found to produce
many fragments close to the minimum grid size of Mostert et al. (2022); together with
the highly transient nature of wave breaking and the presence of other fragmentation
mechanisms, this indicates considerable difficulty in investigating the secondary splashing
phenomena directly within the context of wave breaking. While we do not yet reproduce
the fragment statistics seen in the studies above, the present work serves as a first step
towards understanding the more complex wave splashing phenomena by retaining the
major generation mechanism of splash fragments while leaving out many complicating
factors, including the size difference between the wave bulk and the splash-up evolving
with time, and internal turbulent flow within the liquid phase as a similar approach taken
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(a) (b) (c)

(d)

z

y
x

Wall of droplets

ur ≈ Ug

rb

rs

Indentation

Splash-up
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Figure 1. (a–c) Wave splashing observed in previous numerical (a,b) and experimental (c) studies, adapted
from Wang, Yang & Stern (2016) (a), Mostert, Popinet & Deike (2022) (b) and Erinin et al. (2023a) (c),
respectively. (d) Sketch showing the ensemble-averaged breaking wave profile taken from Erinin et al. (2023b)
after the initial moment of impact in the breaking wave, at the moment of secondary splashing, where dashed
lines indicate our simplification of the problem as the collision of two cylindrical rims with radii rb and rs. In
this study we consider the basic case rs = rb.

by Gao, Deane & Shen (2021) reveals the connection between the bubble size distributions
of destabilising air cylinders and air cavities entrained by plunging breakers.

In this work, we conduct a comprehensive investigation of the collision between two
liquid cylinders with identical size, covering the entire deformation and fragmentation
period. The direct comparison and establishment of connections between the rim collision
results and the statistics of the secondary wave splashing phenomenon are left for future
work, together with the role of gravity and the difference between the sizes of the
wave bulk (rb) and the splash-up (rs) which complicate the early-time rim dynamics.
Two-phase numerical simulations are conducted to derive detailed flow field information
during this highly transient collision process. Our study is structured as follows. We
first present in § 2.1 the problem configuration and the parameter space of the current
work, and then introduce the numerical method in § 2.2. After providing an overview
of the rim collision phenomena in § 3, we quantitatively analyse the development of
each part of the expanding liquid bulk successively following a spatial order, namely the
kinematics of the spreading liquid sheet (§ 4.1) and its bordering rim (§ 4.2), the growth
and merging of transverse ligaments topping the rim (§ 5) and the statistics of fragments
shed from the ligaments (§ 6). We conclude the study in § 7 with some remarks on
future work.
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Figure 2. (a) Sketch showing the configuration of the liquid rim collision problem; (b) ensemble-averaged
power density spectrum of the white noise signal for generating initial interface perturbations on the cylindrical
rims.

2. Formulation and methodology

2.1. Problem description
The geometrical configuration for the rim collision problem is shown in figure 2(a), where
two infinitely long cylindrical liquid rims with diameter d0, density ρl and viscosity μl
are aligned along the x axis, and set to travel along the z axis with uniform velocities of
opposite signs and the same magnitude U0. The liquid cylinders are surrounded by an inert
gas phase with density ρg and viscosity μg, and the liquid–gas interface is characterised
by a surface tension coefficient σ . It is noted that gravitational effects have been neglected
in the current set-up; and differing from the configurations of Néel et al. (2020) and
Agbaglah (2021), there is no interstitial film connecting the two approaching cylinders.
Consequently, four non-dimensional controlling parameters can be written for this problem

We ≡ ρl(2U0)
2d0

σ
, Oh ≡ μl√

ρld0σ
, ρ∗ ≡ ρl

ρg
, μ∗ = μl

μg
, (2.1a–d)

where We and Oh are, respectively, the Weber and Ohnesorge numbers comparing inertial
and viscous effects with capillary forces, and ρ∗ and μ∗ are, respectively, the density and
viscosity ratios of the liquid and gas phases. In this work, Oh is set as 0.01 in most of
the simulations, whereas its influence on the fragment statistics is briefly discussed in
Appendix A. Here, ρ∗ and μ∗ are set as 830 and 55, respectively, which are typical values
for an air–water system (Pairetti et al. 2018).

We set the width D of the cubic simulation domain as 10d0 to allow enough space for
the morphological evolution of the coalesced liquid structure. Utilising the symmetry of
the splashing phenomena about the xz-plane, we only model the merging of the upper
halves of the two liquid cylinders to save computational resources. A symmetric boundary
condition is therefore applied at the bottom, and an outflow boundary condition is imposed
on the top boundary so that fragments produced from the collision can leave the domain
from there at late time; the other boundary conditions are set as periodic.

To investigate the sensitivity of the fragmentation process to the initial conditions (Liu
& Bothe 2016; Berny et al. 2022), and also taking into account the surface corrugation
of the splash-up in wave-breaking events (Kiger & Duncan 2012) which still has not been
quantified according to our knowledge, we introduce a random transverse perturbation
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within a certain wavelength range on the cross-sectional radius of the two cylindrical rims
(Pal et al. 2021), in the form of filtered white noise signals characterised by the following
two parameters:

ε0 ≡ 2ε0

d0
, Nmax, (2.2a,b)

where ε0 is the non-dimensionalised characteristic amplitude of perturbation, and Nmax
defines the highest wavenumber among the spectrum of the perturbation signal. The
filtered white noise signal is the default type of initial interface perturbation we impose
on the rims, as Zhang et al. (2010) did for analysing the linear stability of the crown
splash. Occasionally, we also impose single-wavelength sinusoidal perturbations, or a
superposition of sinusoidal perturbations with wavelengths λ = D/8, D/16 and D/32
for comparison, which will be explicitly denoted by ’Sing.’ and ’Sup.’ when reported.
In the case of single-wavelength perturbations, Nmax corresponds to the perturbation
wavenumber.

As discussed above, We, ε0 and Nmax constitute the parameter space for the present study.
Among these, We is varied between 60 and 280 where the coalesced liquid bulk expands
vertically to form a lamella, and ε0 is set as 0.02, 0.04 and 0.06, within the limit of small
radial perturbations; Nmax varies between 15 and 80, whose influence will be discussed in
detail in § 5.2.

2.2. Numerical method
The open-source scientific computation toolbox Basilisk (Popinet 2019) is used in this
work to solve the two-phase nonlinear, incompressible, variable-density Navier–Stokes
equations. A second-order accurate discretisation is applied in both space and time, and
a geometric volume-of-fluid (VOF) method in a momentum-conserving formulation is
used to maintain a sharp representation of the liquid–gas interface while minimising the
parasitic currents induced by surface tension (Popinet 2018; Tang et al. 2021). Capillary
effects are modelled as source terms in the Navier–Stokes equations using an adaptation
of Brackbill’s method (Brackbill, Kothe & Zemach 1992; Popinet 2009), which calculates
the interface curvature by taking the finite-difference discretisation of the derivatives of
interface height functions (Popinet 2009). The octree-based adaptive mesh refinement
scheme based on the estimation of local discretisation errors of the VOF function f and
flow velocity u is adopted so as to reduce the computational cost at high resolution levels
L, which is defined using the minimum grid size

Δ = D
2L . (2.3)

The results presented in the main body of this work are obtained from three-dimensional
simulations at L = 10, at which the late-time evolutions of the interface profile and
liquid-phase energetics have reached grid independence. The numerical convergence of
fragment statistics is also established for fragments with diameter larger than 4Δ10, which
is discussed in detail in Appendix A. Results from some two-dimensional simulations are
also presented for comparison with the three-dimensional rim dynamics (§ 4.2), and to
investigate lamella foot formation at very early times (Appendix B).

Since the present study focuses on the liquid-phase morphological development after
the rims begin to coalesce, the distance between the symmetric axes of the two cylindrical
rims is set at initialisation as �zc = 0.95d0, so that the slightly overlapped rims form
a line of contact. The interfacial perturbations on the rims are introduced as follows.
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Firstly, discrete white noise signals with unit variance σ 2 are produced using the random
number generator provided in Basilisk. Figure 2(b) shows the ensemble-averaged power
density spectra of the white noise signals generated in Basilisk at different numbers of
realisations Nsamp. It is observed that the power density P( f ) is close to the theoretical
value of σ 2 at all frequencies f , matching the requirement of frequency independence
for white noise signals. Next, we apply a low-pass filter to these signals so that only the
lowest Nmax wavelengths are preserved, and the filtered signal is normalised so that its
standard deviation becomes ε0 = 0.5εd0. The normalised signals η are then mapped onto
the transverse radius profile R(x) of the liquid rims, in the form of R(x) = R0 + η(x).
The two liquid cylinders being positioned close to each other ensures that they coalesce
immediately when the simulation starts and there is not sufficient time for capillary effects
to smooth out the perturbations, or amplify them to trigger the Rayleigh–Plateau (RP)
instability (Pal et al. 2021) so that the cylinders break up prematurely.

