Canad. Math. Bull. Vol. **56** (1), 2013 pp. 31–38 http://dx.doi.org/10.4153/CMB-2011-128-6 © Canadian Mathematical Society 2011

Derivations and Valuation Rings

P. Fortuny Ayuso

Abstract. A complete characterization of valuation rings closed for a holomorphic derivation is given, following an idea of Seidenberg, in dimension 2.

1 Introduction and Preliminaries

Seidenberg [6] proposed a relation between valuations (which are *contact* objects) and derivations (which are also closely related to *contact*), using the following definition which is the present paper's object of study.

Definition 1.1 Let \mathcal{M} be a function field, D a derivation on \mathcal{M} , and $\mathcal{O}_{\nu} \subset \mathcal{M}$ a valuation ring. The ring \mathcal{O}_{ν} is *closed for* D if $D(\mathcal{O}_{\nu}) \subset \mathcal{O}_{\nu}$. We shall also say that ν is *closed for* D.

The condition can be restated as " $\nu(f) \ge 0$ implies $\nu(D(f)) \ge 0$ ", where ν is the valuation of \mathcal{M} associated with \mathcal{O}_{ν} . The use of valuations in the context of differential equations as in [4], has proved fruitful: see, for example [1–3].

Our aim is to describe completely the valuations that are closed for a specific derivation when \mathcal{M} is the field of meromorphic functions in two variables and D corresponds to a singular holomorphic vector field on (\mathbb{C}^2 , 0).

From now on, we restrict ourselves to $\mathcal{M} = \mathbb{C}\{\{x, y\}\}\)$, the field of meromorphic functions in two variables, which is the quotient field of $\mathcal{O} = \mathbb{C}\{x, y\}\)$. The maximal ideal of \mathcal{O} will be denoted by \mathfrak{m} . We fix a derivation $\mathfrak{X}: \mathcal{O} \to \mathcal{O}$, that is, a (germ of a) holomorphic vector field at the origin. As such, it can be written

(1.1)
$$\mathfrak{X} = a(x, y)\frac{\partial}{\partial x} + b(x, y)\frac{\partial}{\partial y},$$

where *a*, *b* are holomorphic. If a(0,0) = b(0,0) = 0 we shall say that \mathcal{X} is *singular* at the origin. In [6], Seidenberg proved that if \mathcal{X} is non-singular, then there is only one valuation, centered at \mathcal{O} , closed for \mathcal{X} (which corresponds to the "contact" with the only invariant curve for \mathcal{X} passing through (0,0)).

1.1 Birational Models of Vector Fields in $(\mathbb{C}^2, 0)$

Consider a (finite or infinite) sequence of maps

 $\underbrace{(1.2) \qquad \pi \equiv \cdots \xrightarrow{\pi_n} X_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_2} X_1 \xrightarrow{\pi_1} (\mathbb{C}^2, 0) = X_0,}_{\text{Received by the editors March 15, 2010; revised June 2, 2011.}}$

AMS subject classification: **32S65**, 13F30, 13A18.

Keywords: singular holomorphic foliation, derivation, valuation, valuation ring.

where each π_i is the blowing-up centered at a closed point $P_{i-1} \in X_{i-1}$. We shall say that π is a *chain* if $P_i \in \pi_i^{-1}(P_{i-1})$ for all *i*.

Seidenberg [5] proved that the germ of reduced foliation associated with \mathcal{X} in $(\mathbb{C}^2, 0)$ becomes, after a finite subsequence (of length, say, k) of π , *in which only singular points of the foliation are blown-up*, either regular or *simple* at P_k . This statement cannot be literally translated to our setting (vector fields). However, as we shall see, the situation is not essentially different. Let P be any point in the exceptional divisor of π_k for some k in the sequence π in (1.2).

Definition 1.2 We say that \mathfrak{X} is *pseudoregular at P* if there exists a holomorphic function f at P such that f(P) = 0 and $\mathfrak{X} = f \tilde{\mathfrak{X}}$, with $\tilde{\mathfrak{X}}$ a non-singular holomorphic vector field at *P*.

If \mathfrak{X} is of the form $f(x, y)(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y})$ with f(P) = 0, a, b are holomorphic and have no common factor, and bdx - ady has a simple singularity at P (in the sense of [5]), then we shall say that \mathfrak{X} is *pseudosimple at* P.

