LINEAR TRANSFORMATIONS ON GRASSMANN SPACES

ROY WESTWICK

1. Let U denote an n-dimensional vector space over a field F and let G,,
denote the set of non-zero decomposable 7-vectors of the Grassmann product
space A'U. Let T be a linear transformation of AU into itself which maps
G,, into itself. If F is algebraically closed, or if T is non-singular, then the
structure of 7" is known. In this paper we show that if 7 is singular, then the
image of AU has a very special form with dimension equal to the larger of
the integers r + 1 and # — 7 + 1. We give an example to show that this
can occur.

2. We adopt the notation of (1). We recall thatif 2 = x; A ... A &, € Gy,
then [z] = {(x1,...,x,) is a well-defined 7-dimensional subspace of U. We
say that z determines [z]. The two classes of maximal subspaces of ATU
whose non-zero elements belong to G,, are denoted by 4, and B,. The r-
dimensional subspaces determined by the non-zero elements of an X € 4,
contain a common (r — 1)-dimensional subspace which we will denote by
£(X). The r-dimensional subspaces determined by the non-zero elements of a
Y € B, are contained in an (r 4 1)-dimensional subspace of U which we
will denote by 7(Y).

For maps f: S — T', where .S and T are arbitrary, we adopt the following
conventions. If Sy C .S, then f(So) denotes {f(s): s € Sp} and if .¥ is a family
of subsets of .S, then f(¥) is the family {f(So): Sy € &} of subsets of 7.

The following elementary facts are used throughout the paper. Distinct
elements of A, or of B, intetsect in at most one dimension. On the other hand,
ifX € Ad,and Y € B, then dim(X M ¥) = 0 or 2 according as £(X) & »(Y)
or £(X) C 9(Y). The dimensions of the elements of 4, and B, aren — r + 1
and 7 4 1, respectively. We note that these are equal only when n = 2r.
Finally, since 7'(G,,;) C G,;, T is one-to-one on each member of 4, U B,.

Our main result is the following.

3. Theorem. If T: AU — AU is a singular linear transformation sich
that T(Gyr) € Guyy then T(ANTU) € A, U B,.

Proof. We first consider the case when 17°(B,) C B,. Let k be the maximal

integer such that the image of every AU, with dim(U,) = kisa AW with
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dim (W) = k. Then r < k < n, where the latter inequality is strict since 7 is
singular. If U; and U, are an adjacent pair of k-dimensional subspaces of U
and T(ATU;) = AW, then, since T(A" (U1 N\ Us)) € AT(Wi N\ Ws) and
T is one-to-one on A'(Us M U,), Wi and W, are either adjacent or equal.
If W, and W, are distinct, then T is one-to-one on A7(U; + U,) since its
image, A7(W;:+ W,), then has dimension equal to dim (A" (Ui + U,)).
Therefore, by the maximality of %, there is a pair of adjacent k-dimensional
subspaces U; and U, of U such that T(A(Ui+ U.)) = A'W, where
dim (W) = k. Suppose that & > » + 1. Since T: A"U, — AW is one-to-one
and maps B, into B,, it is induced by a linear transformation A: U, — W.
Let X €4, with §(X) = {(x,...,%_1) < U, Since k>r+1,
dmX NAU) =k —r+1>21HYV € A, withe(Y) = (Axy, ..., Ax,_1),
then dim (7 (X) M Y) > 2. Therefore, T(X) = Y. Butthen 77(X N\ A™(U; +
Us)) € Y\ AW which is impossible since we have dim(X M A7(U; +
U,)) = 1+ dim(Y N\ A’W). Therefoce, ¥ = 7 + 1, and for every pair of
adjacent (r 4+ 1)-dimensional subspaces U; and U, of U we have that
T(AUy) = T(A"Us). Then T(A'U) € B,, since for any pair X, ¥ € B,
there is a finite chain X3, ..., X,, of elements of B, with X;, X, adjacent
and X = X4, ¥V = X,,.