3. Overview of rim splashing

Here, we qualitatively describe the rim splashing process as observed in the simulations
before analysing the detailed dynamics at each stage in the following sections. Figure 3
presents the isometric view of the splashing phenomenon at We = 200, ε = 0.06 and
Nmax = 25, whereas figure 4 shows the side view for a few different (We, ε) configurations
with Nmax = 25. Tiny air bubbles are entrained within the indentation space between the
two rims following the impact (Thoraval et al. 2013; Josserand, Ray & Zaleski 2016; Erinin
et al. 2023a), which in our case have no known effects on the subsequent development of
liquid-phase flow fields. The rims coalesce rapidly, causing a dramatic increase in the
local liquid-phase pressure (Néel et al. 2020). A very large pressure gradient arises at
the surface ‘indentation’ between the two cylinders since the air-phase pressure remains
unchanged, leading to the vertical acceleration of fluids near the surface (Longuet-Higgins
2001). The magnitude of the vertical velocity near the contact line can be a few times
larger than the initial horizontal velocity U0, causing the contact line to advance upwards
rapidly with fluid particles nearby converging to it, while the high-pressure region follows
it closely rather than remaining on the axis of symmetry (Philippi, Lagrée & Antkowiak
2016). A thin transverse liquid lamella (Néel et al. 2020) appears, as shown in figure 3(b),
and the location of the lamella foot agrees well with (B12) developed in Appendix B using
potential flow theory (Riboux & Gordillo 2014). The liquid lamella is also observed in
the experimental study of Goswami & Hardalupas (2023) where two neighbouring drops
impact with a solid surface simultaneously and expand into contact. Within the parameter
space of the present study, this transverse lamella continues to expand vertically under the
pressure difference between the two phases and consumes the two impacting cylinders,
evolving into a thin film aligned with the xy-plane; in the meantime it is continuously
decelerated by capillary force, forming a thick rim at its upper border.

Without the initial interface perturbation, the liquid rim would remain intact and mostly

smooth during the entire simulation period up to t/τcap = 2.73, where τcap ≡
√
ρld3

0/8σ
is the capillary time scale corresponding to the initial rim diameter. When perturbation is
introduced, we observe the amplification of transverse perturbation waves on the rim as
shown in figure 4. Depending on the value of We, these waves will either slowly increase in
amplitude and reach nonlinear development, whose growth rate increases with the initial
perturbation amplitude ε0, as shown in the first and last row of figure 4, or generate
slender ligaments which continue to elongate on the top of ‘cusp’ structures (Gordillo,
Lhuissier & Villermaux 2014), as shown in figure 3 and figure 4(d–f ). It is noted that,
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Figure 3. Isometric snapshots showing the liquid sheet expansion process at We = 200, ε = 0.06 and
Nmax = 25. From left to right: t/τcap = 0.029, 0.113 and 0.454.

for all three cases presented in figure 4, the number density of transverse ligaments (or
the characteristic perturbation wavenumber when no such ligaments form) decreases over
time rather than remaining a constant; a phenomenon which we will analyse in more detail
in § 5. In the meantime, lamella expansion gradually slows down as the vertical position
of its bordering rim reaches saturation, and begins to slightly retract at low We values, as
can be seen in figure 4(b,c). As is the paradigm of droplet formation in many previous
fragmentation studies (Villermaux 2007), here, the transverse ligaments act as the direct
and only source of fine drops as the latter intermittently detach from the ligament tips,
whose statistics will be presented in § 6. Under the restoring effects of the capillary force,
most of the fragments undergo prolate–oblate shape oscillations after their detachment,
and a small portion of them may cross paths and merge to form larger droplets during their
flight (Tang et al. 2023). Note that in our simulations all fragments keep moving upwards
before crossing over the top boundary and leaving the simulation domain; while in wave
splashing scenarios without wind forcing they will ultimately fall back to the sea surface
under gravity and be destroyed (Mostert et al. 2022).

4. Liquid lamella expansion

In this section, we study the dynamics of the liquid lamellae consisting of the expanding
sheet (§ 4.1) and its bordering rim (§ 4.2). To simplify the problem, which features random
initial perturbation, here, we do not consider the formation of liquid ligaments. Instead, we
average the transverse cross-section of the coalesced liquid bulk along the x axis following
Wang & Bourouiba (2017) so that the lamella expansion process can be described in a
quasi-one-dimensional manner, characterised by a one-dimensional velocity and thickness
profiles uy(y, t) and h(y, t).

4.1. Liquid sheet kinematics
The unsteady evolution of the expanding sheet profile is of both fundamental and practical
importance for impact problems, especially for predicting their maximum spread radius
(Yarin 2006; Josserand & Thoroddsen 2016; Wang & Bourouiba 2017), and the first step
towards modelling the profile evolution of expanding sheets is to understand the fluid
motion within them.
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(b)(a) (c)

(e) ( f )(d )

(h) (i)(g)

Figure 4. Snapshots showing the liquid sheet expansion process at We = 60, ε = 0.06 (a–c), We = 200, ε =
0.06 (d–f ) and We = 60, ε = 0.02 (g–i). From left to right: t/τcap = 0.91, 1.82 and 2.73. For all three cases,
Nmax = 25.

We first derive the velocity profile within liquid lamella sheets in Cartesian coordinates
for We � 1 and Oh � 1. At early times, the vertically expanding sheet is bounded at its
lower end by the line of collision between the two cylinders, which we call the lamella
foot. The trajectory of this foot is given by yn = 2

√
U0t/R0, per the analysis given in

Appendix B and following Gordillo, Riboux & Quintero (2019). At later times, this lamella
foot becomes increasingly indistinct as the colliding cylinders merge.

We now proceed to discuss the kinematics of the fluid within the vertical lamella sheet
itself, subject to these considerations, following the general analytical strategy of Wang
& Bourouiba (2017). After neglecting viscous, compressibility and capillary effects, the
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quasi-one-dimensional momentum equation in the vertical direction can be written as

∂uy

∂t
+ uy

∂uy

∂y
= 0, (4.1)

which may be presented alternatively in the Lagrangian form along the characteristics
dy/dt = uy

Duy

Dt
= 0, (4.2)

where D/Dt is the total derivative. Equation (4.2) suggests that the velocity of a fluid
particle remains unchanged within the liquid sheet as it travels vertically upwards. We can
then integrate along the characteristics and obtain the motion of fluid particles within a
Lagrangian frame following it

y = uyt + ξ, (4.3)

where uy and ξ are the initial vertical velocity and position of fluid particles. Following
Yarin & Weiss (1995), Wang & Bourouiba (2017) assume that the initial velocity is
proportional to the initial position, namely uy = βξ , similar to the velocity field of a
stagnation-point flow. Consequently, (4.3) may be rewritten in the Eulerian reference frame
as

uy(y, t) = y

t + 1
β

, (4.4)

where 1/β corresponds to the time needed to set up the post-collisional velocity profile
within the liquid bulk, which according to Wang & Bourouiba (2017) is of the same order
as the collision time scale d/U0. As sheet expansion further progresses so that t � 1/β,
(4.4) asymptotes to

uy(y, t) = y
t
. (4.5)

We measure the vertical velocity profile within the expanding sheet from our numerical
simulations at different times for We = 120, and first plot them in the inset of figure 5(a).
Consistent with our assumption, the vertical velocity uy is observed to scale linearly with
the vertical position y, with the slope decreasing over time. In the main plot we rescale
the horizontal axis by U0t, after which the velocity profiles at different times all collapse
onto a single straight line y = x for y ≤ 2U0t, agreeing with the theoretical model (4.5).
For We = 120, the collision time scale is d/U0 ≈ 0.52τcap, while figure 5(a) indicates that
the velocity profile at t/τcap = 0.73 is already very close to the analytical solution (4.5),
which suggests that, in fact, the initialisation time scale 1/β � d/U0, and model (4.5)
is applicable to the early collision stage where t ≈ d/U0. Note that, as time elapses, the
vertical velocity deviates from (4.5) at progressively smaller values of y/U0t, where the
fluid parcels move away from the sheet towards the bordering rim. Indeed, in figure 5(b)
we also plot the vertical velocity normalised by y/t at different times, We values and
perturbation waveforms. All results presented therein feature a range where the normalised
velocity uyt/y = 1, suggesting that (4.5) remains valid at different initial configurations
within our current parameter space.

Having established the liquid velocity profile within the lamella sheet, we can further
solve for its thickness profile utilising the continuity equation, which can be written as
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Figure 5. (a) Liquid sheet velocity profile at We = 120, scaled according to (4.5); (b) verification of (4.5)
at different values of We, time and perturbation waveforms. ‘Sing’. indicates that the initial perturbation we
impose features a single wavenumber Nmax, while ‘Sup’. denotes a combination of sinusoidal perturbations
with wavelengths λ = D/8, D/16 and D/32.

follows for a thin sheet expanding in the y direction:

∂h
∂t

+ ∂(uyh)
∂y

= 0, (4.6)

combined with (4.5), this yields

t
∂h
∂t

+ y
∂h
∂y

+ h = 0. (4.7)

This can be solved by separation of variables in the form of h(y, t) = f (t)g(y) to obtain
the evolution of sheet thickness h, which is written in a non-dimensional formulation as

hU0t

R2
0

= f
(

y
U0t

)
, (4.8)

note that this result differs from the axisymmetric configuration where hU2
0 t2/R3

0 evolves
self-similarly without an explicit time dependence (Wang & Bourouiba 2017; Gordillo
et al. 2019).