Remark 1.3 Recall that the definition of *simple singularity* means not only that the linear part of bdx - ady is not nilpotent, but also that if its eigenvalues are λ and $\mu \neq 0$, then $\lambda/\mu \notin \mathbb{Q}_{>0}$.

We shall also make extensive use of the following well-known property. If *P* is a simple singularity for $\omega = bdx - ady$ and C_1, C_2 are two invariant curves (formal or convergent) for ω through *P*, then the following hold:

- The curves C_1 and C_2 are the only invariant curves for ω through *P*.
- Both C_1 and C_2 are non-singular at P.

With the same notation, we have the following lemma.

Lemma 1.4 Let \mathfrak{X} be pseudoregular at P and let η be the blowing-up with center P. Let $P' \in \eta^{-1}(P)$. Then either \mathfrak{X} is regular or pseudoregular at P' or it is pseudosimple at P'. The latter happens only when P' corresponds to the tangent direction of the invariant curve of \mathfrak{X} .

Proof We only need to express \mathcal{X} in local coordinates at P'. From the hypothesis, and after a local change of coordinates, we may assume that $\mathcal{X} = f(x, y) \frac{\partial}{\partial y}$. Depending on the chart, the local coordinates of η can be taken as

$$\eta \equiv \begin{cases} \tilde{x} = \frac{x}{y} + c, c \in \mathbb{C}, \\ \tilde{y} = y, \end{cases} \quad \text{or} \quad \eta \equiv \begin{cases} \tilde{x} = x, \\ \tilde{y} = \frac{y}{x}. \end{cases}$$

In the first case, \mathfrak{X} is

$$\mathfrak{X} = f((\tilde{x} - c)\tilde{y}, \tilde{y}) \left(\frac{(c - \tilde{x})}{\tilde{y}} \frac{\partial}{\partial \tilde{x}} + \frac{\partial}{\partial \tilde{y}} \right),$$

while in the second case

$$\mathfrak{X} = f(\tilde{x}, \tilde{x}\tilde{y}) \frac{1}{\tilde{x}} \frac{\partial}{\partial \tilde{y}}.$$

In both cases, the fact that f(0,0) = 0 gives the result.

32

Remark 1.5 Notice that the tangent cone of (f = 0) at *P* is "irrelevant", *i.e.*, *f* only makes the field at *P'* holomorphic.

A similar computation gives the following lemma.

Lemma 1.6 Assume $\mathfrak{X} = f \tilde{\mathfrak{X}}$ is pseudosimple at P and let η be the blowing-up with center P. Let P_1, P'_1 be the points in $E = \eta^{-1}(P)$ corresponding to the eigenvectors of the linear part of $\tilde{\mathfrak{X}}$ at P. Then \mathfrak{X} is pseudosimple at P_1 and P'_1 and regular or pseudoregular at any other point in E.

For simple singularities, the same statement holds if one removes the "pseudo" everywhere.

For chains of blowing-ups one has the following result, which guarantees that *a field becomes regular before becoming non-holomorphic* in a chain of blowing-ups.

Lemma 1.7 Let X be a holomorphic vector field at (0,0) and π a finite or infinite chain as in (1.2). Then one of the following holds:

- All the centers of π are singular for X.
- There exists a finite (possibly empty) initial subsequence

$$\pi' \colon X_k \xrightarrow{\pi_{k-1}} \cdots \xrightarrow{\pi_2} X_1 \xrightarrow{\pi_1} (\mathbb{C}^2, 0) = X_0$$

such that the centers P_0, \ldots, P_{k-1} are singular for \mathfrak{X} and P_k is regular for \mathfrak{X} .

In the latter case we shall say that \mathfrak{X} becomes regular at P_k and that π (or π') regularizes \mathfrak{X} .

Proof The result is obviously true for a regular vector field, taking π' empty. Assume therefore that \mathfrak{X} is singular at $(\mathbb{C}^2, 0)$.

We are done if we show that \mathcal{X} is holomorphic at P_i if it is singular at P_{i-1} . To this end, we just need to compute the expression of \mathcal{X} at P_i from its expression at P_{i-1} . Fix coordinates (x, y) at P_{i-1} and write \mathcal{X} as in (1.1). Without loss of generality (making a linear change of coordinates) we may assume that the local equations at P_i are (\tilde{x}, \tilde{y}) with

$$\tilde{x} = \frac{x}{y}, \quad \tilde{y} = y.$$

Thus \mathfrak{X} is written in these new coordinates,

$$\mathfrak{X} = \left(a(\tilde{x}\tilde{y},\tilde{y})\frac{1}{\tilde{y}} - b(\tilde{x}\tilde{y},\tilde{y})\frac{\tilde{x}}{\tilde{y}}\right)\frac{\partial}{\partial\tilde{x}} + b(\tilde{x}\tilde{y},\tilde{y})\frac{\partial}{\partial\tilde{y}},$$

which is holomorphic at P_i if \mathfrak{X} is singular at P_{i-1} , *i.e.*, a(0,0) = b(0,0) = 0.

