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Abstract For a prime number p and a free profinite group S on the basis X, let S(n,p), n = 1,2, . . . , be
the p-Zassenhaus filtration of S. For p > n, we give a word-combinatorial description of the cohomology
group H2

(
S/S(n,p),Z/p

)
in terms of the shuffle algebra on X. We give a natural linear basis for this

cohomology group, which is constructed by means of unitriangular representations arising from Lyndon
words.

Key words and phrases: p-Zassenhaus filtration, modular dimension subgroups, Galois cohomology, shuffle

algebra, shuffle relations, Massey products

2020 Mathematics Subject Classification: Primary 12G05

Secondary 68R15; 12F10; 12E30

1. Introduction

The purpose of this paper is to study the p-Zassenhaus filtration of a free profinite group

S and its cohomology by means of the combinatorics of words. Here p is a fixed prime

number, and we recall that the p-Zassenhaus filtration of a profinite group G is given by

G(n,p) =
∏

ipj≥n

(
G(i)
)pj

, n= 1,2, . . . – that is, G(n,p) is generated as a profinite group by

all pj-powers of elements of the ith term of the (profinite) lower central filtration G(i) of

G for ipj ≥ n.
This filtration was introduced by Zassenhaus [39] for discrete groups (under the name

dimension subgroups modulo p) as a tool to study free Lie algebras in characteristic p. It

proved itself to be a powerful tool in a variety of group-theoretic and arithmetic problems:
the Golod–Shafarevich solution to the class field tower problem ([20], [21, §7.7], [40], [13]),
the structure of finitely generated pro-p groups of finite rank [5, Ch. 11], mild groups [24]

and one-relator pro-p groups [15, §2.4], multiple residue symbols and their knot-theory

analogues ([29], [30, Ch. 8], [37]), and more.
In the Galois-theory context, where G = GF is the absolute Galois group of a field F

containing a root of unity of order p, it was shown in [12] that the quotient G/G(3,p)
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962 I. Efrat

determines the full cohomology ring H∗(G) =
⊕

i≥0H
i(G) with the cup product. Here

and in the sequel we abbreviate Hi(G) =Hi(G,Z/p) for the profinite cohomology group

of G with its trivial action on Z/p. Moreover, G/G(3,p) is the smallest Galois group of F

with this property (see also [3]).
In the present paper we focus on the cohomology group H2

(
G/G(n,p)

)
for a profinite

group G and n ≥ 2. Its importance is that it controls the relator structure in the pro-p

group G/G(n,p), whereas its generators are captured by the group H1(G/G(n,p)), which

is well understood [31, §3.9].
Our main result gives, for a free profinite group S on a basis X, an explicit description

of H2
(
S/S(n,p)

)
in terms of the combinatorics of words. Namely, we consider X as an

alphabet with a fixed total order, and letX∗ be the monoid of words in X. For every n≥ 0,
let Z〈X〉n be the free Z-module generated by all words in X∗ of length n. Let Sh(X)indec,n
be its quotient by the submodule generated by all shuffle products uxv, where u,v are

nonempty words in X∗ with |u|+ |v| = n. We recall that for words u = (x1 · · ·xr) and
v = (xr+1 · · ·xr+s) in X∗, one defines

uxv =
∑
σ

(
xσ−1(1) · · ·xσ−1(r+t)

)
∈ Z〈X〉,

where σ ranges over all permutations of {1,2, . . . ,r+ s} such that σ(1) < · · · < σ(r) and

σ(r+1) < · · · < σ(r+ t). Thus Sh(X)indec,n is the nth homogenous component of the

indecomposable quotient of the shuffle algebra Sh(X) in the sense of [9, §5] (see §9).
We prove the following word-combinatorial description of H2

(
S/S(n,p)

)
for p sufficiently

large:

Main Theorem. Suppose that n < p. There is a canonical isomorphism of Fp-linear

spaces (⊕
x∈X

Z/p

)
⊕ (Sh(X)indec,n⊗ (Z/p))

∼−→H2
(
S/S(n,p)

)
.

When p≤ n we have a similar result, in the form of a canonical epimorphism.
More specifically, to any word w in X∗ of length 1 ≤ |w| ≤ n we associate a canonical

cohomology element αw,n ∈H2
(
S/S(n,p)

)
. Then the isomorphism in the Main Theorem

is induced by the map w 
→ αw,n, where w is either a single-letter word or a word of

length n. In these cases, αw,n turns out to be a Bockstein element or an element of an
n-fold Massey product, respectively (see Examples 7.1–7.2 and the remarks below). The

construction of αw,n is based on a representation of S/S(n,p) in a group of unitriangular

(i.e., unipotent upper-triangular) matrices, which we derive from the Magnus map – see
§5 and §7 for details.

A main ingredient of the proof, of independent importance, is the construction of a

canonical Fp-linear basis of H
2
(
S/S(n,p)

)
, which we call the Lyndon basis. Recall that a

nonempty word w in X∗ is called a Lyndon word if it is smaller in the alphabetic order

(induced by the fixed total order on X ) than all its nontrivial right factors (i.e., suffixes).

The Lyndon basis then consists of all cohomology elements αw,n, where w is a Lyndon
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The p-Zassenhaus filtration 963

word of length
⌈
n/pk

⌉
for some k ≥ 0. When n≤ p the possible lengths are only 1 and n,

leading to the two direct summands in the left-hand side of the Main Theorem.
We further use Lyndon words to give a canonical basis of the Fp-linear space

S(n,p)/
(
S(n,p)

)p [
S,S(n,p)

]
, and prove a duality (in a unitriangular sense) between the

Lyndon basis of H2
(
S/S(n,p)

)
and this latter basis (Corollary 8.2). In the smallest case,

n=2, this recovers classical duality results between Bockstein elements/cup products and

p-powers/commutators, respectively, proved by Labute in his classical work on Demuškin

groups ([22, Prop. 8], [34], [31, Ch. III, §9], [34]). In the case n = 3, it refines results by
Vogel [37, §2].
The paper builds upon our earlier work [8], supplemented by [9], where we proved

analogous results for the lower p-central filtration, defined inductively by G(1,p) =G and

G(n,p) =
(
G(n−1,p)

)p [
G,G(n−1,p)

]
for n ≥ 2. In many respects, this filtration and the p-

Zassenhaus filtration are the opposite extremes among the filtrations related to mod-p

cohomology.

While we follow the general philosophy of [8] and [9], their methods fall short when
applied to the p-Zassenhaus filtration. Therefore we modify these methods in several

aspects: mainly, whereas in the lower p-central case one should consider words w of

arbitrary lengths, in the case of Zassenhaus filtration we need to restrict to words of
lengths

⌈
n/pk

⌉
, k ≥ 0, as above. These ‘jumps’ arise when we analyze the filtration for

the group Ui

(
Z/pj

)
of unitriangular (i+1)× (i+1)-matrices over Z/pj . They turn out

to have crucial, and quite nonobvious, properties, which are in particular needed for

handling the dual S(n,p)/
(
S(n,p)

)p [
S,S(n,p)

]
ofH2

(
S/S(n,p)

)
. Here commutator identities

due to Shalev [36] also play a key role. By contrast, the corresponding quotient in the

lower p-central case is S(n,p)/S(n+1,p), which is considerably more tractable. In addition,

the analysis for the lower p-central filtration in [8] is based on (mixed) Lie-algebra
computations. In the case of Zassenhaus filtration we instead apply the theory of free

p-restricted Lie algebra, following [25] and [15].

The correspondence in the Main Theorem demonstrates deep connections between the
p-Zassenhaus filtration and its cohomology and the n-fold Massey product H1(G)n →
H2(G). In fact, it was shown in [7] that when S is a free profinite group, S(n,p)/S(n+1,p)

is dual to the subgroup of H2
(
S/S(n,p)

)
generated by all such products. Moreover, the

latter subgroup is the kernel of the inflation map H2
(
S/S(n,p)

)
→H2

(
S/S(n+1,p)

)
. The

size of S(n,p)/S(n+1,p) was computed in [26]. The behavior of Massey products for absolute

Galois groups G=GF has been the focus of extensive research in recent years, where the

p-Zassenhaus filtration has played an important role (see, e.g., [10], [16], [17], [18], [27],
[28] and the references therein).

