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In the standard picture of fully developed turbulence, highly intermittent hydrodynamic
fields are nonlinearly coupled across scales, where local energy cascades from large
scales into dissipative vortices and large density gradients. Microscopically, however,
constituent fluid molecules are in constant thermal (Brownian) motion, but the role
of molecular fluctuations in large-scale turbulence is largely unknown, and with rare
exceptions, it has historically been considered irrelevant at scales larger than the molecular
mean free path. Recent theoretical and computational investigations have shown that
molecular fluctuations can impact energy cascade at Kolmogorov length scales. Here,
we show that molecular fluctuations not only modify energy spectrum at wavelengths
larger than the Kolmogorov length in compressible turbulence, but also significantly
inhibit spatio-temporal intermittency across the entire dissipation range. Using large-
scale direct numerical simulations of computational fluctuating hydrodynamics, we
demonstrate that the extreme intermittency characteristic of turbulence models is replaced
by nearly Gaussian statistics in the dissipation range. These results demonstrate that the
compressible Navier—Stokes equations should be augmented with molecular fluctuations
to accurately predict turbulence statistics across the dissipation range. Our findings have
significant consequences for turbulence modelling in applications such as astrophysics,
reactive flows and hypersonic aerodynamics, where dissipation-range turbulence is
approximated by closure models.
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1. Introduction

A fully developed three-dimensional turbulent state is highly irregular, with energy
nonlinearly ‘cascading’ from large length scales where it is injected to small length scales
in an essentially inviscid process, until it is eventually dissipated by the viscosity of the
fluid at scales smaller than the dissipation length scale (also known as the Kolmogorov
length scale) (Frisch 1995; Eyink & Sreenivasan 2006; Alexakis & Biferale 2018). In
incompressible fluids, the energy cascade occurs by a continuous transition of large eddies
into smaller and smaller eddies while energy is continually injected at large length scales
in a non-equilibrium statistical steady state. Such a cascading phenomenon indicates that
the statistical properties of turbulence should be invariant at all scales, as predicted by
Kolmogorov’s theory of turbulence (Frisch 1995). However, intermittency in turbulent
flows result in strong deviations from Kolmogorov’s theory at small scales (Frisch &
Morf 1981; Paladin & Vulpiani 1987; Frisch 1995; Chevillard, Castaing & Lévéque 2005).
Intermittency is characterised by extreme variability of velocities with non-Gaussian, fat-
tailed distributions that appear as localised bursts of extreme vorticity intensification in
a largely quiescent flow (Benzi et al. 2008; Yeung, Zhai & Sreenivasan 2015; Wang,
Gotoh & Watanabe 2017).

While energy cascades and intermittency have been intensely studied in incompressible
fluids, numerous natural and technological phenomena involve turbulent flow of
compressible fluids. Important natural applications include astrophysical phenomena such
as supernovae, star formation and cosmology (Mac Low & Klessen 2004). Compressible
turbulence is also important in technological applications such as high-temperature
reactive flows (Hamlington, Poludnenko & Oran 2012), inertial confinement fusion
(Bender et al. 2021) and hypersonic vehicle design (Urzay 2018). The dynamics of
compressible turbulence is significantly more complicated than incompressible turbulence
with nonlinear interactions between solenoidal (shear) and compressive modes of velocity
fluctuations along with coupling between the velocity field and thermodynamic fields
(pressure and density) (Eyink & Drivas 2018). For example, in addition to dissipative
vortices, compressible turbulence is also characterised by the appearance of shock waves
(Federrath et al. 2021) and contact surfaces characterised by large density gradients (Benzi
et al. 2008). Whereas exact scaling relations for the correlation functions and statistical
properties of compressible turbulence have been recently discovered (Wang et al. 2012,
2017; Eyink & Drivas 2018; Donzis & John 2020), further analysis suggests that kinetic
energy dissipation occurs due to a distinct mechanism of pressure—work defect (Eyink &
Drivas 2018) in addition to local energy cascades (Aluie 2011; Wang et al. 2013). However,
despite more complex physical mechanisms, turbulent compressible flows also exhibit
local energy cascades, which minimally conserve kinetic energy (Aluie 2011; Wang et al.
2013), and strongly intermittent and variable velocity and thermodynamic fields at smaller
length scales (Benzi et al. 2008; Wang et al. 2017; Federrath et al. 2021).