Next, we suppose that 7(4,) € 4, and there is a pair X € B,, Y € 4, for
which T'(X) C V. If Z€ 4, with §Z) C 9(X), then dm(Z N X) = 2.
Therefore, dim(7°(Z) N\ Y) = 2, and since T(Z) € A, also, we have that
T(Z) = Y. Let U, be a subspace of largest possible dimension such that for
each Z € A, with ¢§(Z) € U, we have that 7(Z) = Y. Then dim(U;) > r.
Suppose that U; # U and select Uy D Uy such that dim(Uz) = 1 4 dim(Uy).
Let Z € A, with £§(Z) € Us. Then dim(§(Z) N\ Uy) =r — 2 or £(Z) & U,
If the latter, then T(Z) = Y. Otherwise, let §(Z) = (y1,...,y,_1), where
(i, ...y ¥,9) S Ur. Foreachy € U,y ¢ (y1....,¥,2) thereisa Z, € 4,
with £§(Z,) = (b1, .., ¥r—2,¥). Now, dim(Z N Z,) = 1. Choose v and 3’
so that {y1,...,%,.1,7,9'} is independent and y, v € U;. Then ZMN Z, #
ZMNZ,, and therefore, since 1(Z,) = 1T(Z,) =Y, we have that
dim(T(Z) NVY) > 1. 1t follows that 7'(Z) = V. This contradicts the
maximality of Ui, and thus U; = U. Then T(ATU) = Y € A4,.

If n < 2r, then T(B,) € B,,since X € B,and 7'(X) € Vforsome ¥ € 4,
would imply that 7T is singular on X. If # > 27, then 7°(4,) € 4, and for
some X € B,, T(X) ¢ B,; for, T(B,) € B, would imply that T(A"U) € B,,
and consequently 7 would be singular on each member of 4,. Therefore, the
above paragraphs prove the theorem for the case when n # 2r.

When # = 27, we show that either T'(B,) C B, or 1'(B,) C A4,. Suppose
the contrary. Then we can select X1, Xy € B, with 9(X:) and 4(X;) adjacent
such that T'(X;) = ¥V; € A,and T (X,) = YV, € B,. Let Uy = 7(X1) N 9(X32)
and let & = {V € 4,: £(Y) C Uy}. For each Y € %, dim(Y N X;) =
dim(¥Y M X,) = 2, and therefore both dim (7' (Y) N Y1) and dim(T(Y) N Vy)
are at least 2. Since ¥; and Y are of different types, it follows that 7(V) = ¥,
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or T(Y) = Y, Furthermore, since U{Y: Y € %} D X; U X,, not every
YV € % is mapped into the same ¥;. We select Y/ € % such that T(Y/) = Y,
1 =1,2. Let X € B, such that Uy C n(X) C 9(X1) + 7(X2) while »(X) is
distinct from both 7(X;) and 7(X3:). Then dim(X M V) = 2, and therefore
T(X) =Y, or Y,. However, since 7(X) + 9(X;) = 7(X1) + n(Xs), we
obtain Y; + Y, = Y, or Y,, which is impossible.

To complete the proof of the theorem, we proceed as follows. Since we
have already dealt with the possibility that 7°(B,) C B,, we may suppose
that 7(B,) € A4,. Let Ty denote a linear transformation of A7U which is
induced by a correlation of the r-dimensional subspaces of U. Then
To(4,) = B, and T,(B;) = A,. Therefore, T,'I'(B,) C B,, and consequently
ToyT'(A"U) € B,. Therefore, T(A"U) € A,, and the proof is complete.

4. When dim (U) = 4 and 7 = 2, we can decide for which fields F a singular
T exists. In fact, such a T exists if and only if there exista; € F,72 =1,...,6,
such that the only solution in F of

(%) a1x? 4 ay? + as2? + axy + asxz + agyz = 0

is trivial; that i3, x =y = 2 = 0.
Suppose that there are elements a; € F such that the only solution of () is
trivial. Let {uy, us, us, us} be a basis of U and define

21 = u1 A (asue2 + aus) + us A us,

2o = ur A\ (aqbs — aous) + s A uy,

23 = ur N\ (ashs — aets) + us A .
Let V = (21, 22, 23). Then V contains no non-zero decomposable vectors,
since a linear combination %21 + ¥z + 223 = (asx + asz)us A us +
(—agy —aez)ur A us + (@1 + asy)ur A wa =+ xus A s + yus A o+ zu3 A us
is decomposable if and only if (asx 4+ @2)z — (—asy + aez)y +
(aix + a)x = 0, thatis,if and only if x = y = 2 = 0. Since dim(A2U) = 6,
there exist 7: A2U — X, where X € 4, or B,, and the kernel of T is V.
On the other hand, suppose that thereisa 7: A2U — X, where X € 4, \J B,.
Then dim (kernel (7°)) = 3. If {21, 2, 23} is a basis for this kernel, then we can
write

Z; = Z Q55U N Uy,
i<k

Then

x21 + ¥z + 223 = ijkuj A g,
i<k

where each fj is a linear form in x, y, 2 with coefficients in F. The quadratic
p-relation fisfss — figfes + fisfes is a form ax? + ... + aeyz with the a; € F.
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Since the kernel has no decomposable vectors, this form is zero only when
x=y=2z=0.
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