2. Hall sets

Let X be a nonempty set, considered as an alphabet. Let again X∗ be the free monoid on

X. We consider its elements as associative words. It is equipped with the binary operation
(u,v) 
→ uv of associative concatenation. Let MX be the free magma on X (see [35,

Part I, Ch. IV, §1], [8, §2]). Thus the elements of MX are the nonempty nonassociative

words in the alphabet X, and it is equipped with the binary operation (u,v) 
→ (uv)
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964 I. Efrat

of nonassociative concatenation. There is a natural foliage (brackets-dropping) map

f : MX → X∗, which is the identity on X (considered as a subset of both MX and

X∗) and which commutes with the concatenation maps.
We fix a total order on X. It induces on X∗ the alphabetic order ≤alp, which is also

total. We denote the length of a word w ∈X∗ by |w|.
Let H be a subset of words in MX and ≤ any total order on H. We say that (H, ≤) is

a Hall set in MX if the following conditions hold [33, §4.1]:

(1) X ⊆H as ordered sets.

(2) If h= (h′h′′) ∈H\X, then h′′ ∈H and h < h′′.

(3) For h= (h′h′′) ∈MX \X, one has h ∈H if and only if
• h′,h′′ ∈H and h′ < h′′, and
• either h′ ∈X or h′ = (h1h2) with h2 ≥ h′′.

In this case we say that H = f(H) is a Hall set in X∗.
Every w ∈H can be written as w= f(h) for a unique h∈H [33, Cor. 4.5]. If w ∈H \X,

then we can uniquely write h= (h′h′′) with h′,h′′ ∈H [33, p. 89]. Setting w′ = f(h′),w′′ =
f(h′′) ∈H, we call w = w′w′′ the standard factorization of w.

Example 2.1. The set of all Lyndon words in X∗ (see the Introduction) is a Hall set

with respect to ≤alp [33, Th. 5.1].

The standard factorization of Lyndon words is explicitly given as follows:

Lemma 2.2. Let w,u,v ∈X∗ be nonempty words such that w= uv and w is Lyndon. The
following conditions are equivalent:

(a) w = uv is the standard factorization of w in the set of Lyndon words.

(b) v is the ≤alp-minimal nontrivial right factor of w which is Lyndon.

(c) v is the longest nontrivial right factor of w which is Lyndon.

Proof. (a)⇔(b): This is shown in the proof of [33, Th. 5.1].
(b)⇒(c): Let v′ by a nontrivial Lyndon right factor of w. By (b), v ≤alp v′. Since v′

is Lyndon, v cannot be a nontrivial right factor of v′. Hence v′ is a right factor of v, so

|v′| ≤ |v|.
(c)⇒(b): Let v′ be a nontrivial Lyndon right factor of w. By (c), it is a right factor of

v. Since v is Lyndon, v ≤alp v′.

We order Z≥0×X∗ lexicographically with respect to the usual order on Z≥0 and ≤alp.

We then define a second total order � on X∗ by setting

w1 � w2 ⇐⇒ (|w1|,w1)≤ (|w2|,w2) (2.1)

with respect to the latter order on Z≥0×X∗.

3. Lie algebras

Let R be a unital commutative ring. We write R〈X〉 for the free associative R-algebra over

the set X. We view its elements as polynomials in the set X of noncommuting variables
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and with coefficients in R. Alternatively, it is the free R-module on the basis X∗ with
multiplication induced by concatenation. The algebra R〈X〉 is graded with respect to

total degree.

We write R〈〈X〉〉 for the R-algebra of formal power series in the set X of noncommuting
variables and with coefficients in R.

Let k be a field. For an associative k -algebra A, let ALie be the Lie algebra on A with

Lie bracket [a,b] = ab− ba.

We now assume that X is a nonempty totally ordered set, and fix a Hall set H in X∗.
Let L(X) be the free Lie k -algebra on the set X. The universal enveloping algebra of

L(X) is k〈X〉 [35, Part I, Ch. IV, Th. 4.2].

Let L be a Lie k -algebra containing X. Define a map PL = PH
L : H → L by PL(x) = x

for x ∈X, and PL(w) = [PL(u),PL(v)], if w = uv is the standard factorization of w, as in

§2. This construction is functorial in L in the natural sense.

Proposition 3.1.

(a) When L= L(X), the images PL(w), where w ∈H, form a k-linear basis of L(X).

(b) Let L be a Lie k-algebra containing X. Then the image of PL k-linearly spans the
Lie k-subalgebra of L generated by X.

Proof.

(a) See [33, Th. 4.9(i)].
(b) This follows from (a), the universal property of L(X), and the functoriality of PL.

By Proposition 3.1(a) and the Poincaré–Birkhoff–Witt theorem [35, Part I, Ch. III, §4],
the products

∏m
i=1PL(X)(wi), with w1 ≥alp · · · ≥alp wm in H, form a k -linear basis of the

universal enveloping algebra k〈X〉 of L(X).
Next assume that char k = p > 0. A restricted Lie k-algebra L is a Lie k -algebra with

an additional unary operation a 
→ a[p] for which there is an associative k -algebra A and

a Lie k -algebra monomorphism θ : L→ALie such that θ
(
a[p]
)
= θ(a)p for every a ∈ L ([5,

§12.1]; see also [19] for an alternative equivalent definition). A morphism of restricted Lie

k -algebras is a morphism of Lie k -algebras which commutes with the (·)[p]-maps.

Every associative k -algebra A is endowed with the structure of a restricted Lie algebra

Ares.Lie, where we set [a,b] = ab− ba and a[p] = ap. Every restricted Lie k -algebra L has
a unique restricted universal enveloping algebra Ures(L). This means that Ures(L) is an

associative k -algebra, and the functor A 
→ Ares.Lie from the category of associative k -

algebras to the category of restricted Lie k -algebras and the functor L 
→ Ures(L) from
the category of restricted Lie k -algebras to the category of associative k -algebras are

adjoint ([5, §12.1], [19, Ch. V, Th. 12]).

Given a restricted Lie k -algebra L containing X, we define a map P̂L = P̂H
L : Z≥0×H →

L by P̂L(j,w) = PL(w)
[p]j , where (·)[p]j denotes applying j times the operation (·)[p]. In

analogy with Proposition 3.1(b) we have the following:

Proposition 3.2. The image of P̂L k-linearly spans the restricted Lie k-subalgebra of L

generated by X.
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966 I. Efrat

Proof. Let L̂0 be the k -linear subspace of L spanned by Im
(
P̂L

)
. Let L0 be the k -linear

subspace of L spanned by Im(PL). Clearly, X ⊆L0 ⊆ L̂0. By Proposition 3.1(b), L0 is the

Lie k -subalgebra of L generated by X.

Since char k = p, the binomial formula implies that the subspace L̂0 is closed under

(·)[p].
If w,u∈H, then [PL(w),PL(u)]∈L0. It follows from the k -bilinearity of the Lie bracket

that for every α,β ∈ L0, also [α,β] ∈ L0. By induction on m≥ 1, the m-times iterated Lie

brackets

[α,m,β] = [α,[α,[. . . [α,β]. . . ]]] and [α,β,m] = [. . . [[α,β],β], . . . ,β]

are also contained in L0. Using the identities
[
α,β[p]

]
= [α,p,β] and

[
α[p],β

]
= [α,β,p] (see

[5, p. 297]), we deduce that
[
α[p]j,β[p]r

]
∈ L0 for every j,r ≥ 0. By the bilinearity again,

L̂0 is therefore closed under the Lie bracket.

Hence L̂0 is the restricted Lie k -subalgebra of L generated by X.