Microscopically, a fluid is a discrete physical system consisting of molecules that
are in constant random (i.e. Brownian) motion; an accurate continuum description at
small scales requires the use of fluctuating fields. Unlike turbulent fluctuations described
above, these molecular fluctuations are thermal in origin, with a covariance structure
that is completely described by equilibrium statistical mechanics (Landau & Lifshitz
1980). While thermal fluctuations are present at all scales in a fluid, in non-equilibrium
conditions, fluctuations in velocity and thermodynamic fields can become correlated
over macroscopic length scales, resulting in interesting macroscale phenomena such
as non-equilibrium correlations observed in light scattering (Tremblay, Arai & Siggia
1981), diffusive enhancement by mode coupling (Donev et al. 2011), giant fluctuations
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(Vailati & Giglio 1997), and hydrodynamic instabilities (Wu, Ahlers & Cannell 1995).
It is therefore an important question to ask: at what scales do thermal fluctuations have
a significant effect on turbulent fluctuations? While it has been historically accepted
that thermal fluctuations do not impact turbulence at scales larger than the mean free
path (von Neumann 1949), recent (Bandak et al. 2022) and rediscovered (Betchov 1957)
theoretical efforts have remarkably predicted that thermal fluctuations can dominate
the kinetic energy spectrum at scales comparable to the dissipative Kolmogorov length
scale, which is orders of magnitude larger than the mean free path of most common
fluids. These theoretical predictions have been confirmed by very recent modelling efforts
(Bell et al. 2022; McMullen et al. 2022), but no experimental confirmation exists.
While a recent numerical study on incompressible fluids has discovered that molecular
fluctuations replace the extreme-scale intermittency in the far-dissipation range with a
Gaussian distribution (Bell et al. 2022), the impact of molecular fluctuations on turbulent
intermittency across the whole range of turbulence spectrum remains to be determined.
Furthermore, the impact of molecular fluctuations on compressible turbulence has also
not been fully explored.

2. Theory and numerical methods
2.1. Fluctuating hydrodynamics theory of compressible fluids

In order to reliably introduce thermal fluctuations in compressible fluid dynamics, we use
nonlinear fluctuating hydrodynamics (FHD), originally proposed in the linearised form
by Landau & Lifshitz (1959) (see also De Zarate & Sengers 2006). Here, a stochastic
flux term is added to the deterministic Navier—Stokes equations, leading formally to a
system of stochastic partial differential equations (SPDEs). The stochastic fluxes represent
a macroscopic realisation of microscopic degrees of freedom in a thermodynamic system.
Specifically, these fluxes are constructed to model fluctuations in hydrodynamic variables
that arise from the discrete molecular character of fluids as predicted by statistical
mechanics. The linearised form of FHD was justified by Fox & Uhlenbeck (1970a,b),
and Bixon & Zwanzig (1969). The nonlinear hydrodynamic fluctuations were later
justified by deriving the Fokker—Planck equations of the distribution function of conserved
hydrodynamic quantities (Zubarev & Morozov 1983), which then led to the formulation
of the associated stochastic differential equations (Espafiol 1998).