We plot the lamella thickness profiles for We = 120 in figure 6(a), where it can be
seen that the ‘bulge’ centred around y = 0 gradually flattens into an extended thin liquid
sheet, pushing the bordering rim further along the vertical direction. The bordering rim is
connected to the sheet via a neck, reminiscent of capillary waves upstream of inviscid
liquid rims receding at the Taylor–Culick velocity (Savva & Bush 2009). Figure 6(b)
further shows the profiles rescaled by (4.8). The ‘bulk’ region where y/R0 ≤ √

2U0t/R0
initially retains its cylindrical shape during the initialisation period t ∼ 1/β, and only
comes to agreement with (4.8) when the lamella foot disappears and the bulk can no
longer be decisively told apart from the lamella. The non-dimensionalised lamella profile
in figure 6(b) is found to be well described by the following functional form f (x):

f (x) = 0.5081 e−x + 2.782 e−2x. (4.9)

Lastly, we note that, although the liquid lamella expands vertically to form a thin film,
the latter does not suffer from spontaneous perforation during our simulation period,
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Figure 6. (a) Liquid sheet profiles at We = 120; (b) comparison between interface profiles
non-dimensionalised according to (4.8) and the exponential fit (4.9).

although this is observed in figure 14 of Vledouts et al. (2016) and marks the onset of
bag film fragmentation in droplet aerobreakup problems (Ling & Mahmood 2023; Tang
et al. 2023), where the liquid films are subject to radial accelerations. Neither does the
lamella film experience destabilisation under shear force arising from its interaction with
the surrounding gas phase (Villermaux & Bossa 2011; Riboux & Gordillo 2015), which
may arise at larger We values. We therefore do not take special measures to artificially
stabilise (Liu & Bothe 2016) or perforate (Chirco et al. 2022) the expanding lamellae in
this study.

4.2. Bordering rim evolution
As is discussed in § 4.1, while the expanding lamella sheet abides by the velocity profile
(4.5) and the self-similar thickness profile (4.8), these two models break down for the
bordering rim, which demands separate scaling laws to describe its kinematics. Similar
rim structures are ubiquitous in impact problems and act as the crucial link between the
expanding sheet and shedding droplets (Wang et al. 2018), and understanding their motion
lays the foundation for further theoretical analysis of ligament merging, which we will
perform in § 5.2.

In a quasi-one-dimensional framework, the kinematics of the bordering rim can be
characterised by two parameters, namely its average vertical position yrim and diameter
brim. We first present their evolution at different We values in figures 7(a) and 7(b),
respectively; where time and length are scaled using U0/R0 and R0. It is seen that both yrim
and brim first increase with time and eventually saturate; and yrim and brim show different
dependences on We, as the former increases and the latter decreases with We, although
these We-dependencies have become very subtle by We = 200. Further, the evolution of
yrim for We = 200, ε = 0.06 and We = 200, ε = 0.04 in figure 7(a) is virtually the same,
which shows that the dynamic behaviour of the rim is largely independent of the initial
perturbation amplitude ε.

We now seek to further compare our numerical results obtained in figures 7(a) and 7(b)
with available theoretical models. Following Gordillo et al. (2019), the following mass-
and momentum-conservation equations can be proposed in the non-dimensionalised form
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Figure 7. (a,b) The evolution of the vertical position yrim (a) and the rim thickness brim (b) over time, compared
with solutions of (4.10)–(4.12) at corresponding We values (solid lines). Early-time measurements from two
two-dimensional simulations with We = 80 and 160 are also included. (c,d) Results in (a,b) rescaled using
(4.13a,b).

to describe the dynamic behaviour of the advancing lamella rim in the inviscid limit

π

8
db2

rim
dt

= [uy(yrim, t)− vrim]h(yrim, t), (4.10)

dyrim

dt
= vrim, (4.11)

π

8
d
dt
(b2

rimvrim) = uy(yrim, t)[uy(yrim, t)− vrim]h(yrim, t)− 8
We
, (4.12)

where the cylinder radius R0, initial impact velocity U0 and their quotient R0/U0 are
chosen as the reference scales for length, velocity and time. The numerical solutions of
the ordinary differential equation system (4.10)–(4.12) at various We values, with initial
conditions as defined in Appendix B, are presented in figures 7(a) and 7(b), respectively,
as transparent solid lines. Since most of our measurements from three-dimensional
simulations are taken when U0t/R0 > 1, we also present results of two-dimensional
simulations at We = 80 and 160 using solid dots, which extend to much earlier times.
An excellent agreement between the predictions of (4.10)–(4.12) and the two-dimensional
results is observed. Three-dimensional measurements of yrim and brim are found to saturate
earlier and become smaller than their two-dimensional counterparts and theoretical

987 A18-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.392


K. Tang, T.A.A. Adcock and W. Mostert

predictions as time elapses. These observations can be explained by taking into account
the formation of ligaments on the lamella rim. This mechanism arises due to highly
nonlinear transverse perturbations imposed on the liquid rim, which are not present in
two-dimensional simulations. At sufficiently large times, the growth of ligaments causes a
substantial mass flux away from the liquid rim, which becomes more prominent at higher
We values, as is shown in figure 4. Other factors may also play a role, e.g. the initial
overlapping between the two rims in three-dimensional simulations.

In figures 7(c) and 7(d) we present the evolution of yrim and brim again, where time is
now non-dimensionalised using the capillary time scale τcap. The growth of both yrim

and brim in three-dimensional simulations is consistent with a power law of
√

t/τcap
up to t/τcap ≈ 1.4, after which deviation from this power law is observed. It is also
found that prefactors of

√
We (for yrim) and We−1/4 (for brim) can collapse the evolution

data reasonably well, especially for brim as a single master curve is clearly observed in
figure 7(d), leading to the following scaling arguments:

yrim

R0
∝

√
We

√
t
τcap

,
brim

R0
∝ We−1/4

√
t
τcap

, (4.13a,b)

which we will use for further theoretical analysis of the ligament merging phenomenon
in § 5.2, while a complete determination for (4.13a,b) valid for very late time remains
for future work. The scaling of We in (4.13a,b) agrees with the experimental results of
Villermaux & Bossa (2011) and Wang et al. (2018) for drops impacting a small surface;
although the dependence on time is different, as their models aim at describing the entire
sheet expansion–retraction motion. Nonetheless, similar empirical

√
t scalings have been

proposed by Mongruel et al. (2009), Thoroddsen, Takehara & Etoh (2012) and Visser et al.
(2015) for quantifying the radial position of the expanding lamellae in the inertial regime,
indicating that this simple form of time dependence can still describe the rim kinematics
reasonably well between its formation and the onset of the retraction motion. Note that
(4.9) implies the evolution of the liquid momentum carried by the rim prim ≡ πρlDb2

rimẏrim
is independent of the values of We, even though its average vertical velocity ẏrim and
volume Ωrim ≡ πb2

rimD do depend on We. This contrasts with the axisymmetric results of
Wang & Bourouiba (2022) where the rim volume remains independent of We due to their
axisymmetric configuration.

5. Transverse liquid ligaments

5.1. Formation and growth
In the scenario considered by Wang & Bourouiba (2021), liquid ligaments grow slowly
out of the corrugated bordering rim along its azimuthal direction, which they ascribed
to a combination of local geometry, pulling effects of inertial force associated with rim
deceleration and the global liquid-phase mass conservation. For this study, and given our
perturbation profile, we find the transverse ligaments form very early for We ≥ 120, nearly
at the same time when the lamella is born out of the indentation region between the two
cylinders, as presented in the simulation snapshots of figure 8. A closer look at figure 8(b)
reveals that the ligaments are produced preferentially from the concave regions along
the two perturbed cylinders, suggesting that the ligament formation process is closely
associated with the initial rim perturbation waveform. Indeed, a previous investigation
by Gordillo, Onuki & Tagawa (2020) suggests that the ligaments originate from the
non-uniform initial distribution of normal interface velocity, which is in turn determined
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(b)(a) (c)

Figure 8. Snapshots taken from a simulation case at We = 200, ε = 0.06 and Nmax = 25 showing ligaments
generated from the ‘indentation’ region between two colliding rims. From left to right: t/τcap = 0.045, 0.091
and 0.136.

by the upstream liquid velocity and the curved initial cavity profile at the moment of
impact. Note also that the nascent ligaments do not always project exactly vertically
along the vertical y-axis; rather, they can display complex twisting and surface oscillation
motions, and may grow in an oblique direction. At the same time, the liquid sheet beneath
its bordering rim also features a wavy surface not perfectly aligned with the xy-plane.
These are most likely due to the difference in the initial interface perturbations imposed
on the two colliding rims, which gives rise to oscillatory motions under capillary effects.