There is a free restricted k-algebra L̂(X) on the generating set X, with the standard

universal property. It is the restricted Lie k -subalgebra of k〈X〉res.Lie generated by X, and

its restricted universal enveloping algebra is k〈X〉 [15, Prop. 1.2.7]. We note that in the
algebra k〈X〉 one has

P̂L̂(X)(j,w) = PL(X)(w)
pj

for every j ≥ 0 and w ∈ H. The following analogue of Proposition 3.1(a) generalizes a

result of Gärtner [15, Th. 1.2.11] (who considers a specific Hall family H ):

Corollary 3.3. The polynomials P̂L̂(X)(j,w), where j ≥ 0 and w ∈ H, form a k-linear

basis of L̂(X).

Proof.We consider L̂(X) as a k -linear subspace of k〈X〉. By Proposition 3.2, it is spanned

by the powers P̂L̂(X)(j,w), where j ≥ 0 and w ∈ H. As already observed, the products∏m
i=1PL(X)(wi), with w1 ≥alp · · · ≥alp wm in H, form a k -linear basis of k〈X〉. In particular,

the powers P̂L̂(X)(j,w) = PL(X)(w)
pj

are k -linearly independent. Hence they form a k -

linear basis of L(X)res.

We grade L(X) and L̂(X) by total degree, and write L(X)n, L̂(X)n for their

homogenous components of degree n.

Corollary 3.4. Let n be a positive integer.

(a) The PL(X)(w), with w ∈H and |w|= n, form a k-linear basis of L(X)n.

(b) The P̂L̂(X)(j,w), with j ≥ 0 and w ∈H satisfying n = |w|pj , form a k-linear basis

of L̂(X)n.

Proof.
(a) This follows from Proposition 3.1(a), since PL(X)(w) has degree |w| in k〈X〉.
(b) This follows from Corollary 3.3, since P̂L̂(X)(j,w) has degree |w|pj in k〈X〉.
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4. The p-Zassenhaus filtration

We fix as before a prime number p. For an integer 1≤ i≤ n, let jn(i) = �logp(n/i)� – that
is, jn(i) is the least integer j such that ipj ≥ n.

Lemma 4.1. The following conditions on 1≤ i≤ n are equivalent:

(a) i′pjn(i
′) ≥ ipjn(i) for every 1≤ i′ ≤ i.

(b) i=
⌈
n/pk

⌉
for some k ≥ 0.

Proof. Set ik =
⌈
n/pk

⌉
. Thus i0 = n, and the sequence ik is weakly decreasing to 1. We

may restrict ourselves to k such that pk ≤ n. Then
(
n/pk

)
+1≤ n/pk−1, so n/pk ≤ ik <

n/pk−1. Thus jn(ik) = k.

Since n/pk ≤
⌈
n/pk+1

⌉
p, one has ikp

k ≤ ik+1p
k+1 – that is, the sequence ikp

jn(ik) is
weakly increasing in the above range.

We also observe that if i < ik−1, then i < n/pk−1 – that is, jn(i)≥ k.

(a) ⇒(b): Since (b) certainly holds for i= n, we may assume that i < n, so there is k in
the above range such that ik ≤ i < ik−1. By the previous observation, jn(i)≥ k. We take

in (a) i′ = ik to obtain

ikp
jn(ik) ≥ ipjn(i) ≥ ikp

k = ikp
jn(ik).

Hence i= ik.

(b) ⇒(a): Suppose that 1≤ i′ < ik. There exists l in the above range such that il ≤ i′ <
il−1. Necessarily, l > k, so ilp

l ≥ ikp
k. As we have observed, jn(i

′)≥ l. Hence

i′pjn(i
′) ≥ ilp

l ≥ ikp
k = ikp

jn(ik).

We define J(n) to be the set of all 1 ≤ i ≤ n such that the equivalent conditions of

Lemma 4.1 hold.

Remark 4.2.

(1) When n≤ p, one has J(n) = {1,n}.
(2) Let 1 �= i ∈ J(n) and take k such that i =

⌈
n/pk

⌉
. By the first paragraph of the

proof of Lemma 4.1, jn(i) = k.

Now let G be a profinite group. Given closed subgroups K,K ′ of G and a positive
integer m, we write [K,K ′] (resp., Km) for the closed subgroup of G generated by all

commutators [k,k′] = k−1(k′)−1kk′ (resp., powers km) with k ∈K and k′ ∈K ′.
Recall that the (profinite) lower central series G(i), i = 1,2, . . . , of G is defined

inductively by G(1) = G, G(i+1) =
[
G,G(i)

]
. As in the Introduction, we denote the p-

Zassenhaus filtration of G by G(n,p), n= 1,2, . . . . Since G(i) ≤G(n) for i > n,

G(n,p) =
∏

ipj≥n

(
G(i)
)pj

=

n∏
i=1

(
G(i)
)pjn(i)

.

The subgroups G(n,p) of G are characteristic, hence normal. We note that G(n) ≤G(n,p).
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968 I. Efrat

The Zassenhaus filtration can also be defined inductively by

G(1,p) =G, G(n,p) =
(
G(�n/p�,p)

)p ∏
i+j=n

[
G(i,p),G(j,p)

]
, (4.1)

for n≥ 2. Indeed, this follows from a theorem of Lazard in the case of discrete groups ([5,

Th. 11.2], [25, p. 209, Equation (3.14.5)]), and the profinite analog follows by a density

argument. It follows from definition (4.1) that for n≥ 2,

G(np,p) ≤
(
G(n,p)

)p [
G,G(n,p)

]
. (4.2)

Let r≥ 0. The following identity was proved in the discrete case by Shalev [36, Prop. 1.2];
the profinite analog follows again by a density argument:∏

ipj≥n

(
G(i+r+1)

)pj

=

⎡⎣G, ∏
ipj≥n

(
G(i+r)

)pj

⎤⎦ .
In particular, ∏

ipj≥n

(
G(i+1)

)pj

=
[
G,G(n,p)

]
. (4.3)

Proposition 4.3. Let 1≤ i≤ n be an integer such that i �∈ J(n). Then(
G(i)
)pjn(i)

≤
(
G(n,p)

)p [
G,G(n,p)

]
.

Proof. As i �∈ J(n), there exists 1 ≤ i′ < i such that ipjn(i) > i′pjn(i
′). We abbreviate

j = jn(i) and j′ = jn(i
′), so ipj,i′pj

′ ≥ n.

If j > j′, then

(
G(i)
)pj

≤
((

G(i′)
)pj′
)pj−j′

≤
(
G(n,p)

)p
.

If j ≤ j′, then the inequality i > i′pj
′−j and equation (4.3) give(

G(i)
)pj

≤
(
G

(
i′pj′−j+1

))pj

≤
[
G,G(n,p)

]
.

It follows from definition (4.1) that for every n the quotient G(n,p)/G(n+1,p) is abelian

of exponent dividing p. Consider the graded Fp-module

grG=
⊕
n≥0

G(n,p)/G(n+1,p).

The commutator map and the p-power map induce on grG the structure of a p-restricted

Lie Fp-algebra (see [5, §12.2], [15, Prop. 1.2.14]).
We now specialize to the case where S is a free profinite group on the basis X, in the

sense of [14, §17.4]. It is the inverse limit of the free profinite groups on finite subsets of

X [14, Lemma 17.4.9], so in our following results one may assume whenever convenient

that X is actually finite, and use limit arguments for the general case.
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By [15, Th. 1.3.8], there is a well-defined isomorphism grS
∼−→ L̂(X) of graded restricted

Lie algebras. Specifically, the coset of x ∈X in gr1S = S/S(2,p) maps to x.

Let H be, as before, a fixed Hall set in X∗. For every word w ∈ H we associate an
element τw ∈ S as in [8]. Thus τ(x) = x for x ∈X, and for a word w ∈H of length i > 1

with standard factorization w = uv, where u,v ∈ H (see §2), we set τw = [τu,τv]. Then

τw ∈ S(i). Hence if ipj ≥ n, then τp
j

w ∈
(
S(i)
)pj

≤ S(n,p).