Remark 1.8 Incidentally, we have also proved that if \mathfrak{m}_i is the maximal ideal at P_i and $m_i = \min(\operatorname{ord}_{\mathfrak{m}_i}(a), \operatorname{ord}_{\mathfrak{m}_i}(b))$ (assuming \mathfrak{X} is holomorphic at P_i), then $m_i \ge m_{i-1} - 1$ if $m_{i-1} > 0$.

The following lemma deals with the generic point in the exceptional divisor after blowing-up a non-dicritical singularity (in which case the exceptional divisor is invariant for the corresponding reduced foliation). **Lemma 1.9** Let \mathfrak{X} be pseudoregular of the form $\mathfrak{X} = u(x, y)x^m \frac{\partial}{\partial y}$ with m > 0 and u holomorphic with $u(0,0) \neq 0$. Let η denote the blowing-up with center (0,0) and let P_1 be a point in the exceptional divisor $\eta^{-1}(0,0)$.

- (i) If P_1 corresponds to the direction (x = 0), then P_1 is a pseudosimple singularity.
- (ii) Otherwise, \mathfrak{X} is pseudoregular (or regular) at P_1 and there are local coordinates (\tilde{x}, \tilde{y}) at P_1 such that

$$\mathfrak{X} = \mathbf{v}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \tilde{\mathbf{x}}^{m-1} \frac{\partial}{\partial \mathbf{y}},$$

with $v(0,0) \neq 0$, so that in this case \mathfrak{X} is regular at P_1 if and only if m = 1.

Proof The same proof as for Lemma 1.4 applies. The decrease of the exponent is due to the appearance of \tilde{x} in the denominator after blowing-up.

Lemma 1.10 Let π denote an infinite chain of blowing-ups as in (1.2) and assume that X is pseudoregular at P_k for some k. Then there exists $l \ge k$ such that X is either regular or pseudosimple at l.

Proof From Lemma 1.4, the only other possibility is that \mathcal{X} be always pseudoregular. However, from Remark 1.5, this would happen only if for all $l \ge k$, π_l does not follow the (only) separatrix of $\tilde{\mathcal{X}}$ at P_l . But this would give rise to an infinite sequence in case (ii) of Lemma 1.9, which is impossible.

From Seidenberg's reduction of singularities of holomorphic foliations [5] and Lemmas 1.4, 1.9, and 1.10 we have the following corollary.

Corollary 1.11 Let \mathfrak{X} be a holomorphic vector field in $(\mathbb{C}^2, 0)$ as in (1.1) with a, b relatively prime. Let π be an infinite chain of blowing ups. Then either π regularizes \mathfrak{X} or there is a $k \ge 0$ such that \mathfrak{X} is holomorphic and simple or pseudosimple at P_k and P_i is singular for \mathfrak{X} for i < k.

The following result is used systematically in the next section.

Corollary 1.12 Let π be an infinite chain of blowing-ups. Then one of the following alternatives holds:

- The chain π regularizes X.
- For any integer $n \ge 0$ there is $l \ge n$ such that P_l is a pseudosimple singularity.

Proof If π does not regularize \mathfrak{X} , then by Seidenberg's reduction of singularities, there is an n_0 such that P_{n_0} is pseudosimple. For $l \ge n_0$, whenever π_l does not follow any of the two directions corresponding to the separatrices at P_l , P_{l+1} is pseudoregular. By Lemma 1.10, there must be $k \ge l+1$ such that P_k is pseudosingular (otherwise π would regularize \mathfrak{X}) and we are done.

2 Classification of Closed Valuation Rings: Nondivisorial Valuations

In the rest of the paper we assume \mathcal{X} can be written at (0,0) as in (1.1) with a, b relatively prime. This is the usual situation when studying singularities of vector fields/foliations.