We now move on to discuss the subsequent growth of the height of these ligaments after
their formation, which is shown in figure 9(a) for rim collision at We = 120 and 160, where
we present the height evolution of three individual ligaments at each We. The shedding of
the first fine drop from these ligaments is characterised by a kink around t = 0.4τcap.
While this initial pinch-off may happen at even earlier times as We increases, as shown
in figure 7 of Wang & Bourouiba (2018); this is still much later than the onset of the
micro-splashing phenomena investigated by Thoroddsen et al. (2012), which happens at
t/τcap = O(10−4) (see e.g. their figure 5b). Before this first pinch-off event, the height
hlig of different ligaments increases following a similar trend, and the growth rate at
We = 160 is higher than that at We = 120. Given that the initial phase of growth of these
ligaments is governed primarily by inertio-capillary effects, we compare it in figure 9(a)
with the self-similar power law of h ∝ t2/3, proposed by Lai, Eggers & Deike (2018) in
their investigation of inertio-capillary-dominated collapse of small surface bubbles. It is
found that the height increase of the majority of transverse ligaments (except ligament 1
at We = 120) agrees better with the linear growth model. This is most likely because the
formation of fast jets observed by Lai et al. (2018) is preceded by focusing of interfacial
capillary waves at the bottom of the bubble cavity while the liquid bulk remains quiescent
whereas, here, the bulk velocity plays a vital role in driving the closure of rim indentation,
and may thus modify the rate of jet growth. In addition, a recent study by Gordillo &
Blanco-Rodríguez (2023) suggests that the exponent of power laws dictating the evolution
of jet radius and speed is dependent on the initial geometry of the collapsing air cavity,
which may also account for the difference between our results and those of Lai et al. (2018)
since the concave regions on our perturbed cylindrical surfaces do not feature a uniform
radius of curvature.

To better understand the fluid motion within the growing ligaments, we measure the
liquid-phase vertical velocity uy from the bottom of the expanding sheet up to the tip of
a single ligament, and plot it in figure 9(b) as a function of the vertical coordinate y.
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Figure 9. (a) The evolution of liquid ligament length measured at different We values, compared with the
t2/3 scaling law of Lai et al. (2018) and a linear growth model. (b) Vertical component of liquid velocity uy
measured within liquid sheets and ligaments, showing the ballistic region within the ligament proposed by
Gekle & Gordillo (2010). ‘Sup’ denotes that the initial rim perturbation is a superposition of sinusoidal signals
with wavelengths λ = D/8, D/16 and D/32.

Two linear scaling regimes are observed; the first one is well described by uy = y/t,
which corresponds back to the velocity profile (4.5) we established for the expanding
sheet. As the fluid particles move higher up and away from the sheet, its velocity first
increases and then abruptly decreases as it enters the neck and rim region, respectively; a
similar abrupt deceleration is also noted by Wang & Bourouiba (2022) for drop collision
problems. Interestingly, the combination of the neck and rim causes a constant decrease in
the vertical velocity of approximately 0.7U0 for different We values, times and perturbation
waveforms. This pattern is not explicable from the scaling model (4.13a,b) since, according
to it, the fluid velocity should be equal to the average rim velocity ẏrim after deceleration,
which is always one half of the sheet velocity yrim/t before deceleration. The implication
is that the fluid velocity at the ligament root is always faster than the average rim velocity,
which Wang & Bourouiba (2021) ascribed to the additional acceleration due to the
interface curvature at the rim–ligament junction. After this constant offset at the bordering
rim which is most likely a viscous effect (Ghabache, Séon & Antkowiak 2014), uy grows
linearly again with the vertical position y with the same slope as the sheet region. This
second linear scaling regime most likely corresponds to the ballistic region (although in the
present study gravity is not included) in Worthington jets identified by Gekle & Gordillo
(2010), where the liquid particles travel at constant speed upwards before being slowed
down once again at the bulb by capillary effects.

While Wang & Bourouiba (2022) were able to demonstrate theoretically that energy
dissipation at the bordering rim is responsible for the local rapid deceleration of fluid
particles, which we also observed in figure 9(b), the detailed nonlinear dissipation
mechanism is not captured by their one-dimensional model. As discussed in § 1, there is
still a dissipation deficit of 15 % not covered by their calculations occurring at early time.
To help elucidate this discrepancy, we present contour plots in figure 10 for a simulation
case at We = 200, showing the distribution of the liquid-phase viscous dissipation rate
εd ≡ μl(∂ui/∂xj)(∂uj/∂xi) within the centre plane x = 0 for t/τcap ≤ 0.36, covering the
early deformation period t/τcap ≤ 0.2 where Wang & Bourouiba (2022) observed the
dissipation deficit (see their figure 19). It is found that, when the lamella is born at
very early time and its bordering rim has not yet fully developed (figure 10a), there
is an extremely high concentration of εd located at the lamella foot, agreeing with the
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Figure 10. Contour plots visualising the two-dimensional distribution of instantaneous liquid-phase
dissipation rate εd within the centre plane x/D = 0.5 for t/τcap = 0.045 (a), 0.091 (b), 0.182 (c) and 0.364
(d), where We = 200 and ε0 = 0.06.

simulation results of Wildeman et al. (2016) for drops impacting a smooth surface (see
their figure 4) and Fudge et al. (2023) for drops impacting a liquid pool (see their
figure 8b). As time elapses, the bordering rim takes shape, with its neck featuring
relatively high concentration of εd, whereas the dissipation at the lamella foot weakens
and eventually becomes negligible by t/τcap = 0.364 (figure 10d), matching the saturation
trend shown in figure 19 of Wang & Bourouiba (2022) for the dissipation deficit. This
decay pattern of liquid-phase dissipation may be explained as follows. The liquid particles
feeding the lamella at early times mostly come from a very narrow boundary straddling
the corners on either side of the lamella foot (Riboux & Gordillo 2014), and they
generate vorticity (Batchelor 2000; Li et al. 2018) and experience capillary deceleration
while traversing the highly curved free surface, leading to very large values of viscous
dissipation. Since this early-time deceleration is geometry induced, Fudge et al. (2023)
further hypothesised that the magnitude of the velocity gradient remains largely unchanged
at different flow configurations so that the early-time dissipation rate is proportional to the
liquid viscosity μl, although this is not directly verified in the present work. As the liquid
sheet extends further upwards, the interface curvature at the lamella foot decreases and
capillary deceleration becomes much weaker, hence the decrease in the dissipation rate
εd. Eventually, as the lamella foot is no longer discernible from the flattened liquid bulk
and the capillary effects become negligible, the inviscid sheet velocity profile (4.5) will be
established.

These observations of the liquid-phase dissipation evolution therefore suggest that
the unidentified dissipation deficit found by Wang & Bourouiba (2022) is most likely
linked with the early-time lamella formation, which also features strong viscous effects

987 A18-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.392


K. Tang, T.A.A. Adcock and W. Mostert

and, according to Wildeman et al. (2016) and Ó Náraigh & Mairal (2023), this kind
of dissipation is a type of ‘general head loss’ imposed by the deformation mode of the
impacting object and independent of the detailed impact parameters. The head loss in
impact problems dissipates a fixed fraction of the initial kinetic energy via recirculating
flows (Wildeman et al. 2016; Ó Náraigh & Mairal 2023), which matches the observations
of Wang & Bourouiba (2022). It is also noted that, besides the early-time lamella foot and
the late-time rim neck, the flow field elsewhere within the coalesced liquid bulk shown
in figure 10 is nearly inviscid, supporting our derivation of the centreline velocity profile
within the liquid sheet (4.5) based on inviscid flow assumptions. While we have not fully
explored the influence of Oh on the lamella expansion process, it can be expected that,
in the inviscid limit where Oh � 1, its influence will be confined to the narrow ‘viscous’
regions identified in this section, and thus will not significantly affect the deformation of
the droplet bulk, or the ligament dynamics and fragmentation mechanisms to be discussed
below.

5.2. Ligament merging phenomenon
As is noted in § 3, the number of transverse ligaments on the rim will decrease over time as
they merge with their neighbours. This merging process is observed only when the initial
perturbation is not monochromatic such that the nascent ligaments are not equidistantly
spaced, and it turns out to be crucial in maintaining the growth of ligaments and the
continuation of fragment shedding. Figure 11(a–c) shows the development of ligaments
formed out of monochromatic perturbation waveforms, and it is observed that, after two
rounds of pinching-off events at their tips, the ligaments can no longer sustain their own
growth and are re-absorbed back into the underlying liquid rim whereas ligaments formed
out of filtered white noise perturbations at the same values of We, ε and Nmax merge with
their neighbours and survive end-pinching, continuing to grow and shed fragments until
the end of simulation, as observed in figure 11(d–f ).

The ligament merging process is shown in more detail in the snapshots of figure 12,
where the merging ligaments are observed to be located on rim ‘cusp’ structures extruding
from the liquid sheet beneath, an indication of the non-uniform incoming mass distribution
along the bordering rim (Gordillo et al. 2014; Wang & Bourouiba 2018). When ligament
merging occurs, the roots of two neighbouring ligaments approach each other; liquid is
then drawn upwards from the underlying cusp in between the two ligaments, causing them
to coalesce into a thicker and more corrugated ligament; while the length of the fused
ligament does not differ significantly from those of its parents. Ligament merging is thus
capable of delaying the next end-pinching event since the fused ligament takes longer to
be stretched, thus allowing incoming fluid from the rim to sustain their growth and evade
re-absorption into the rim when the depleted ligament becomes too short, as observed in
figure 11. Note that the monotonically decreasing trend of ligament numbers observed by
us and Wang & Bourouiba (2021) differs from the early experimental work of Thoroddsen
& Sakakibara (1998) on drop impact, where they also observed splitting of liquid fingers
aside from their merging behaviour, so that the total finger number remains approximately
constant.