Proposition 4.4. Let n ≥ 1. The cosets of the powers τp
j

w , with w ∈H and n = |w|pj,
form an Fp-linear basis of S(n,p)/S(n+1,p).

Proof. We use the terminology of §3 with the ground field k = Fp. By induction on

the structure of w, the isomorphism grS
∼−→ L̂(X) of restricted Lie Fp-algebras maps the

coset of τw to PL(X)(w). Therefore it maps the coset of τp
j

w to P̂L̂(X)(j,w) = PL(X)(w)
pj

considered as polynomials in Fp〈X〉. The assertion now follows from Corollary 3.4(b).

Remark 4.5. Vogel [37, Ch. I, §3] uses a specific Hall set H to give Fp-linear bases

of S(n,p)/S(n+1,p) for n = 2,3, as well as generating sets for arbitrary n. Namely, for
similarly defined basic commutators cw ∈ S(i) of words w ∈H with |w|= i, the generating

set consists of all cp
j

w with n= ipj . Furthermore, according to [26, Cor. 3.12] the set of all

such powers forms a basis of S(n,p)/S(n+1,p), but the proof lacks details. I thank J. Mináč
for a correspondence on the latter reference.

Let n≥ 1. For a word w ∈H of length 1≤ i≤ n we abbreviate

σw = τp
jn(i)

w .

Thus σw ∈ S(n,p).

Theorem 4.6. The cosets of σw, where w ∈ H has length i ∈ J(n), generate
S(n,p)/

(
S(n,p)

)p [
S,S(n,p)

]
.

Proof. Proposition 4.4 implies, by induction on r ≥ 1, that S(n,p)/S(n+r,p) is generated

by the cosets of τp
j

w , where w ∈ H has length i, and n ≤ ipj < n+ r. We apply this
for n+ r = np. By the inclusion (4.2), S(np,p) ≤

(
S(n,p)

)p [
S,S(n,p)

]
, and we deduce that

S(n,p)/
(
S(n,p)

)p [
S,S(n,p)

]
is generated by the cosets of τp

j

w , where w ∈ H has length i

and n≤ ipj <np. Moreover, it suffices to take such powers with j = jn(i), since otherwise

τp
j

w ∈
(
S(n,p)

)p
. Finally, by Proposition 4.3, if i �∈ J(n) then the coset of σw = τp

jn(i)

w is

trivial. We are therefore left with the generators σw, as in the assertion.

5. The fundamental matrix

For a profinite ring R, let R〈〈X〉〉× be the group of invertible elements in R〈〈X〉〉 (see

§3). As before, let S be the free profinite group over the basis X. The continuous Magnus

homomorphism

Λ = ΛR : S →R〈〈X〉〉×
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is defined on the (profinite) generators x ∈X of S by Λ(x) = 1+x (see [7, §5] for details,
and note that 1+x is invertible by the geometric progression formula). For an arbitrary

σ ∈ S we write

Λ(σ) =
∑

w∈X∗

εw,R(σ)w,

with εw,R(σ)∈R. The map εw,R : S→R is continuous, and ε∅,R(σ) = 1 for every σ (where

∅ denotes the empty word).

Let Ui(R) be the profinite group of all unitriangular (i+1)× (i+1)-matrices over R.
Given a word w = (x1 · · ·xi) ∈ X∗ of length i, we define a continuous map ρw : S →
Ui(R) by

ρw(σ) =
(
ε(xkxk+1···xl−1),R(σ)

)
1≤k≤l≤i+1

.

The fact that Λ is a homomorphism implies that ρw is a homomorphism of profinite

groups [7, Lemma 7.5]. We call it the Magnus representation of S corresponding to w.

The subgroup S(n) of S is characterized in terms of the Magnus map as the set of all
σ ∈ S such that εw,Zp

(σ) = 0 for every word w of length 1≤ i < n [8, Prop. 4.1(a)]. The

following result gives similar restrictions on the Magnus coefficients of elements of S(n,p).

In the discrete case it was proved in [2, Example 4.6], where it was further shown that
these restrictions in fact characterize S(n,p). While it is possible to derive the proposition

from the discrete case using a density argument, we provide a direct proof.

Proposition 5.1. If σ ∈ S(n,p), then εw,Zp
(σ) ∈ pjn(i)Zp for every word w ∈X∗ of length

i≥ 1.

Proof. Consider the subset

I =
∑
i≥1

∑
|w|=i

pjn(i)Zpw =
∑

1≤i≤n

∑
|w|=i

pjn(i)Zpw+
∑
i>n

∑
|w|=i

Zpw

of Zp〈〈X〉〉. It is an ideal in Zp〈〈X〉〉, and therefore 1+ I is closed under multiplication.

Moreover, the identity α−1 = 1−α−1(α− 1) shows that 1+ I is in fact a subgroup of

Zp〈〈X〉〉×.
As S(n,p) =

∏n
i=1

(
S(i)
)pjn(i)

, it therefore suffices to show that ΛZp

(
τp

jn(i)
)
∈ 1+ I

for every τ ∈ S(i) with 1 ≤ i ≤ n. We abbreviate j = jn(i). Then ΛZp
(τ) = 1 +∑

|w|≥i εw,Zp
(τ)w, by [8, Prop. 4.1(a)]. For every 1 ≤ l ≤ pj such that il ≤ n, one has

pjn(il) |
(
pj

l

)
[2, Example 3.9]. Hence

ΛZp

(
τp

j
)
=
∑

0≤l≤pj

(
pj

l

)⎛⎝∑
|w|≥i

εw,Zp
(τ)w

⎞⎠l

⊆ 1+
∑

1≤l≤pj

(
pj

l

)⎛⎝∑
|w|≥i

Zpw

⎞⎠l

⊆ 1+
∑

1≤l≤pj,il≤n

pjn(il)

⎛⎝∑
|w|≥i

Zpw

⎞⎠l

+
∑

1≤l≤pj,il>n

⎛⎝∑
|w|≥i

Zpw

⎞⎠l

⊆ 1+ I,

as desired.
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As before, let H be a Hall set in X∗.

Corollary 5.2. Let w,w′ be nonempty words in X∗ of lengths 1 ≤ i,i′ ≤ n, respectively,

with w′ ∈H. Then εw,Zp
(σw′) ∈ pjn(i)Zp.

For an integer 1≤ i≤ n, let

πi : Zp → Z/pjn(i)+1

be the natural epimorphism. For words w,w′ of lengths i, i′, respectively, with w′ ∈H,

we define

〈w,w′〉n = πi

(
εw,Zp

(σw′)
)
.

By Corollary 5.2, 〈w,w′〉n ∈ pjn(i)Zp/p
jn(i)+1Zp. We identify the latter group with Z/p,

and thus view 〈w,w′〉n as an element of Z/p.

Consider the (possibly infinite) transposed matrix[
〈w,w′〉n

]T
w,w′

over Z/p, where w,w′ range over all words in H of lengths in J(n), and indexed with

respect to the total order � on X∗ defined in §2. We call it the fundamental matrix of
level n of H.

We now focus on the Hall set of Lyndon words (see the Introduction). We record the

following fundamental triangularity property of H [33, Th. 5.1]: For every Lyndon word

w ∈X∗, one has

ΛZp
(τw) = 1+w+ a combination of words strictly larger than w in � . (5.1)

Proposition 5.3. Let H be the Hall set of all Lyndon words in X∗. The fundamental
matrix of H of level n is unitriangular (i.e., unipotent and upper-triangular).

Proof. Let w be a Lyndon word of length i≤ n. By (5.1),

ΛZp
(σw) = (1+w+ · · ·)pjn(i)

= 1+pjn(i)w+ · · · ,

where the remaining terms are multiples of words strictly larger than w in �. Therefore
〈w,w〉n = πi

(
pjn(i)

)
= 1 in Z/p.