Derivations and Valuation Rings

Definition 2.1 A holomorphic vector field \mathcal{X} as (1.1) is *reduced* at (0,0) if *a* and *b* have no common irreducible factors in $\mathcal{O}_{(0,0)}$.

All the preliminaries above allow us to classify all the closed valuation rings centered at ($\mathbb{C}^2, 0$) associated with an infinite sequence of blowing-ups, *i.e.*, *nondivisorial* valuations. Assume that ν is such a valuation and let π_{ν} be its associated chain of blowing-ups (see [7], for example), with sequence of centers $(P_i)_{i=0}^{\infty}$.

If \mathcal{X} is simple or pseudosimple at P_k , there are local coordinates (\tilde{x}, \tilde{y}) at P_k such that

where *a*, *b* are power series of order at least 2, $\lambda/\mu \notin \mathbb{Q}_{>0}$, and *E* is a holomorphic function near P_k (actually a product of powers of the local equations of the exceptional divisors at P_k if \mathcal{X} is reduced at (0, 0)).

From now on we use Spivakovsky's classification of valuations in function fields of surfaces [7]. From Equation (2.1) we obtain the following proposition.

Proposition 2.2 Let X be reduced at (0,0) and ν a valuation of M of rank 1 and rational rank 2. Then ν is closed for X if and only if its center is never a regular point for X.

Proof The rank conditions imply that, from some $k \ge 2$ on, the center of π_k is a crossing of exceptional divisors.

Assume all the centers of ν are pseudosimple for the associated foliation for $l \ge k$, for some $k \ge 0$, which is the only alternative to the regularization of \mathcal{X} by Corollary 1.12, due to the previous remark. Fix some $l \ge k$. Taking local coordinates (x, y)at P_l , we may assume that x = 0 and y = 0 are both invariant for the associated foliation (they correspond to each of the exceptional divisors at P_l , which by Remark 1.3 are invariant). This means that \mathcal{X} can be written as

$$\mathfrak{X} = E\Big(x(\lambda + a(x, y))\frac{\partial}{\partial x} + y(\mu + b(x, y))\frac{\partial}{\partial y}\Big),$$

where *E*, *a*, *b* are holomorphic (at *P*_l) and that ν is completely determined by $\nu(x) = 1$, $\nu(y) = \alpha$, for some $\alpha \notin \mathbb{Q}$. This implies that

$$\nu(f(x, y)) = \operatorname{ord}_t(f(t, t^{\alpha})) + \nu(E) = \min\{i + \alpha j \mid f_{ij} \neq 0\} + \nu(E),$$

where $f = \sum f_{ij} x^i y^j$, for $f \in \mathcal{O}_P$. Take $f, g \in \mathcal{O}_P$ such that $\nu(f) \ge \nu(g)$. Then

$$\nu(\mathfrak{X}(f/g)) = \nu\left(\frac{g(f_x\lambda x + f_y\mu y + \dots) - f(g_x\lambda x + g_y\mu y + \dots)}{g^2}\right) + \nu(E)$$

(where subindices indicate partial differentiation), which has value at least $\nu(f) + \nu(g) - 2\nu(g) + \nu(E)$. An easy verification shows that if $\nu(f) = \nu(g)$, then the value

of the numerator is strictly greater than $2\nu(g)$, whereas it is at least $2\nu(g)$ otherwise. In any case, ν is closed for \mathcal{X} .

If some center P_l is a regular point for \mathcal{X} , then the only valuation closed for \mathcal{X} centered at P_l is the one associated with the separatrix at P_l (this is Seidenberg's result in [6]), which has rank and rational rank one.

Valuations of rank 2 correspond to either germs of analytic branches or to germs of exceptional divisors appearing after a finite number of blowing-ups of (\mathbb{C}^2 , 0). For ν of rank 2, let π_{ν} be its associated chain of blowing-ups and denote

$$\pi_{\nu}^{0} \colon X_{k} \xrightarrow{\pi_{k}} X_{k-1} \xrightarrow{\pi_{k-1}} \cdots \xrightarrow{\pi_{2}} X_{1} \xrightarrow{\pi_{1}} (\mathbb{C}^{2}, 0)$$

the shortest chain of blowing-ups following centers of ν such that the curve associated with ν is "visible" in X_k . (So that if ν corresponds to a germ of analytic curve at $(0, 0), \pi_{\nu}^0$ is empty.)