To the knowledge of the authors, a scaling law for the ligament numbers accounting for
their merging dynamics is not yet available. The early work of Marmanis & Thoroddsen
(1996) found that the number of liquid fingers at the maximum spread radius for
high-speed drop impacts scales with Re3/4 (Re being the impact Reynolds number),
without accounting for their evolution over time, whereas the recent We3/8 scaling model
proposed by Wang & Bourouiba (2021) is based on the understanding that the ligaments
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(e) ( f )

(b)(a)

(d )

(c)

Figure 11. Snapshots at We = 120, ε = 0.06 and Nmax = 25 showing ligament evolution from
monochromatic initial perturbations (a–c) and filtered white-noise perturbations (d–f ). Re-absorption
of ligaments back into the rim is observed for the monochromatic perturbation case after two cycles of drop
shedding. From left to right: t/τcap = 0.2, 0.4 and 0.6.

(b) (c)(a)

Figure 12. Snapshots taken from a simulation case at We = 160, ε = 0.04 and Nmax = 25 showing ligaments
merging on the corrugated rim bordering the expanding sheet, while shedding fragments via the end-pinching
mechanism. From left to right: t/τcap = 0.73, 1.09, 1.45.

are formed from a subset of rim corrugations arising from a combined RT and RP
instability; a physical mechanism which is most likely not yet active within our parameter
space as we find the formation of ligaments more closely linked with the initial interface
perturbation geometry. The early theoretical analysis of Yarin & Weiss (1995) predicted
that perturbed free rims will spontaneously develop ‘cusp’ structures due to nonlinearity,
where two neighbouring rim sections impinge and give rise to free jets. This physical
picture closely resembles our present observations, although Yarin & Weiss (1995) did
not proceed to develop scaling models for the splashing fragments. We therefore seek to
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Figure 13. (a) Measurement of the ratio between the diameter di of the detaching fragment and the width
wi of its originating ligament at different ejection times. (b) The evolution of the fragment diameter dfrag of
ejected fragments. The results in (b) have been ensemble-averaged across three realisations for each (We, ε)
configuration, and rescaled by We−0.75 in the main plot.

derive a new ligament number scaling model accounting for the merging dynamics in this
section, and compare it with the simulation results.

As the first step towards quantifying the ligament dynamics, we seek to determine
the evolution of the average ligament width wlig over time by inspecting the evolution
of fragment diameter dfrag, which can be easily reconstructed using the droplet-tracking
algorithm of Chan et al. (2021). The connection between these two quantities is established
in figure 13(a), where we plot the ratio between dfrag and wlig at the instant of pinch-off.
The ligament diameters are measured at the cross-section corresponding to one half of
the total ligament length. Most of the measured data are found to scatter between 1 and
2, centred around 1.4, which is close to the average value of 1.5 as found by Wang &
Bourouiba (2018). These are below the theoretical value of 1.89 as predicted by the RP
instability (Gordillo & Gekle 2010), indicating that end-pinching is indeed the dominant
fragment production mechanism for the present study, and that the diameter of fragments
dfrag remains in proportion to the width of their parent ligaments wlig.

The inset of figure 13(b) shows the diameters of the fragments dfrag vs their time of
formation, where the data for each configuration of (We, ε) have been averaged across
three individual realisations to reduce the range of scatter. It is found that larger fragments
are generally produced at later times and smaller We values. The scatter in data increases
over time, which is most likely due to the increase in the diameter difference and the
surface corrugation of remaining ligaments as they merge with one other. The main plot
suggests that the evolution of individual fragment diameter in figure 13(b) roughly scales
with We−3/4√t/τcap, while noting that our fitted prefactor We−3/4 is not conclusive and
remains to be further validated at higher We values. Since the fragment size remains in
proportion to the width of the parent ligament according to figure 13(a), it can be inferred
that

wlig ∝ dfrag ∝
√

t
τcap

. (5.1)

Gordillo et al. (2014) and Wang & Bourouiba (2018) proposed the following drift
velocity of ligaments udrift on top of a liquid cusp to characterise their migration:

udrift = [us(yrim)− urim] sinα, (5.2)
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Figure 14. Main plot: sketch showing the quantities defined in § 5.2 for developing the ligament merging
model (5.6). Inset: sketch showing the local geometry of the junction region at the ligament base.

where us(yrim) = yrim/t is the velocity at which liquids enters the rim from the expanding
liquid sheet, calculated from the self-similar expanding sheet velocity profile (4.5), and
urim is the vertical rim velocity determined by differentiating the scaling law for yrim in
(4.13a,b). It is noted that both us(yrim) and urim scale as

√
We t−1/2, and α is the angle

between the local rim and the horizontal plane, as shown in figure 14. Overall, (5.2)
suggests that the migration of ligaments is driven by the tangential projection of the net
incoming fluid velocity along the corrugated rim.

As udrift drives the ligament migration and causes the ligament number density Nlig
to decrease, the average transverse ligament spacing 1/Nlig on the rim consequently
increases. Therefore

udrift ∝ d
dt

(
1

Nlig

)
. (5.3)

The averaged value of sinα can be determined by inspecting the geometry of the
junction region between the ejected ligaments and the lamella rim, which is shown in
the inset of figure 14. Making use of the law of cosines

wlig

2brim
= cos

(π

2
− α

)
= sinα. (5.4)

This, combined with (5.1) and (4.13a,b), yields

sinα = C(We), (5.5)

suggesting that the rim slope α remains unchanged over time and depends only upon the
impact Weber number. Taking into account that tanα ≈ εrimNlig, α remaining constant
also indicates that as the average ligament spacing 1/Nlig becomes larger over time owing
to the ongoing merging of ligaments, the rim corrugation εrim also increases proportionally
to maintain a constant local slope.
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Figure 15. Evolution of the ligament number density Nlig at different values of Nmax with We = 120 (a) and
different We with Nmax = 60 (b). The insets compare the evolution of Nlig with our model (5.6).

By further incorporating (5.3) and (5.2), the following model predicting the evolution
of the ligament number density Nlig can be derived:

Nlig ∝
(

t
τcap

)−1/2

. (5.6)

In the main plots of figure 15 we show the decay of the ligament number density Nlig at
different values of Nmax and We. Figure 15(a) shows that while increasing Nmax leads to
the formation of more ligaments at early time; Nlig appears to reach saturation and does not
increase proportionally with Nmax when t/τcap = 0.18, and it is likely that viscous damping
effects are particularly strong when the lamella is ejected at the early impact stage, which
may smooth out short-wavelength components in the initial perturbation spectra (see our
figure 10 and relevant discussions). Larger Nmax also leads to faster decay of Nlig, as
expected, since the average distance between neighbouring ligaments becomes smaller,
and for all values of Nmax, figure 15(a) suggests that the evolution of Nlig becomes largely
similar for t/τcap > 1.5, where the remaining ligaments take much longer to migrate and
merge. Figure 15(b) shows that the decay of Nlig does not appear to depend strongly on We,
and thus lends some support to the prediction of (5.6) that it is We-independent, although
ensemble averaging would be needed to ascertain this due to the randomness in the initial
perturbation waveform. The insets of figure 15 show the evolution of Nlig again in log–log
axes, which is also compared with model (5.6). The inset of figure 15(a) indicates that
the measured results collapse well and agree with (5.6) for Nmax ≥ 35 throughout the
period of measurement, whereas at Nmax = 25 the decay of Nlig is initially slower, and
only matches the prediction of t−1/2 for t/τcap ≥ 1. The measurement of Nlig extends to
earlier times in figure 15(b), and its inset suggests that the evolution of Nlig at different We
is initially slower and matches model (5.6) only after t/τcap ≥ 0.2. This slower decay at
early times observed in both insets arises most likely because the rim slope α takes a finite
period of time to develop before reaching the steady-state value given by (5.5). Overall,
these results indicate that model (5.6) offers a good working description of the ligament
merging phenomenon occurring within our parameter space. However, the approximations
we make for its derivation restricts its application to the scenario when Nlig is large and
the slope α of the corrugated rim has reached the steady-state value predicted by (5.5).
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Figure 16. The evolution of the total number density Nfrag (a) and the ejection velocity (b) of primary
fragments, compared with the rim velocity urim derived from solving (4.10)–(4.12) (solid transparent lines)
and (4.13a,b) (dash-dotted line).

6. Droplet generation and characteristics

Since the expanding sheet remains intact during our simulation period, fragments are
formed solely through the breakup of liquid ligaments originating from the bordering rim.
The majority of fragments are produced via the end-pinching mechanism, a process that
coincides with the ligament merging phenomena and is already visible in the snapshots
presented in figures 4 and 12. Namely, the ligament tips are decelerated by capillary force
and produce surface corrugations, which in turn create a local pressure gradient within the
ligament neck that drains the liquid towards the tip and triggers pinch-off. After this, the
enlarged ligament tip detaches as a primary drop (Gordillo & Gekle 2010), whose diameter
is proportional to the parent ligament width as shown in figure 13(a). Occasionally, satellite
drops are formed from the small amount of remnant liquid within the neck before it can
be fully reabsorbed into the ligament after end-pinching, as also shown in figure 5(b)
of Wang & Bourouiba (2018). In contrast to the primary drops, the production of these
satellite drops is sensitive to initial liquid-phase velocity perturbations, thus introducing
randomness to the jet breakup process. However, they do not affect the size and velocity
of the subsequent primary drops ejected, as shown by Berny et al. (2022) in the instance
of jet-droplet production by bursting of surface bubbles. Possibly due to the difference in
their generation mechanisms, our ligaments can grow much longer than those Wang &
Bourouiba (2018) observed in their experiments, and at late times, some particularly long
ligaments may break up due to the RP instability and shed multiple primary fragments
at a time, as can be seen in the rightmost ligament in figures 4(e) and 2( f ) of Liu et al.
(2022). This appears inconsistent with the conclusion of Wang & Bourouiba (2021) that
a ligament can only pinch off to produce one primary drop at a time under the chaotic
dripping regime.