Furthermore, for Lyndon words w≺w′ we get εw,Zp
(σw′) = 0, whence 〈w,w′〉n =0 (note

that the empty word is not Lyndon).
Consequently, the matrix [〈w,w′〉n]w,w′ is unipotent lower -triangular, and therefore its

transpose is unitriangular.

Example 5.4. Suppose that n= 2. Then J(n) = {1,2}.
The Lyndon words of length ≤ 2 are the words w = (x) and w = (xy), with x,y ∈X,

x < y. Then σw is τp
j2(1)

w = xp and τp
j2(2)

w = [x,y], respectively. In [8, §10] it is shown that
the value of 〈w,w′〉, where w,w′ are Lyndon words of lengths ≤ 2, is 1 if w = w′ and is 0

otherwise. Thus the fundamental matrix of level 2 for the Lyndon words is the identity

matrix.
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Example 5.5. Suppose that n= 3. Then J(n) = {1,3} for p≥ 3 and J(3) = {1,2,3} for

p= 2.

The Lyndon words w of length 3 are of the forms

(xxy),(xyy),(xyz),(xzy),

where x,y,z ∈X and x < y < z. For these words we have

σ(xxy) = [x,[x,y]], σ(xyy) = [[x,y],y], σ(xyz) = [x,[y,z]], σ(xzy) = [[x,z],y],

respectively. We recall that 〈w,w〉3 = 1 for every w, and 〈w,w′〉3 = 0 when w ≺ w′. It
remains to compute 〈w,w′〉3 when w′ ≺ w.

If |w|,|w′| ≤ 2, then by Example 5.4, 〈w,w′〉3 = 0. We may therefore assume that |w′| ≤
|w|= 3.
If w contains a letter which does not appear in w′, then εw,Zp

(σw′) = 0, whence

〈w,w′〉3 = 0. Thus we may assume that every letter in w appears in w′.
When w = (xyy) and w′ = (xxy), where x < y, the proof of [8, Prop. 11.2] gives

〈w,w′〉3 = ε(xyy)([x,[x,y]]) = 0.

Similarly, when w = (xzy) and w′ = (xyz), where x < y < z, the proof of [8, Prop. 11.2]

gives

〈w,w′〉3 = ε(xzy),Zp
([x,[y,z]]) =−1.

This covers all possible cases when p≥ 3. When p= 2 we also need to consider Lyndon
words w′ = (xy) of length 2, where x < y. Then w = (xxy) or w = (xyy). An explicit

computation gives

ΛZ2
([x,y]) = 1+xy−yx+xyx−yxy−x2y+y2x+ · · · ,

where the remaining terms are of degree ≥ 4. The square of this series has no terms

(xxy) and (xyy), so ε(xxy),Z2

(
[x,y]2

)
= ε(xyy),Z2

(
[x,y]2

)
= 0. Therefore 〈(xxy),(xy)〉3 =

〈(xyy),(xy)〉3 = 0.
Altogether, we have shown that

〈w,w′〉3 =

⎧⎪⎨⎪⎩
1 if w = w′,

−1 if w = (xzy),w′ = (xyz), where x,y,z ∈X, x < y < z,

0 otherwise.

In particular, the fundamental matrix need not be the identity matrix.

6. Unitriangular matrices

Let i≥ 1 and j ≥ 0 be integers and consider the ring R=Z/pj+1. In this section we study
the p-Zassenhaus filtration of the group U = Ui(R) of all unitriangular (i+1)× (i+1)-

matrices over R, and in particular characterize the values of i,j for which U(n,p)
∼= Z/p

(see §5 for the notation).

https://doi.org/10.1017/S1474748021000426 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000426


The p-Zassenhaus filtration 973

We denote the unit matrix in U by I, and write E1,i+1 for the matrix which is 1 at entry

(1,i+1) and is 0 elsewhere. For i′ ≥ 1, the subgroup U(i
′) of U consists of all matrices in

U which are zero on the first i′−1 diagonals above the main diagonal [1, Th. 1.5(i)].

We record the following fact about binomial coefficients:

Lemma 6.1. Let t,j′ be positive integers such that 1≤ t≤ pj
′
. The following conditions

are equivalent:

(a) pj |
(
pj′

l

)
, l = 1,2, . . . ,t.

(b) pj |
(
pj′

l

)
for l = p�logp t�.

(c) j′ ≥ j+
⌊
logp t

⌋
.

Proof. (a)⇒(b) is trivial. For (a)⇒(c) and (b)⇒(c) see [9, Prop. 2.2(c)] and its proof.

Proposition 6.2. Let 1≤ i′ ≤ i and j′ ≥ 0.

(a) One has
(
U(i

′)
)pj′

= {I} if and only if j′ ≥ j+1+
⌊
logp(i/i

′)
⌋
.

(b) One has
(
U(i

′)
)pj′

= I+pjZE1,i+1 if and only if j′ = j+logp(i/i
′) (in particular,

i/i′ is a p-power).

(c) One has
(
U(i

′)
)pj′

≤ I+pjZE1,i+1 if and only if j′ ≥ j+logp(i/i
′).

Proof. Let N be an (i+1)× (i+1)-matrix over Z/pj+1 such that I +N ∈ U(i
′). Then

N l = 0 for every integer l with i/i′ < l. Hence

(I+N)p
j′

=

pj′∑
l=0

(
pj

′

l

)
N l =

min
(
pj′,�i/i′�

)∑
l=0

(
pj

′

l

)
N l.

Further, if i′ | i, then N i/i′ ∈ ZE1,i+1.

In particular, let M be the (i+1)× (i+1)-matrix over Z/pj+1 which is 1 on the (first)

super-diagonal and is 0 elsewhere. Then the matrix M i′l is 1 on the i′lth diagonal above

the main one and is 0 elsewhere. In particular, I+M i′ ∈ U(i
′). By what we have justed

noted,

(
1+M i′

)pj′

=

min
(
pj′,�i/i′�

)∑
l=0

(
pj

′

l

)
M i′l.

This matrix is
(
pj′

l

)
on the i′lth diagonals above the main one and is 0 elsewhere.

(a) By the previous observations,
(
U(i

′)
)pj′

= {I} holds if and only if

pj+1 |
(
pj

′

l

)
, l = 1,2, . . . ,min

(
pj

′
,�i/i′�

)
.
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In light of Lemma 6.1, this is equivalent to j′ ≥ j+1+min
(
j′,
⌊
logp�i/i′�

⌋)
, and it remains

to note that
⌊
logp�i/i′�

⌋
=
⌊
logp(i/i

′)
⌋
.

(b) First assume that i= i′. Then U(i
′) = I+ZE1,i+1. Hence

(
U(i

′)
)pj′

= I+Zpj
′
E1,i+1,

and the equality
(
U(i

′)
)pj′

= I+ZpjE1,i+1 means that j′ = j, as desired.

Next we assume that i > i′. By the previous observations,
(
U(i

′)
)pj′

= I +ZpjE1,i+1

holds if and only if the following conditions hold:

(i) i/i′ is an integer ≤ pj
′
;

(ii) pj+1 |
(
pj′

l

)
, l = 1,2, . . . ,(i/i′)−1;

(iii) pj |
(
pj′

i/i′

)
, pj+1 � |

(
pj′

i/i′

)
.

By Lemma 6.1 again, (i)–(iii) mean that i/i′ is an integer ≤ pj
′
, and

j′ ≥ j+1+
⌊
logp((i/i

′)−1)
⌋

j′ ≥ j+
⌊
logp(i/i

′)
⌋

j′ < j+1+
⌊
logp(i/i

′))
⌋
.

This amounts to saying that j′ = j+logp(i/i
′).

(c) This follows from (a) and (b).

The case i′ = 1 of Proposition 6.2(a) was shown by Sawin (see [9, Prop. 2.3]).
The following corollary stands behind our definition of the sets J(n). In the case i= n

it was proved by Mináč, Rogelstad and Tân [26, Cor. 3.7].

Corollary 6.3. Suppose that 1≤ i≤ n and j = jn(i). One has U(n,p) = I+pjn(i)ZE1,i+1

if and only if i ∈ J(n).