The nonlinear FHD equations for a compressible fluid in conservative form are
(Srivastava et al. 2023)

S @)=V, 2la
%(pu):—V-[pu®u+pl]—V-[S+§]+paF, (2.1b)
3 ~ ~
5(pE)=—V-[u(pE+p)]—V-[Q+ Q]-V-[(5+5)-u]
+pa’ u—(pa” - u), (2.1¢)

where p is the fluid density, u is the velocity, E is the total specific energy, p is
the pressure, and / is the identity matrix. The total energy density of the fluid, pE =
pe+ (1/2)p(u - u), is the sum of internal energy and kinetic energy, where e is the specific

1022 A39-3


https://doi.org/10.1017/jfm.2025.10796

https://doi.org/10.1017/jfm.2025.10796 Published online by Cambridge University Press

L Srivastava, A. Nonaka, W. Zhang, A.L. Garcia and J.B. Bell

internal energy. In this set of nonlinear FHD equations, the diffusive stress tensor S and
heat flux Q are augmented by their stochastic counterparts S and Q, respectively. When
S= Q =0, the FHD equations reduce to the well-known deterministic Navier—Stokes
equations for compressible fluids. The term a’ represents a long-wavelength external
turbulence acceleration required for maintaining a statistically steady turbulent state. The
last term in the energy equation, —(pa’ - u), represents a thermostat that is used to
maintain the system temperature. The details of the diffusive and stochastic fluxes, and
the turbulence forcing and thermostat, are presented in the subsections below.

The linearised form of the FHD equations is a well-defined system of SPDEs with
equilibrium solutions that are Gaussian random fields with a covariance structure that
matches the Gibbs—Boltzmann distribution that is consistent with well-established results
in statistical mechanics (Landau & Lifshitz 1980). Although the linearised FHD equations
can be rigorously defined with the use of generalised functions, the high irregularity of the
stochastic fluxes makes interpreting the fully nonlinear system as SPDEs mathematically
ill-defined. To obtain a mathematically tractable model, one needs to introduce a high
wavenumber cut-off that is of the order of several mean free paths. In practice, we
introduce a cut-off by discretising the system using a finite-volume discretisation with cells
that are large enough to have at least N > 50 molecules per finite-volume cell, resulting
in a finite-dimensional system of stochastic differential equations (Srivastava et al. 2023).
This system of stochastic differential equations models the effect of thermal fluctuations
as measured at the grid scale. Setting N > 50 ensures that variations in hydrodynamic
variables are well-approximated by a Gaussian. The computational methodology used in
this work has been demonstrated to accurately capture the effect of thermal fluctuations in
both equilibrium and non-equilibrium settings by comparison with theory and molecular
gas dynamics simulations (Srivastava er al. 2023). We note that the numerical solution
of the FHD equations depends on the specific mesh spacing in the finite-volume
discretisation. This reflects the physical property that the variance of fluctuations in
hydrodynamic variables depends on the scale at which they are measured.

As such, there is ample numerical evidence that a finite-volume discretisation of
the FHD equations accurately models nonlinear hydrodynamics fluctuations in various
macroscale non-equilibrium phenomena such as giant fluctuations (Srivastava et al. 2023)
and diffusive enhancement (Donev et al. 2011). While FHD has proved remarkably
successful for modelling mesoscale laminar flows with thermal fluctuations, matching
theory and experiment, numerical solutions of the FHD equations have only very
recently been utilised to model turbulence in incompressible fluids with molecular
fluctuations (Bell et al. 2022). Here, we consider application of FHD to compressible
turbulence. Specifically, we perform direct numerical simulations of homogeneous
isotropic turbulence in nitrogen gas at standard temperature and pressure (STP) subjected
to a large-wavelength random external solenoidal forcing along with a thermostat to
maintain a statistically steady turbulent state. The simulation domain is a periodic cube
with sides of length L ~0.2 mm discretised on a 10243 finite-volume grid. The grid
size Ax =1.956 x 10~* mm then sets the small-wavelength (high-wavenumber) cut-off
of the numerical solution to the FHD equations that corresponds to the coarse-graining
length of the microscopic fluid dynamics. At STP, the mean free path of nitrogen
molecules is approximately 70 nm, which is approximately three times smaller than the
grid size corresponding to the high-wavenumber cut-off. We also restrict the present
study to weakly compressible flows with subsonic turbulent Mach numbers Ma; = 0.2
that can exhibit large density variations with contact discontinuities even in the absence of
hydrodynamic shocks (Benzi et al. 2008).
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2.2. Numerical details