We first analyse the time evolution of various fragment properties during the rim
collision process. Figure 16(a) shows the evolution of the total number density of primary
fragments Nfrag, where it is observed to generally increase over time towards saturation,
despite infrequent decreases due to coalescence of primary fragments with another
fragment or a neighbouring ligament. It is also noted that Nfrag increases with both We and
ε, as larger We and ε encourages the growth and subsequent pinch-off of liquid ligaments.

The decrease of drop production rate �Nfrag/�t can be explained as follows. The
ongoing ligament merging phenomenon causes the ligament number density to decrease,

987 A18-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

39
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.392


K. Tang, T.A.A. Adcock and W. Mostert

hence fewer fragments can detach at the same time. Meanwhile, merged ligaments become
more corrugated and thicker, thus end-pinching events occur at larger ligament widths as
time elapses. Consequently, the time interval between successive end-pinching events also
becomes longer, since the necking time scale

tneck ≡ 1.13

√
ρlw3

lig

σ
(6.1)

increases with wi according to the experimental results of Wang & Bourouiba (2018).
Figure 16(b) shows the evolution of the fragment ejection speed uej, the speed of the

drop at the moment it detaches from its parent ligament. The fastest drops found in our
simulations feature uej slightly over 3U0, which is comparable to the fragment ejection
velocity in the prompt splashing phenomena (Burzynski, Roisman & Bansmer 2020).
Regardless of the detailed geometrical features of the parent ligaments, when scaled with
the initial collision speed U0, the decay of uej over time does not significantly depend on
either We or ε0. We further compare the measured uej values with the predictions of both
the rim dynamic equations (4.10)–(4.12) and the scaling model (4.13a,b). Both capture
the early-time evolution of uej up to t/τcap ≈ 0.5, after which the decrease of uej slightly
steepens and shows a better agreement with the predictions of (4.10)–(4.12). This is most
likely due to the late-time capillary deceleration being not well represented by (4.13a,b).
We note that, while the rim velocity predicted by (4.10)–(4.12) is closer to uej, they tend
to over-predict the three-dimensional simulation results, as already observed in figure 7,
suggesting the existence of a gap between the actual rim velocity and the fragment ejection
velocity. This agrees with the earlier results of Liu et al. (2022), where their figure 5 also
shows fragment speeds remaining higher than the rim velocity. Similar measurements of
the fragment ejection velocity have also been reported by Thoroddsen et al. (2012) for
micro-splashing in drop impact problems at much larger values of We, which were well
explained by the theory of Riboux & Gordillo (2015). However, in Riboux & Gordillo
(2015) the lamella rim fragments under RT and capillary instabilities, and therefore the
velocity and size of ejected droplets are directly determined by the rim. In Thoroddsen
et al. (2012) fragmentation also occurs shortly after the emergence of the lamella sheet,
based on which Riboux & Gordillo (2015) modelled the droplet ejection velocity using
flow field information at the lamella foot. These differ from our scenario where the
ejection of droplets are governed by the end-pinching of ligaments erupting on the lamella
rim (Wang & Bourouiba 2018). Development of theoretical models capable of predicting
fragment ejection speed in our case thus requires detailed knowledge of ligament growth
and the merging dynamics, which is out of the scope of the current work.

Since rim collision is a transient process where both the total number and the individual
size of fragments increase over time, as shown in figure 13, it is of interest to determine
how the fragment size and velocity distribution functions evolve with time. We first show
the fragment size distributions n(r/R0) in figure 17(a) at different times tc/τcap, which
are computed by sampling over a time window of tc − 0.45τcap ≤ t ≤ tc + 0.45τcap. To
ensure statistical convergence of the data, three individual realisations are computed for
each initial configuration (We, ε,Nmax) and all results presented in figures 17 and 18
have been averaged across these ensembles. It can be seen that, initially, fragments with
r ≤ 0.2R0 are produced at early time. While the number density n within this range
remains largely unchanged over time and does not appear to depend strongly on r, this
should be treated with caution due to a lack of fully established grid independence of
fragment statistics at small sizes, as discussed in Appendix A. As time elapses, the number
of larger fragments increases and causes the falling tail of the distribution to move further
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Figure 17. (a) The evolution of time- and ensemble-averaged size distribution function n(r/R0) of all
fragments produced by colliding rims at We = 200, ε = 0.06 and Nmax = 25. (b) The fragment size probability
distribution function f (r/R0) compared with the experimental data and model of Néel et al. (2020).
(c,d) The influence of We (c) and ε and Nmax (d) on the fragment size distribution function, where ε = 0.06
and Nmax = 25 for all simulation results presented in (c), and We = 200 for those presented in (d).

to the right, indicating that larger drops are fewer and produced later in time. This can
be attributed to the ongoing ligament merging process, as it increases the thickness of
individual ligaments.

We now seek to compare our numerical results with the experimental data and the
theoretical model of Néel et al. (2020). It is noted therein that the variation in the fragment
size distribution for the rim collision problem arises from two sources, namely those of
the transverse ligament size and of the fragments produced from the breakup of a single
ligament. A linear superposition of these two effects yields the following size distribution
function:

p
(
ζ = r

r̄

)
= 2(mn)(m+n)/2

Γ (m)Γ (n)
ζ (m+n)/2−1Km−n(2

√
mnζ ), (6.2)

where Km−n is a modified (m − n)th-order Bessel function of the second kind and m and
n reflect the roughness of the distribution of ligament widths and corrugation amplitudes
of individual ligaments. Néel et al. (2020) fit their experimental data at We = 193 using
(6.2) with m = 40, n = 5, which we can reproduce in figure 17(b) together with our
fragment size probability density function at We = 200. Note that the fragment sizes were
originally normalised by Néel et al. (2020) using the average fragment diameter d̄ in their
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Figure 18. (a,b) Ensemble-averaged vertical (a) and in-plane (b) components of fragment ejection velocity uy
and uxz calculated at various We values, with Nmax = 25. (c) Evolution of the fragment velocity distribution over
time, obtained at We = 200, ε = 0.06 and Nmax = 25. (d) The probability distribution functions of fragment
velocities at different We values.

figure 15(b), which is shown in their figure 13(b) to saturate at large We values and remain
proportional to their interstitial sheet thickness h. The sheet thickness is in turn related to
the pre-collisional rim radius R0 via the rim collision Weber number, given in their work
as We = 16R0/h. This allows us to estimate their average fragment diameter as

d̄ = χh = 16χ
We

R0. (6.3)

We find that setting the coefficient χ to 5 leads to an excellent match between our
simulation results with (We, ε,Nmax) = (200, 0.06, 25) and the re-normalised data of
Néel et al. (2020) for r ≥ 4Δ10. Figure 13(b) of Néel et al. (2020) suggests a χ value
of approximately 25 for their controlled rim production setup, which is larger than our
fitted value by a factor of 5. This might be because rim fragmentation has completed in
the experiments, and the larger fragments produced at later times increase the value of
d̄. Our numerical results differ from Néel et al. (2020) for r ≤ 4Δ10, where their model
(6.2) exhibits a fall-off not found in our data. This more uniform portion of fragment size
distribution for small r values is also found in figure 13(b) of Lhuissier & Villermaux
(2012), where they attributed it to the transverse impact between adjacent rim ligaments.
The differences between their experimental and our numerical configurations may also
play an important role, as their expanding rims feature toroidal shapes and therefore
coalesce within a finite period of time. Last but not least, the two liquid rims are connected
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Fragmentation of colliding liquid rims

by an interstitial thin film in the configuration of Néel et al. (2020), whereas in our case
the rims come into contact directly.

The dependence of the time-averaged fragment size distribution on the controlling
parameters We, ε and Nmax is further shown in figures 17(c) and 17(d). It can be seen
that the number density n of small fragments with r ≤ 4Δ10 continues to increase with
We, ε and Nmax, consistent with our observations in figure 16(a). More specifically,
here, the sensitivity of n to ε and Nmax, as shown in figure 17(d), further supports
our understanding that the differences between the numerical and experimental initial
conditions causes the difference between the corresponding results. The number density
of intermediate fragments with 4Δ10 ≤ r ≤ 0.2R0 also increases with We in figure 17(c),
however, different from that of smaller fragments, it appears to asymptote to (r/R0)

−1/2

for We ≥ 240 or Nmax ≥ 60. The tail of the distribution functions consisting of even
larger fragments with r ≥ 0.2R0 remains approximately independent of the controlling
parameters, and its decaying trend agrees well with a power law of (r/R0)

−7/2. While this
finding differs from that of Néel et al. (2020), where m and n decrease with increasing
We and cause the slope of the tail to decrease correspondingly, this may again be due
to differences in detail of the initial conditions. Overall, figures 17(c) and 17(d) suggest
that, as We increases, the fragment size distribution within r ≥ 4Δ asymptotes to a
regime independent of the controlling parameter, and well described by a power-law
decay with a break in slope, which may originate from the insensitivity of the ligament
merging and breakup phenomena to the initial perturbation configurations. It is noted
that a similar transition between two power-law regimes has been observed in the droplet
size distributions associated with wave breaking by Mostert et al. (2022) and Erinin
et al. (2023a), although their distributions feature steeper slopes, with the power law
transitioning from r−2 to r−6.