Proof. Recall that U(n,p) =
∏n

i′=1

(
U(i

′)
)pjn(i′)

.

If i′ > i, then U(i
′) = {I}, whence

(
U(i

′)
)pjn(i′)

= {I}.

Taking in Proposition 6.2(b), i′ = i, and j′ = j = jn(i), we obtain that
(
U(i)
)pjn(i)

=

I+pjn(i)ZE1,i+1.
Therefore, U(n,p) = I + pjn(i)ZE1,i+1 holds if and only if for every 1 ≤ i′ ≤ i one has(
U(i

′)
)pjn(i′)

≤ I + pjn(i)ZE1,i+1. By Proposition 6.2(c), this inclusion is equivalent to

i′pjn(i
′) ≥ ipjn(i).

Thus, for i ∈ J(n) and U= Ui

(
Z/pjn(i)+1

)
there is a central extension

0→ U(n,p)(∼= Z/p)→ U→ U := U/U(n,p) → 1, (6.1)

where the isomorphism is the projection on the (1,i+ 1)-entry composed with the

isomorphism pj(i)Z/pj(i)+1Z∼= Z/p.
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7. The cohomology elements αw,n

Let S be again a free profinite group on the basis X, and let n ≥ 2. Consider

the transgression homomorphism trg : H1
(
S(n,p)

)S → H2
(
S/S(n,p)

)
(recall that the

cohomology groups are with respect to the coefficient module Z/p with trivial action).

It is the differential d012 in the Lyndon–Hochschild–Serre spectral sequence corresponding
to the closed normal subgroup S(n,p) of S [31, Th. 2.4.3]. From the five-term sequence in

profinite cohomology [31, Prop. 1.6.7] and the fact that S has cohomological dimension

1, it follows that trg is an isomorphism.
Now consider a word w of length i ∈ J(n). Consider the ring Ri = Z/pjn(i)+1, and

set U = Ui(Ri). As before, let U = U/U(n,p). By Corollary 6.3, the projection on the

(1,i+1)-entry gives an isomorphism

U(n,p)
∼−→ pjn(i)Z/pjn(i)+1Z.

The Magnus representation ρ= ρw : S → U induces continuous homomorphisms

ρ̄w : S/S(n,p) → U, ρ0w = ρ|S(n,p)
: S(n,p) → U(n,p).

Let ρ̄∗w : H2
(
U
)
→H2

(
S/S(n,p)

)
be the pullback of ρ̄w.

Let γ = γn,Ri
∈H2

(
U
)
correspond to the extension (6.1) under the Schreier correspon-

dence [31, Th. 1.2.4]. We set

αw,n = ρ̄∗w(γ) ∈H2
(
S/S(n,p)

)
.

Example 7.1 αw,n for a word w = (x) of length 1. Let j = jn(1) = �logpn�, so U =

U1

(
Z/pj+1

)∼=Z/pj+1. As 1∈ J(n), we have U(n,p)
∼=Z/p, and the central extension (6.1)

becomes

0→ Z/p→ Z/pj+1 → Z/pj → 0. (7.1)

We consider this extension as a sequence of trivial S/S(n,p)-modules. The Bockstein
homomorphism

Bockpj,S/S(n,p)
: H1

(
S/S(n,p),Z/p

j
)
→H2

(
S/S(n,p)

)
is the associated connecting homomorphism.

We may identify ρ(x) : S → U with ε(x),Z/pj+1 : S → Z/pj+1, and ρ̄(x) : S/S(n,p) → U

with ε(x),Z/pj : S/S(n,p) → Z/pj , which are both continuous homomorphisms. Thus α(x),n

corresponds to the pullback of the extension (7.1) under ε(x),Z/pj . By [8, Remark 7.3],

α(x),n = Bockpj,S/S(n,p)

(
ε(x),Z/pj

)
.

For the next Example, we first recall a few facts about Massey products. While these
products are defined in the general context of differential graded algebras, in the special

case of the n-fold Massey product H1(G,R)n →H2(G,R) in profinite (or discrete) group

cohomology it can be alternatively described in terms of unitriangular representations.
This was discovered by Dwyer [6] in the discrete case, and we refer to [7, §8] for the

profinite case, which is considered here. We assume as before that n≥ 2 and R is a finite

commutative ring on which G acts trivially (see [38] for the case of a nontrivial action).
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Specifically, let U=Un(R) and let U be again the quotient of U by the central subgroup

I+RE1,n+1 (∼=R+). The central extension

0→R+ → U→ U→ 1 (7.2)

of trivial G-modules corresponds to a cohomology element γR ∈ H2(G,R+). Given

ψ1, . . . ,ψn ∈ H1(G,R+), we consider the continuous homomorphisms ρ̄ : G → U whose
projection ρ̄k,k+1 : G → R on the (k,k+1)-entry is ψk, for k = 1,2, . . . ,n. As before, let

ρ̄∗ : H2
(
U,R+

)
→H2(G,R+) be the pullback of ρ̄. Then ρ̄∗(γR) corresponds to the central

extension

0→R+ → U×
U
G→G→ 1,

where the fiber product is with respect to the natural projection U→ U and to ρ̄. The

n-fold Massey product 〈ψ1, . . . ,ψn〉 is the subset of H2(G,R+) consisting of all pullbacks

ρ̄∗(γR) [7, Prop. 8.3]. Thus the n-fold Massey product 〈·, . . . ,·〉 : H1(G,R+)n →H2(G,R+)
is a multivalued map. In the special case n= 2, one has 〈ψ1,ψ2〉= {ψ1∪ψ2}.

Example 7.2 αw,n for a word w of length n≥ 2. Since jn(n) = 0 we have Rn = Z/p, so
U = Un(Z/p). As n ∈ J(n), Corollary 6.3 shows that U(n,p) = I +ZE1,n+1

∼= Z/p. Thus

the extension (7.2) (for R= Z/p) coincides with the extension (6.1) with i= n.

Now take a word w = (x1 · · ·xn) ∈ X∗ of length n. Let ρ̄ = ρ̄w : S/S(n,p) → U and
let ρ̄k,k+1 be homomorphisms as before. By its definition as the pullback of the

extension (6.1), αw,n is an element of the n-fold Massey product 〈ρ12,ρ23, . . . ,ρn,n+1〉
in H2

(
S/S(n,p)

)
. Note that ρ̄k,k+1 is given by ρ̄k,k+1(xl) = δkl for every 1≤ k,l ≤ n.

8. The Lyndon bases

We continue with the setup of §7. Identifying H1
(
S(n,p)

)
=Hom

(
S(n,p),Z/p

)
, we obtain

a nondegenerate bilinear map

S(n,p)/
(
S(n,p)

)p [
S,S(n,p)

]
×H1

(
S(n,p)

)S → Z/p, (σ̄,ϕ) 
→ ϕ(σ)

[11, Cor. 2.2]. It gives rise to the bilinear transgression pairing

(·,·)n : S(n,p)/
(
S(n,p)

)p [
S,S(n,p)

]
×H2

(
S/S(n,p)

)
→ Z/p,

(σ̄,α)n =−
(
trg−1α

)
(σ),

(8.1)

where σ̄ denotes the coset of σ ∈ S(n,p). It is therefore also nondegenerate.

By Proposition 5.1 and Corollary 6.3, for a word w of length i ∈ J(n) there is a

commutative diagram

S(n,p)

εw,Zp ��

ρ0
w

��

pjn(i)Zp

πi

��
U(n,p)

∼ �� pjn(i)Z/pjn(i)+1Z,

(8.2)
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where, as before, πi : Zp →Z/pjn(i)+1 is the natural projection, and the lower isomorphism
is the projection on the (1,i+1)-entry. We deduce the following link between cohomology

and the Magnus map. As before, we identify pjn(i)Z/pjn(i)+1Z with Z/p.

Proposition 8.1. For σ ∈ S(n,p) and a word w ∈ X∗ of length i ∈ J(n), one has

(σ̄,αw,n)n = πi

(
εw,Zp

(σ)
)
.