Theorem 2.3 Let ν be a valuation of rank 2 and \mathcal{X} a holomorphic vector field reduced at (0,0). Then ν is closed for \mathcal{X} if and only if its associated curve is invariant for the reduced foliation associated with \mathcal{X} and no strict subsequence of π_{ν}^{0} regularizes \mathcal{X} .

Proof If a strict subsequence of π_{ν}^0 regularizes \mathcal{X} , say at P_j , then by Seidenberg's result [6] the only valuation closed for \mathcal{X} centered at P_j corresponds to the separatrix of \mathcal{X} through P_j , which by hypothesis *is not* the curve associated with ν (because the latter is not "visible" at P_j).

If π_{ν} regularizes \mathfrak{X} , then ν is closed for \mathfrak{X} if and only if ν follows the trajectory of \mathfrak{X} at P_k (which is unique), again from Seidenberg's result [6].

Assume that π_{ν} does not regularize \mathcal{X} . Then, from Corollary 1.12 and from the reduction of singularities of analytic curves, we may assume that the center of ν at X_l , say P_l , is a pseudosimple singularity for \mathcal{X} , for some l > k, where k is the length of π_{ν}^0 and that the curve associated with ν at P_l is non-singular. Hence, we may assume that in a local system of coordinates (x, y) at P_l , the curve associated with ν is (y = 0) at P_l and that \mathcal{X} is pseudosimple at P_l . This means that \mathcal{X} can be written as

(2.2)
$$\mathcal{X} = E\Big((\lambda x + a(x, y))\frac{\partial}{\partial x} + y(\mu + b(x, y))\frac{\partial}{\partial y}\Big)$$

with $\operatorname{ord}(a) \ge 2$, $\operatorname{ord}(b) \ge 1$. The asymmetry between *x* and *y* arises because we are not taking the equation of the exceptional divisor through *P*_l as the other coordinate.

The valuation is given by the following: let $f \in \mathcal{O}_{P_l}$ and write

$$f(x, y) = x^m f_1(x) + y^{\kappa} f_2(x, y),$$

where $f_1, f_2 \in \mathcal{O}_{P_l}, f_1(0)$ depends only on x and may be 0, but $f_1(0) \neq 0$ if $f_1 \neq 0$, and $m, k \geq 0$. Then $\nu(f) = (0, m)$ if $f_1 \neq 0$. Otherwise, $\nu(f) = (k, j)$ for some nonnegative integer j. The order in \mathbb{Z}^2 is lexicographical. If $f/g \in \mathcal{M}$ has $\nu(f/g) \geq 0$, we may assume that either $f_1 = 0$ and $g_1 \neq 0$ or that both $f_1, g_1 \neq 0$. In any case,

$$\mathfrak{X}\left(\frac{f}{g}\right) = \frac{g\mathfrak{X}(f) - f\mathfrak{X}(g)}{g^2}.$$

36

Derivations and Valuation Rings

If $f_1(x) = 0$ and $g_1(x) \neq 0$, then by (2.2) the numerator is a multiple of y, so that $\nu(\mathfrak{X}(f/g)) \ge 0$. Otherwise, a simple computation using (2.2) again (which implies that y = 0 is invariant) gives $\nu(\mathfrak{X}(f/g)) \ge 0$.

We only need to prove the reciprocal when π_{ν} does not regularize \mathcal{X} (the other cases are already dealt with), so that we may assume as before that P_l is a pseudosimple singularity and that \mathcal{X} can be written as (2.2) with $\lambda/\mu \notin \mathbb{Q}_{>0}$, etc. We may also assume that the curve associated with ν is non-singular and has equation x + y = 0, after performing a local change of coordinates at P_l , *i.e.*, it is transverse to the two separatrices at P_l . Taking $f = x^k$ and $g = x + y + x^{k+2+\nu(E)}$, one gets

$$\mathfrak{X}\left(\frac{f}{g}\right) = E\frac{(x+y+x^k)(k\lambda x^k+\dots)-x^k(\lambda x+\mu y+\dots)}{(x+y+x^{k+2+\nu(E)})^2},$$

whose value is < 0 because the second term in the numerator has contact at most k + 1 with x + y = 0. (Notice that the condition $\lambda/\mu \notin \mathbb{Q}_{>0}$ is essential.)

An argument similar to the one used in the second case above (taking $f = x + y + y^{k+1} + ...$) proves the following.

Theorem 2.4 If ν is the contact with a formal non-convergent branch $\hat{f} = 0$, then ν is closed for \mathfrak{X} if and only if $\hat{f} = 0$ is invariant for \mathfrak{X} .