Here, we show that the power-law scaling (r/R0)
−1/2 we observed in figures 17(c)

and 17(d) at small fragment sizes can be derived from the ligament merging dynamics
previously established in this work. The ligament merging time scale is defined as the
ratio between the average ligament spacing L0/Nlig and the drift velocity udrift, which can
be evaluated based on (5.2)

�tmerge ≡ L0

Nligudrift
∝ N−2

lig . (6.4)

The rate of droplet shedding is controlled by the ligament necking process, thus
�tshed = tneck as given in (6.1) (Wang & Bourouiba 2018). Consequently, the total number
of fragments shed from all ligaments between two consecutive merging events can be
estimated as

Nfrag = Nlig
�tmerge

�tshed
∝ N−1

lig w−3/2, (6.5)

where w is the average width of ligaments.
As we observed in figure 13(a,b), w ∝ r ∝ √

t/τcap, whereas (5.6) suggests Nlig ∝
(t/τcap)

−1/2. Substituting these two scalings into (6.5) leads to

Nfrag ∝ (t/τcap)
−1/4 ∝ (r/R0)

−1/2. (6.6)

These derivations suggest that the (r/R0)
−1/2 scaling at small fragment sizes can be

explained as a competition between ligament merging and end-pinching, whereas the
(r/R0)

−7/2 scaling found at larger fragment size ranges still awaits further analysis. It
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is likely that this steeper dependence on r originates from the presence of corrugations
on individual ligaments, or the variation of ligament width across the bordering rim (Néel
et al. 2020), neither of which has been considered in the derivations above.

Lastly, we discuss the fragment velocity statistics. Figures 18(a) and 18(b) present the
ensemble-averaged vertical (figure 18a) and in-plane (figure 18b) components uy and uxz
of the fragment ejection velocity, which are plotted as functions of the fragment radius
r. Since most of the initial liquid momentum is deflected in the vertical direction over
the collision process, uy remains a few times to a decade larger than uxz. Figure 18(a)
shows that the uy values for fragments within the size range of 0.1 ≤ r/R0 ≤ 0.4 collapse
reasonably well when scaled by the initial rim velocity U0, and are well predicted by a
power-law decay model uy ∝ (r/R0)

−1. The velocity distribution at larger fragment sizes
deviate from this power-law scaling, most likely due to a combination of late-time effects
including amplified ligament corrugations, rim deceleration and the onset of RP instability
on the ligaments. The in-plane velocity component values uxz measured in figure 18(b)
are more scattered compared with figure 18(a), but the distribution can still be roughly
described by the same power-law decay model uxz ∝ (r/R0)

−1. These observations further
corroborate the fragment size distribution model (6.6) we proposed, since the power-law
exponent of −1 for uy can be derived based on our observations in figures 16(b) and (5.1)

uy ∝ (t/τcap)
−1/2 = [(t/τcap)

1/2]
−1 ∝ (r/R0)

−1. (6.7)

As the only source of the liquid in-plane motion is the transverse drifting of ligaments, the
in-plane velocity component uxz can be estimated by the drifting velocity udrift. Combining
(5.2) and (5.6) similarly leads to

uxz ∝ udrift ∝ Nlig ∝ (t/τcap)
−1/2 ∝ (r/R0)

−1. (6.8)

The good agreement between the velocity scaling models derived above and our numerical
results once again highlights the importance of the rim ligament merging phenomenon in
determining the size and velocity statistics of splashing fragments.

Figures 18(c) and 18(d) show the number density of fragments as a function of their
travel speed ufrag. Figure 18(c) suggests that, while most of the fragments produced at
early time feature a skewed velocity distribution peaking at ufrag ≈ 2.8U0, the maximum
fragment speed decreases and more fragments travelling at lower speeds are recorded
as time elapses, and the distribution function has developed a plateau by t/τcap = 1.36.
This suggests that, as the ligaments continue to grow in length and break up, the droplets
produced come to span uniformly across a large range of travelling speeds, with fewer
drops featuring very slow or particularly fast speeds. Figure 18(d) shows the velocity
distribution at different We values averaged over the entire collision process. It is found
that, as We increases, the velocity distribution becomes broader, and for We beyond
240, the right tail of the velocity distribution appears to reach a We-independent regime,
similar to our observation in figure 17(c) for the size distribution of fragments, and the
fastest speeds recorded is around ufrag ≈ 3.2U0. While a direct comparison with breaking
wave statistics (Mostert et al. 2022; Erinin et al. 2023a) is out of the scope of the
current work, it is noted that the shapes of velocity distribution functions obtained here in
figures 18(c) and 18(d) differ from their counterparts in wave-breaking phenomena (see,
e.g. figure 16(d) of Mostert et al. (2022) and figure 12 of Erinin et al. 2023a), as the
latter are skewed and narrower than our distributions. This may be due to the presence of
gravity in wave breaking, which may arrest the ligament fragmentation process and define
a short time scale for completing the splashing phenomenon, thereby reducing the total
number of fragments. These splash fragments are themselves also decelerated by gravity.
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In the velocity distribution, this would appear as a narrowing of the distribution, with
lower velocities at the peak and the higher velocities represented by a long tail. Other
fragmentation mechanisms in the wave-breaking phenomena may also alter the shape
of velocity distribution, e.g. the bursting of surface bubbles (Lhuissier & Villermaux
2012; Berny et al. 2021), whose contribution to the production of droplets is known to
be significant after the wave splashing phase.

7. Conclusions

We have investigated the collision and subsequent fragmentation of perturbed liquid rims,
focusing on the range of 120 ≤ We ≤ 280 that allows for the growth and merging of
transverse ligaments and the production of fine drops from such ligaments via the pinch-off
mechanism. We look into different parts of the post-collisional liquid bulk as it evolves
over time, and our key findings are summarised below.

Firstly, following the quasi-one-dimensional approach of Wang & Bourouiba (2017), we
derive analytical solutions of the liquid velocity and free surface profiles for the vertically
expanding lamella sheet, which are shown to be in good agreement with the numerical
results. Capillary effects have been neglected in this model for sheet evolution, but prove
significant for the dynamics of the bordering rim. We then compared the growth of the rim
position and thickness with the theoretical model of Gordillo et al. (2019), and develop
scaling laws collapsing the data.

Secondly, we analyse the behaviour of transverse ligaments on top of the lamella rim.
The ligaments produce fragments primarily via the end-pinching mechanism, and when
the initial perturbation waveform is polychromatic, they migrate on the rim and merge with
each other to form thicker and more corrugated ligaments, thus preventing their absorption
into the rim and sustaining the fragmentation process. A novel scaling model is derived for
predicting the evolution of ligament number density based on the migration speed model
of Wang & Bourouiba (2018).

Lastly, we present the size and velocity statistics associated with the rim collision
phenomenon. An excellent agreement between our fragment size distribution and the
experimental results of Néel et al. (2020) is found within the range of grid convergence
(r ≥ 4Δ10). The fragment size distribution becomes insensitive to the initial configurations
when We or Nmax further increases, which can be described using a power law with a break
in slope. A theoretical model is proposed predicting the power-law distribution observed
for r ≤ 0.2R0. Over time, the fragment speed ufrag develops a largely uniform spread over
the range of 0 ≤ ufrag ≤ 3.2U0 as their parent ligaments continue to grow vertically and
decelerate to form slower drops.

The implications of the present work are manifold. Firstly, it sheds new light on the
fluid physics involved in a liquid impact problem that has not received much attention
prior to the recent works of Néel et al. (2020) and Agbaglah (2021). Furthermore, the
results we obtained are also of reference value for ongoing research works on spherical
drop impacts, especially the influence of initial perturbations on the fragmentation process,
which may also be present during the early-time prompt splashing phenomena observed in
previous experimental studies (Burzynski et al. 2020; Wang et al. 2023). Lastly, this work
serves as a stepping stone towards understanding the secondary splashing phenomenon
observed in wave-breaking events and the associated fragment statistics (Mostert et al.
2022; Erinin et al. 2023a), and provides the basis for investigating the influence of other
physical mechanisms not covered in the present work, e.g. viscosity, gravity and air-phase
turbulence effects.
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Appendix A. Grid convergence and Oh-dependency of fragment statistics

In this section, we discuss the numerical convergence of the fragment statistics of
rim collision reported in this work. For this purpose, we present the time- and
ensemble-averaged fragment size and velocity distributions n(r/R0) and v̄(r/R0) for We =
200, ε = 0.06 and Nmax = 25 at t/τcap = 0.23 in figure 19, where the upper and lower rows
show, respectively, the results at early (t/τcap = 0.23) and late (t/τcap = 1.82) times. The
recorded fragment data at a given time are first collected across different realisations with
the same initial configuration, and then binned according to the fragment radius r. The
count in each bin thus produces the fragment size distribution n(r/R0). We then average
the speed of fragments within each bin to obtain the distribution of fragment velocity
v̄(r/R0). Three identical ensemble realisations are obtained at maximum resolution levels
Lmax = 9, 10 and 11, whereas in figure 19(a) we also include data produced from a single
realisation at Lmax = 12. It has been known from previous numerical studies (Rivière et al.
2021; Mostert et al. 2022; Tang et al. 2023; Wang et al. 2023) that grid independence for
fragmentation problems can be challenging to obtain, especially for small fragments near
the grid size Δ, and a radius threshold of r ≥ 4Δ has been recommended, beyond which
the fragment size distributions are considered fully converged. We therefore also add
vertical dashed lines in each panel of figure 19 showing the values of 4Δ corresponding to
each resolution level to facilitate comparison with these threshold values.