Here, we present the numerical details for solving the nonlinear FHD equations defined in
(2.1). For the case of nitrogen gas simulated here, we assume an ideal gas equation of state

N pkBT
- m

) (2.2)

where T is the temperature, m is the molecular mass, and kg is the Boltzmann constant. We
assume calorically perfect gas at STP with constant specific heats of a classical diatomic
gas. The components of the stress tensor S defined in its Newtonian form are

du;  Juj 2
S“:_ . _ _8 _ = V- s 2.3
4 ”<8xj+axi) ”((K 3") "> =

where §;; is the Kronecker delta, 1 is the shear viscosity, and « is the bulk viscosity.
The heat flux is Q = —A VT, where A is the thermal conductivity. The viscosity and
thermal conductivity are not treated as constants, but depend on the local state of the
fluid (Giovangigli 2012). _

The stochastic stress S is a Gaussian random field with zero ensemble mean, (S) =0,
and we use the following efficient form of S, as proposed by Morozov (1984) and Espafiol
(1998), in this study:

S(r, 1) =/2kpTn Z + ( kgl ~ 2k3B"T) Z) I, (2.4)

3

Here,

~ 1
Z=—(2+2") (2.5)
V2
is a symmetric matrix constructed from an uncorrelated Gaussian tensor field Z with zero
mean and unit variance. The stochastic heat flux Q is

0 =+2kgT?1 22, (2.6)

where Z(9) is an uncorrelated three-dimensional Gaussian vector field with zero mean
and unit variance.

A staggered-grid discretisation based on the method-of-lines approach is used to
spatially discretise the SPDEs of compressible FHD. Here, the conserved scalar variables,
p and p E, and primitive scalar variables, p and T, are discretised at the centre of a finite-
volume cell, whereas the vector variables, conserved momentum density pu and velocity
u, are discretised on the normal faces of the grid (Srivastava et al. 2023). The resulting
stochastic ordinary differential equations are integrated explicitly in time using a low-
storage third-order Runge—Kutta integrator (Donev et al. 2010; Srivastava et al. 2023). The
staggered-grid numerical method discretely preserves the fluctuation—dissipation balance
(Usabiaga et al. 2012), which has been confirmed by a correct reproduction of the structure
factors of hydrodynamic variables at thermodynamic equilibrium (Srivastava et al. 2023).

We emphasise here that even though the nonlinear FHD equations and the deterministic
Navier—Stokes equations for compressible fluids appear similar, with the exception of the
stochastic forcing, they are conceptually completely different in their representation of
the underlying hydrodynamic phenomena. The FHD represents a coarse-graining of the
molecular description of a fluid, with an underlying assumption that the coarse-graining
region has a sufficient number of molecules. The hydrodynamic and thermodynamic fields
resulting from the coarse-graining have statistical properties that depend on the scale at
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which they are measured, and which become increasingly irregular at smaller scales. This
scale dependence is not an artefact, but rather a consequence of the molecular character
of the fluid. For computational purposes, a numerical cut-off is introduced that is at
least as large as the scale needed to justify the coarse-graining process (Espafiol et al.
2009). In the present method, this numerical cut-off is given by the mesh size of the
finite-volume discretisation that effectively acts as a low-pass filter for the coarse-grained
molecular fluctuations (Eyink 2024), and the accuracy of the FHD description is assessed
by renormalisation group invariance of the model to this cut-off (Forster, Nelson &
Stephen 1977). In this regard, the invariance of the FHD model to renormalisation group
transformation is conceptually different to the traditional numerical convergence of the
solution of deterministic Navier—Stokes equations to an underlying continuum model.