Finally, valuations with an infinite number of Puiseux pairs are never closed for any analytic vector field.

Theorem 2.5 Let ν be a valuation with an infinite number of Puiseux pairs. Then ν is not closed for X.

Proof If π_{ν} regularizes \mathfrak{X} , then we are done by Seidenberg's result [6], so that we may assume π_{ν} does not regularize \mathfrak{X} and hence that P_l is a pseudosimple singularity for \mathfrak{X} for some *l* and, as ν has an infinite number of Puiseux pairs, we may also assume P_l is a crossing of invariant exceptional divisors (by Remark 1.3). Then

$$\mathcal{X} = E\Big(\left(\lambda x + xa(x, y)\right)\frac{\partial}{\partial x} + (\mu y + yb(x, y))\frac{\partial}{\partial y}\Big).$$

At this point, we may reason using the same argument as in the reciprocal of Theorem 2.3 to end the proof (there is a linear combination of cx + dy such that $\nu(cx + dy) \gg 0$, etc.).

3 The Divisorial Case

The result for divisorial valuations is in stark contrast with the corresponding result in [4] (where the author shows that a divisorial valuation is L'Hôpital if and only if it corresponds to a dicritical divisor of the foliation).

Proposition 3.1 A divisorial valuation ν is closed for a vector field X reduced at (0, 0) if and only if its associated sequence of blowing-ups does not regularize X.

Proof If π_{ν} regularizes \mathcal{X} , say at P_k , then the only valuation centered at P_k closed for \mathcal{X} would be the one associated with the separatrix through P_k , so it cannot be ν . This proves the necessity of the condition.

Assume that π_{ν} does not regularize \mathfrak{X} and let P_k be the last center in π_{ν} . This means that if $(\mathfrak{O}_k, \mathfrak{m}_k)$ is the local ring at P_k , then ν is given by $\nu(f) = \operatorname{ord}_{\mathfrak{m}_k}(f)$ for $f \in \mathfrak{O}_k$.

As

$$\nu(\mathfrak{X}(h/g)) = \nu\left(\frac{g\mathfrak{X}(h) - h\mathfrak{X}(g)}{g^2}\right) + \nu(E),$$

an elementary verification shows that if $\nu(f) \ge \nu(g)$, then $\nu(\mathfrak{X}(f/g)) \ge 0$.

We say that a finite chain of blowing-ups π as (1.2) is *included* in the infinitely near singularities of a singular holomorphic foliation on (\mathbb{C}^2 , 0) if all the centers P_k of π are singularities of the corresponding reduced foliation in X_k .

Corollary 3.2 Any divisorial valuation ν whose associated chain of blowing-ups π_{ν} is included in the infinitely near singularities of the reduced foliation associated with a holomorphic vector field X is closed for X.

Acknowledgement The author wishes to thank the referee for his suggestions.

References

- F. Cano, R. Moussu, and J.-P. Rolin, Non-oscillating integral curves and valuations. J. Reine Angew. Math. 582(2005), 107–142. http://dx.doi.org/10.1515/crll.2005.2005.582.107
- F. Cano, R. Moussu, and F. Sanz, Oscillation, spiralement, tourbillonnement. Comment. Math. Helv. 75(2000), no. 2, 284–318. http://dx.doi.org/10.1007/s000140050127
- [3] F. Cano, C. Roche, and M. Spivakovsky, *Local uniformization in characteristic zero. Archimedian case*. Rev. Semin. Iberoam. Mat. 3(2008), no. 5-6, 49–64.
- [4] P. Fortuny Ayuso, *The valuative theory of foliations*, Canad. J. Math. **54**(2002), no. 5, 897–915. http://dx.doi.org/10.4153/CJM-2002-033-x
- [5] A. Seidenberg, *Reduction of singularities of the differential equation A dy* = B dx. Amer. J. Math. **90**(1968), 248–269. http://dx.doi.org/10.2307/2373435
- [6] _____, Derivations and valuation rings. In: Contributions to Algebra. Academic Press, New York, 1977, pp. 343–347.
- M. Spivakovsky, Valuations in function fields of surfaces. Amer. J. Math. 112(1990), no. 1, 107–156. http://dx.doi.org/10.2307/2374856

Dpto. de Matemáticas, Universidad de Oviedo, Spain e-mail: info@pfortuny.net

38