Proof. The central extension (6.1) gives rise to a transgression homomorphism

trg : H1
(
U(n,p)

)U →H2
(
U
)
. Let ι : U(n,p)

∼−→ Z/p be the composition of the lower row in

diagram (8.2) with the isomorphism pjn(i)Z/pjn(i)+1Z∼= Z/p. By the results of [8, §7],

γ =−trg(ι).

The functoriality of transgression gives a commutative square

H1
(
U(n,p)

)U trg ��

(ρ0
w)

∗

��

H2
(
U
)

ρ̄∗
w

��
H1
(
S(n,p)

)S trg �� H2
(
S/S(n,p)

)
.

As σ ∈ S(n,p), this square and diagram (8.2) give

(σ̄,αw,n)n = (σ̄,ρ̄∗w(γ))n =−(σ̄,ρ̄∗w(trg(ι)))n =−
(
σ̄, trg

((
ρ0w
)∗

(ι)
))

n

=
((

ρ0w
)∗

(ι)
)
(σ) = ι

(
ρ0w(σ)

)
= πi

(
εw,Zp

(σ)
)
.

Now consider words w,w′ ∈X∗ of lengths i,i′ ∈ J(n), respectively, with w′ Lyndon. We

deduce from Proposition 8.1 that

(σ̄w′,αw,n)n = πi

(
εw,Zp

(σw′)
)
= 〈w,w′〉n.

We can therefore restate Proposition 5.3 cohomologically:

Corollary 8.2. The transposed matrix
[
(σ̄w′,αw,n)n

]T
w,w′ , where w,w′ range over all

Lyndon words in X∗ of lengths i,i′, respectively, in J(n), and totally ordered by �,

coincides with the fundamental matrix of level n of the Lyndon words. In particular,

it is unitriangular, whence invertible.

Example 8.3. Let n= 2. Then J(n) = {1,2}. For every x ∈X let εx ∈H1
(
S/S(2,p)

)
be

the homomorphism induced by ε(x),Z/p. It is 1 on the coset of x and is 0 on the coset of
any x′ ∈X, x′ �= x.

For a one-letter word w = (x) (which is always Lyndon) we have σw = τpw = xp and

αw,2 = Bockp,S/S(2,p)
(εx) (Example 7.1).

For a two-letter Lyndon word w = (xy), x < y, the projections of the representation

ρ̄w on the (1,2)- and (2,3)-entries are ρ̄12 = εx and ρ̄23 = εy. Thus σw = τw = [x,y], and

αw,2 = εx∪ εy (Example 7.2).
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Recall that the fundamental matrix for Lyndon words and for n = 2 is the identity
matrix (Example 5.4). Thus we recover the fundamental duality, discovered by Labute,

between Bockstein elements/cup products and pth powers/commutators, respectively

([22, Prop. 8], [23, §2], [31, Ch. III, §9]).

We will need the following elementary fact in linear algebra [8, Lemma 8.4]:

Lemma 8.4. Let R be a commutative ring and let (·,·) : A×B → R be a nondegenerate

bilinear map of R-modules. Let (I, ≤) be a finite totally ordered set, and for every w ∈ I

let aw ∈ A, bw ∈ B. Suppose that the matrix
[
(aw,bw′)

]
w,w′∈I

is invertible, and that aw,
w ∈ I, generate A. Then aw, w ∈ I, is an R-linear basis of A, and bw, w ∈ I, is an R-linear

basis of B.

We now deduce our first main result. Note that part (a) of the theorem strengthens

Theorem 4.6 in the special case where H is the Hall set of Lyndon words.

Theorem 8.5.

(a) The Fp-linear space S(n,p)/
(
S(n,p)

)p [
S,S(n,p)

]
has a basis consisting of the cosets

σ̄w of σw, where w is a Lyndon word in X∗ of length i ∈ J(n).

(b) The Fp-linear space H2
(
S/S(n,p)

)
has a basis consisting of all αw,n, where w is a

Lyndon word in X∗ of length i ∈ J(n).

Proof. First assume that X is finite. By Theorem 4.6, the cosets in (a) generate
S(n,p)/

(
S(n,p)

)p [
S,S(n,p)

]
. Furthermore, the bilinear map (·,·)n of (8.1) is nondegenerate,

and the fundamental matrix
[
(σ̄w′,αw,n)n

]
w,w′ is invertible, by Corollary 8.2. Therefore

Lemma 8.4 implies both assertions.

The case of general X follows from the finite case by a standard limit argument (see
[31, Prop. 1.2.5]).

When 2 ≤ n ≤ p we have J(n) = {1,n} (Remark 4.2(1)), jn(1) = 1, and jn(n) = 0. In

view of Examples 7.1 and 7.2, we deduce the following:

Corollary 8.6. Suppose that 2≤ n≤ p.

(a) The Fp-linear space S(n,p)/
(
S(n,p)

)p [
S,S(n,p)

]
has a basis consisting of:

(i) the cosets of xp, x ∈X, and

(ii) the cosets of τw, where w is a Lyndon word in X∗ of length n.

(b) The Fp-linear space H2
(
S/S(n,p)

)
has a basis consisting of:

(i) the Bockstein elements Bockp,S/S(n,p)

(
ε(x),Z/p

)
= α(x),n, x ∈X, and

(ii) the n-fold Massey product elements αw,n, where w is a Lyndon word in X∗ of

length n.

The number of words of a given length in a Hall set H can be expressed in terms of
Witt’s necklace function, defined for integers i,m≥ 1 by

ϕi(m) =
1

i

∑
d|i

μ(d)mi/d.
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Here μ is the Möbius function – that is, μ(d) = (−1)k if d is a product of k distinct prime
numbers, and μ(d) = 0 otherwise. We also set ϕi(∞) =∞. Then the number of words of

length i in H is ϕi(|X|) [33, Cor. 4.14]. We deduce the following:

Corollary 8.7.

(a) For every n≥ 2, one has

dimFp
H2
(
S/S(n,p)

)
=
∑

i∈J(n)

ϕi(|X|).

(b) If 2≤ n≤ p, then dimFp
H2
(
S/S(n,p)

)
= |X|+ϕn(|X|).

9. Shuffle relations

Recall that the shuffle product uxv of words u, v was defined in the Introduction. It

extends naturally to a bilinear, commutative, and associative product map x : Z〈X〉×
Z〈X〉→Z〈X〉. The shuffle algebra Sh(X) on X is the graded Z-algebra whose underlying
module is the free module on X∗ (graded by the length of words), and its multiplication

is x.

We define the infiltration product u ↓ v of words u= (x1 · · ·xr), v = (xr+1 · · ·xr+t) in X∗

as follows (see [4], [33, pp. 134–135]). Consider all maps σ : {1,2, . . . ,r+t}→{1,2, . . . ,r+t}
with σ(1)< · · ·< σ(r) and σ(r+1)< · · ·< σ(r+ t), and which satisfy the following weak

form of injectivity: If σ(i)=σ(j), then xi =xj . Let the image of σ consist of l1 < · · ·< lm(σ).

Then we set

u ↓ v =
∑
σ

(
xσ−1(l1) · · ·xσ−1(lm(σ))

)
∈ Z〈X〉. (9.1)

By our assumption, xσ−1(li) does not depend on the choice of the preimages σ−1(li) of li.

We also write Infil(u,v) for the set of all such words
(
xσ−1(l1) · · ·xσ−1(lm(σ))

)
. Thus uxv

is the part of u ↓ v of degree r+ t – that is, the partial sum corresponding to all such

maps σ which in addition are bijective. The product ↓ on words extends by linearity to
an associative and commutative bilinear map on Z〈X〉.
There is a well-defined Zp-bilinear map

(·,·) : Zp〈〈X〉〉×Zp〈X〉 → Zp, (f,g) =
∑

w∈X∗

fwgw,

where fw,gw are the coefficients of f, g, respectively, at w [33, p. 17].
The following connection between the Magnus representation and the infiltration

product is proved in the discrete case in [4, Th. 3.6]. We refer to [37, Prop. 2.25] and [30,

Prop. 8.16] for the profinite case. Here we view the infiltration and shuffle products as
elements of Z〈X〉 ⊆ Zp〈X〉.