2.3. Turbulence forcing and thermostat

A statistically steady homogeneous isotropic turbulent state is achieved by forcing the
system with a stochastic process using the formulation of Eswaran & Pope (1988). An
external force pa’ (r,t) corresponding to a long-wavelength acceleration a’ (r, 1) is
added to the momentum equation to drive turbulence. The forcing is applied only on
wavevectors k whose wavenumbers lie inside the spherical shell of radius 232 ko, such

that |k| < 2+/2 ko, where ko =27 /L.
Mathematically, consider an Ornstein—Uhlenbeck process for a complex-valued vector
b(n,t) as

db(n) =Ab(n)dr + BdW, 2.7)

where n = (ny, ny, n;) are integer indices such that 1 < [n| < 24/2 limits the forcing to
long wavelengths, and W is a vector of complex Wiener processes. The matrices in the
Ornstein—Uhlenbeck process are

1 [1
A=—1I B=o |—]I, (2.8)
T. T,

where /is the identity matrix. Therefore, we have (Gardiner 1985)

2
(b, 1) B (', 1 4+5)) = T e T 8y 2.9)

where o and T, control the amplitude and time scale of external forcing. In compressible
turbulence, both solenoidal and dilatational modes can be forced independently; in this
study, we focus on solenoidal forcing only. To do so, we apply a projection operator P
on b(n, t) such that I;(n, t) =P-b(n, 1) is projected onto a plane normal to k =27wn/L,

where
kkT
P= <I— W) (2.10)

The real-space turbulence forcing is then formulated as

a"(r.y=Re| > (bm)+b (—m))e* T |. @.11)
1<In|<2Vv2

The external turbulence forcing adds energy to the compressible fluid that dissipates as
heat, causing an increase in the system temperature. To maintain a statistically steady state,
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energy is continually removed from the system using a sink. At each time step, we compute
the mean power due to the external forcing as (o(r) a’ (r) - u(r)), which is uniformly
removed as a sink term in the energy equation. We note that at thermodynamic equilibrium
without forcing in FHD simulations, no sink is needed because the fluctuation—dissipation
balance ensures a statistically steady state.

2.4. Simulation details and statistics

We ran simulations with the initial state of nitrogen gas at STP conditions of density
po=1.13 x 1073 gecm™3 and T = 300 K, where the mean free path of nitrogen molecules
is approximately 70 nm. A fully periodic system with L =2.0032 x 1072 cm was
initialised. Massively parallel simulations on a 10243 finite-volume grid were conducted
for both deterministic Navier—Stokes and FHD on high-performance computing platforms
(see the Appendix for details). The finite-volume grid spacing Ax =1.956 x 10~* mm
corresponds to N ~ 1.8 x 10° molecules of nitrogen per finite-volume cell. The time
step of the simulation was fixed at Az =1.25 x 10™'!'s in both deterministic Navier—
Stokes and FHD simulations. The thermodynamic and transport properties of the gas
were modelled with a hard-sphere approximation based on the prescription by Giovangigli
(2012). A turbulent solenoidal forcing corresponding to o =6 x 10° cms™2 and T} =
1.5 x 10~*s was applied at the start to both deterministic Navier—Stokes and FHD
simulations. In each case, the simulations were first run for approximately 1.125 x 10°
time steps until they reached a statistical steady state. Thereafter, the simluations were run
for at least longer than 87,, where 7, is the eddy turnover time during which the statistics
were collected.

3. Results
3.1. Dissipation-range turbulence with molecular fluctuations

We first probe dissipation-range intermittency by analysing the probability density
function (PDF) of local vorticity obtained from direct numerical simulations (see §1
of the supplementary material is available at https://doi.org/10.1017/jfm.2025.10796 for
details on the numerical computation of local vorticity) averaged over at least 87, where
7y is the eddy turnover time. Intermittency in turbulent flows results in extreme bursts
of local vorticity that are spatially interspersed within regions of relatively quiescent
flow; as a result, the statistics of vorticity become highly non-Gaussian (Frisch 1995).
This is confirmed in figure 1(a), which shows non-Gaussian tails in the PDF of the
vector components of local vorticity w normalised by the ensemble standard deviation o,.
Remarkably, when molecular fluctuations are included (labelled FHD), a more Gaussian-
like PDF is obtained that indicates the homogenising effect of molecular fluctuations
at dissipation scales that are approximately three times larger than the molecular mean
free path. In FHD simulations at thermodynamic equilibrium in the absence of external
turbulent forcing, the PDF is completely Gaussian. For this case, the ensemble standard
deviation of local vorticity o,’ matches well with theoretical predictions of equilibrium
thermodynamics (Landau & Lifshitz 1980), to within less than 1 %. The homogenising
effect of molecular fluctuations is readily observed in the visualisation of local vorticity
magnitude |w| normalised by o ! in figures 1(b) and 1(c). Whereas in deterministic
simulations, regions of high vorticity are highly localised around large regions of
quiescence, FHD simulations exhibit a more diffuse distribution of vorticity. Here,
localised regions of high vorticity are overlaid on homogeneously distributed fluctuating
velocity (and vorticity) as a result of thermal equipartition from molecular fluctuations.