The early-time fragment size distributions presented in figure 19(a) show large ranges
of scatter due to the relatively small number of fragments produced from each ensemble
realisation, with the size of the tiniest fragments becoming increasingly smaller as the
resolution level Lmax increases. Nevertheless, it is observed that the tail of the distribution
functions obtained at Lmax = 10 and 11 agrees when r/R0 ≥ 0.1R0, which roughly
corresponds to the threshold value of 4Δ10. We note that the grid convergence behaviour of
large fragments at early times is further improved when Nmax is increased, although these
results are not included in the present work. The distributions of velocity components uy
and uxz in figure 19(b) show better agreement across all three resolution levels down to
r = 4Δ10. Below this radius threshold, large scatters in the velocity data at Lmax = 10 and
11 are observed, although they appear to agree in trend with each other and differ from
the results at Lmax = 9. When rim collision proceeds to later times, more fragments are
produced and the range of scatter in the size and velocity distributions becomes smaller, as
shown in figure 19(c,d). Nevertheless, the fragment size range where grid convergence of
the fragment size and velocity distributions is fully established remains largely unchanged
from the early-time results, namely, the right tail of the fragment size (figure 19c) and
velocity distribution (figure 19d) are fully converged for r/R0 ≥ 4Δ9, and the difference
between results at Lmax = 10 and 11 becomes significant for r/R0 ≤ 4Δ10. These results
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Figure 19. The size (a,c) and velocity (b,d) distributions of fragments n(r/R0) and v̄(r/R0) at We = 200,
ε = 0.06 and Nmax = 25 at t/τcap = 0.23 (a,b) and 1.82 (c,d), binned and averaged across three realisations
with the same initial configurations at Lmax = 9, 10 and 11. Panel (a) also includes statistics produced from a
single realisation at Lmax = 12. (e, f ) The size (e) and velocity ( f ) distributions of fragments at We = 280 and
different Oh values at t/τcap = 1.82.

suggest that, for a given grid resolution level Lmax, 4ΔLmax can be regarded as the lower
limit of fragment radius above which the fragment size and velocity distributions can be
considered fully grid converged, while the statistics of fragments below this threshold are
still grid-dependent and should be treated with caution (Mostert et al. 2022).

Figures 19(e) and 19( f ) present the fragment size and velocity distributions at a few
different Oh values at t/τcap = 1.82. Figure 19(e) shows that, for r ≥ 4Δ10, where grid
convergence of fragment statistics is fully established, the fragment size distribution is not
sensitive to viscous effects. On the other hand, the velocity of fragments with radii near
4Δ10 as shown in figure 19( f ) decreases slightly with increasing Oh values, which might
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be because of more significant viscous dissipation at the lamella feet and rim necks, as
discussed in § 5.1.

Appendix B. Theoretical analysis of the lamella foot advancement

Here, we analytically solve for the evolution of the advancement of the lamella foot
position yn after the two cylinders come into contact. This is similar to the axisymmetric
analysis due to Riboux & Gordillo (2014), having here been adapted for the planar
problem, and it is expected that, similar to their case, yn ∝ √

U0t/R0. Taking into account
the geometrical symmetry present in the problem, we consider the equivalent configuration
where a single liquid rim impacts on a flat plane. Neglecting viscous effects and air
entrainment, the flow field within the liquid phase is prescribed by the Laplace equation
within the Cartesian coordinate yOz

∇2φ = ∂2φ

∂y2 + ∂2φ

∂z2 = 0, (B1)

where φ is the velocity potential. From now on, we select the rim radius R0, the collision
velocity U0 and their quotient R0/U0 as reference length, velocity and time scales to
non-dimensionalise all physical properties within this section.

Now, consider the boundary conditions for the domain of interest, namely the contact
region z � 1 within the liquid phase close to the bottom plane. We fix our reference frame
on the liquid bulk descending at non-dimensionalised unit velocity −1, thus we impose an
opposite normal velocity at the bottom

∂φ

∂n
= 1, |y| ≤ yn(t), z = 0. (B2a–c)

Within the same reference frame, the liquid-phase velocity decays to 0 far away from the
contact region, thus

∇φ = 0, z � 1. (B3a,b)

The final boundary condition comes from considering the flow condition on the drop
surface (but outside the contact area) for 1 � y ≥ yn(t) and z = zd(y). At very early
time immediately after the impact, the rim bulks largely retain their cylindrical shape,
as shown in figure 20(a). Thus, the drop shape in the vicinity of the stagnation point can
be approximated as

zd = 1 −
√

1 − y2 ≈ y2

2
+ o(y2) ≈ 0, (B4)

up to first order in y. At high We values capillary effects can be neglected, and the unsteady
Bernoulli equation can be applied along the drop surface

∂φ

∂t
+ u2

2
=

[
∂φ

∂t
+ u2

2

]
y=yn(t)

≈ 1
2
. (B5)

For small values of t, unsteady effects dominate and (B5) can be further simplified using
φ(t = 0) = 0 at the free surface

φ ≈ φ(t = 0)− 1
2(1 − |∇φ|2)t ≈ φ(t = 0) = 0, |y| ≥ yn(t), z = 0. (B6a–c)

The solution of (B1) subject to boundary conditions (B2a–c), (B3a,b) and (B6a–c) thus
corresponds to the flow field induced by an infinitely long lamina with width 2yn moving
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∇

Figure 20. (a) Sketch showing the cross-sectional view of the liquid cylinder collision problem. (b) Sketch
showing the boundary conditions (B2a–c), (B3a,b) and (B6a–c) under which we solve the Laplace equation
(B1).

perpendicular to its surface. The following solution written in elliptical coordinates is
provided in Art. 71, 3◦ of Lamb (1932):

ψ = a e−ξ cos η, (B7)

where y = a cosh ξ cos η, z = a sinh ξ sin η. Utilising η = 0 at z = 0, we derive the total
vertical velocity uz for y > yn(t), z = 0 within the laboratory frame

uz(z = 0) = −1 − ∂ψ

∂z
= −1 − 2⎡

⎣ y
yn

+
√(

y
yn

)2

− 1

⎤
⎦

2

− 1

. (B8)

Now we apply Wagner’s condition (Wagner 1932; Riboux & Gordillo 2014) to (B8);
namely, the lamella foot position yn(t) is fixed by the time when a point on the drop
interface with initial coordinates y = yn(t), zd = y2

n/2 reaches z = 0

y2
n

2
− t −

∫ yn

0

2[
yn

κ
+

√(yn

κ

)2 − 1

]2

− 1

dτ
dκ

dκ = 0, (B9)

where κ is a dummy variable indicating the lamella foot location for τ < t. Taking κ =
yn(t) sin λ, and since we already know κ ∝ √

t, we assume that dτ/dκ = Cκ . Thus one
arrives at

y2
n

2
− t − Cy2

n

∫ π/2

0
(sin λ− sin λ cos λ) dλ = 0, (B10)

which leads to
dt

dyn
= yn(1 − C) = Cyn. (B11)

Thus C = 1/2, and by integration one finds yn = 2
√

t, or written dimensionally as

yn/R0 = 2
√

U0t/R0. (B12)
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Figure 21. (a) Two-dimensional simulation results at Lmax = 15 for We = 160 showing the evolution of the
contact region. (b) Comparison between simulation results at different values of We and the theoretical
prediction (B12) at very early times.

We conduct two-dimensional numerical simulations at a very high resolution level
Lmax = 15 to investigate the evolution of the interface profile close to the contact region,
which we show in figure 21(a). It can be observed that, for tU0/R0 ≥ 0.0096, a bulge on
the interface profile appears at z = 0 representing the nascent lamella, whereas the local
minimum in y denotes the lamella foot. Figure 21(b) further compares the evolution of
the lamella foot location yn measured from the numerical simulations with the theoretical
prediction (B12), where a good agreement is reached for We ≥ 160, indicating that the
potential flow analysis employed in this section indeed captures the lamella ejection at
very early times.

Solving (4.10)–(4.12) requires the initial values of (brim, yrim, vrim) at the moment of
lamella foot formation te. Equation (B12) suggests that

yrim(te) = 2
√

te, vrim(te) = 1/
√

te. (B13a,b)

We also expect that the nascent rim thickness brim(te) can be approximated using the
lamella height function h[yrim(te), te]. Thus the ejection time te remains the only unknown
in the initial conditions, although our numerical simulations suggest that it is close to zero.
To regularise the initial conditions, we choose a well-resolved and sufficiently small time
t′e = 4.5 × 10−3τcap when solving (4.10)–(4.12). We have confirmed that changing values
of t′e does not have significant influences on the solution of (4.10)–(4.12).
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