Proposition 9.1. For every ∅ �= u,v ∈X∗ and every σ ∈ S, one has

εu,Zp
(σ)εv,Zp

(σ) =
(
ΛZp

(σ),u ↓ v
)
.
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Corollary 9.2. Let u,v be nonempty words in X∗ with i = |u|+ |v| ≤ n. For every σ ∈
S(n,p), one has

(
ΛZp

(σ),uxv
)
∈ pjn(i−1)Zp.

Proof. Let w be a word of length 1 ≤ k ≤ i − 1. Then jn(k) ≥ jn(i − 1), so by

Proposition 5.1, εw,Zp
(σ) ∈ pjn(k)Zp ⊆ pjn(i−1)Zp. In particular, this is the case for w= u,

w = v, and for w ∈ Infil(u,v) of length smaller than i. Since uxv is the part of u ↓ v
consisting of summands of maximal length i, Proposition 9.1 implies that

(
ΛZp

(σ),uxv
)
∈

pjn(i−1)Zp.

We obtain the following shuffle relations. Here Xi stands for the set of words in X∗ of

length i.

Theorem 9.3. Let ∅ �= u,v ∈X∗ with i= |u|+ |v| ∈ J(n). Then∑
w∈Xi

(uxv)wαw,n = 0.

Proof. As 2≤ i ∈ J(n), we have (i−1)pjn(i−1) ≥ ipjn(i), whence jn(i−1)> jn(i).

We recall that uxv is homogenous of degree i. For σ ∈ S(n,p), Corollary 9.2 gives∑
w∈Xi

(uxv)wεw,Zp
(σ) =

∑
w∈X∗

(uxv)wεw,Zp
(σ) = (ΛZp

(σ),uxv)

∈ pjn(i−1)Zp ⊆ pjn(i)+1Zp.

Therefore, by Proposition 8.1,(
σ̄,
∑

w∈Xi

(uxv)wαw,n

)
n

=
∑

w∈Xi

(uxv)w (σ̄,αw,n)n =
∑

w∈Xi

(uxv)wπi

(
εw,Zp

(σ)
)

= πi

( ∑
w∈Xi

(uxv)wεw,Zp
(σ)

)
= 0.

Now use the fact that (·,·)n is nondegenerate.

Given a graded R-algebra A=
⊕

i≥0Ai, we denote A+ =
⊕

i≥1Ai. Let WD(A) be the

R-submodule of A generated by all products aa′, where a,a′ ∈ A+. We call WD(A) the
submodule of weakly decomposable elements of A. It is also generated by all products

aa′, where a,a′ ∈ A+ are homogenous. Hence the quotient Aindec = A/WD(A) has the

structure of a graded R-module, which we call the indecomposable quotient of A.

Note that WD(A)0 = WD(A)1 = {0}, so the graded module morphism A → Aindec is
an isomorphism in degrees 0 and 1. For example, when A=R〈X〉, one has Aindec,0 =R,

Aindec,1 is the free R-module on the basis X, and Aindec,i = 0 for all i≥ 2.

When A= Sh(X) is the shuffle algebra, we recover the module Sh(X)indec,n as defined
in the Introduction. The following key fact was proved in [9, Prop. 6.3]. It is based on

a construction by Radford [32] and Perrin and Viennot of a basis of Z〈X〉, which arises

from the decomposition of words in X∗ into Lyndon words.

Proposition 9.4. Suppose that 1≤ n< p. Then the images of the Lyndon words of length

n span Sh(X)indec,n⊗ (Z/p) as an Fp-linear space.
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In fact, in [9, Th. 7.3(b)] it is proved that these images form a linear basis of

Sh(X)indec,n⊗ (Z/p), but we shall not use this stronger result.

Theorem 9.5. Suppose that n≥ 2. The map w 
→ αw,n induces an epimorphism of Fp-
linear spaces ⎛⎝ ⊕

i∈J(n)

Sh(X)indec,i

⎞⎠⊗ (Z/p)→H2
(
S/S(n,p)

)
.

Proof. For i ∈ J(n), the map Xi →H2
(
S/S(n,p)

)
, w 
→ αw,n, extends by linearity to a

Z-module homomorphism

Φi : Z〈X〉i =
⊕
w∈Xi

Zw→H2
(
S/S(n,p)

)
, f =

∑
w∈Xi

fww 
→
∑

w∈Xi

fwαw,n.

By Theorem 9.3, Φi(uxv) = 0 for any nonempty words u,v ∈ X∗ with i = |u|+ |v|.
Consequently, Φi factors via Sh(X)indec,i, and induces an Fp-linear map

Φ̄i : Sh(X)indec,i⊗ (Z/p)→H2
(
S/S(n,p)

)
,

where Φ̄i(w̄) = αw,n for w ∈Xi. Since the αw,n, where w ranges over all Lyndon words of

an arbitrary length i ∈ J(n), form an Fp-linear basis of H
2
(
S/S(n,p)

)
(Theorem 8.5(b)),

we obtain an epimorphism

⊕
i∈J(n)

Φ̄i :

⎛⎝ ⊕
i∈J(n)

Sh(X)indec,i

⎞⎠⊗ (Z/p)→H2
(
S/S(n,p)

)
.

We now obtain the Main Theorem from the Introduction:

Theorem 9.6. Suppose that 2 ≤ n < p. Then there is an isomorphism of Fp-linear

spaces (⊕
x∈X

Z/p

)
⊕
(
Sh(X)indec,n⊗ (Z/p)

)
∼−→H2

(
S/S(n,p)

)
. (9.2)

Specifically, this isomorphism maps a generator 1x of the Z/p-summand at x ∈ X to

Bockp,S/S(n,p)

(
ε(x),Z/p

)
, and maps the image w̄ of a word w ∈X∗ of length n to the n-fold

Massey product element αw,n.

Proof. By Remark 4.2(1), J(n) = {1,n}. Therefore, Theorem 9.5 gives an epimorphism

as in (9.2). The generators 1x and the images w̄ of words w of length n are mapped as
specified, by Examples 7.1 and 7.2.

The generators 1x, x ∈X, clearly span
⊕

x∈X Z/p, and by Proposition 9.4, the images

w̄ of the Lyndon words w in X∗ of length n span Sh(X)indec,n⊗ (Z/p). Together they

form a spanning set of the left-hand side of the epimorphism (9.2), which is mapped to
a linear basis of the right-hand side (Corollary 8.6). It follows that this spanning set is a

linear basis, and the map (9.2) is an isomorphism.
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http://www.numdam.org/item/SB 1962-1964 8 145 0/.

[35] J.-P. Serre, Lie Algebras and Lie Groups (Springer, Berlin Heidelberg, 1992).
[36] A. Shalev, Dimension subgroups, nilpotency indices, and the number of generators of

ideals in p-algebras, J. Algebra 129 (1990), 412–438.
[37] D. Vogel, On the Galois group of 2-extensions with restricted ramification, J. Reine

Angew. Math. 581 (2005), 117–150.
[38] K. Wickelgren, n-Nilpotent obstructions to π1 sections of P1 −{0,1,∞} and Massey

products, in Galois-Teichmüller Theory and Arithmetic Geometry, Advanced Studies in
Pure Mathematics, 63, pp. 579–600 (Mathematical Society of Japan, Tokyo, 2012).

[39] H. Zassenhaus, Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit der
Charakteristik p zuzuordnen, Abh. Math. Sem. Univ. Hamburg 13 (1939), 200–207.

[40] E. Zelmanov, On groups satisfying the Golod-Shafarevich condition, in. New Horizons
in Pro-p Groups, Progress in Mathematics, 184, pp. 223–232 (Birkhäuser Boston, Boston,
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