1022 A39-7


https://doi.org/10.1017/jfm.2025.10796
https://doi.org/10.1017/jfm.2025.10796

https://doi.org/10.1017/jfm.2025.10796 Published online by Cambridge University Press

L Srivastava, A. Nonaka, W. Zhang, A.L. Garcia and J.B. Bell

@ b)
10
1072 ; e
~~
o 104F )
N ._.' J.
S oot 4 L R, e
~ . Oxk o Deterministic '-_ ° v
o { @ FHD \
108 &/« Frpcea) Vo,
&F :’ -=- Gaussian 1 L]
—10 L £ PR SR
10 -10 -5 0 5 10
/o,

Figure 1. (a) The PDFs of local vorticity w normalised by their ensemble standard deviation o, averaged over
at least 8t,, where 7, is the eddy turnover time for deterministic and FHD simulations. The PDF from an
FHD simulation at thermodynamic equilibrium without turbulent forcing, FHD (eq.), is also plotted. Three-
dimensional visualisations of local vorticity magnitude |w| in (b) deterministic and (¢) FHD simulations. Here,
|w| is normalised by the standard deviation of vorticity fluctuations at thermodynamic equilibrium o,? & 5 x
109 s~!; the standard deviations of vorticity fluctuations are o, &~ 7.3 x 106s~! and o, ~ 6.3 x 10°s~! for
deterministic and FHD simulations, respectively.
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Figure 2. (@) The PDF of local divergence D normalised by its ensemble standard deviation op for
deterministic and FHD simulations. The inset shows the PDF of local Mach number Ma in FHD (orange)
and deterministic (blue) simulations. Three-dimensional visualisations of local divergence in (b) deterministic
and (c) FHD simulations. Here, D is normalised by the standard deviation of divergence fluctuations that are
op ~3.1 x 10° 57! and op 2 8.7 x 10 s~! for deterministic and FHD simulations, respectively.

In FHD simulations at thermodynamic equilibrium, the local vorticity is a completely
Gaussian random field (see figure S1 of the supplementary material).

Compressible turbulence exhibits strong hydrodynamic shocks (Federrath et al. 2021);
however, even weakly compressible subsonic compressible turbulent flows can exhibit
large density gradients without shocks (Benzi et al. 2008). Here, we restrict ourselves
to nonlinear subsonic flows without any strong shock effects (Sagaut & Cambon 2018),
but where the local Mach numbers can be as high as 0.5 (see inset of figure 2a)
such that compressibility effects are not negligible, and we observe regions of large
density variations (see figure S2 of the supplementary material for three-dimensional
visualisations of local density fields). The dilatational behaviour of turbulence is analysed
by the PDF of local divergence D = V - u normalised by the ensemble standard deviation
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op in figure 2(a) (see § I of the supplementary material for details on the numerical
computation of local divergence). The PDF is nearly Gaussian for FHD simulations, and
is coincident with the fully Gaussian PDF for FHD simulations without turbulent forcing.
Deterministic simulations exhibit modest non-Gaussian tails for both positive and negative
divergence. Furthermore, the instantaneous PDFs exhibit significant temporal variability
in deterministic simulations, whereas the variability is very small for FHD simulations
(see figure S3 of the supplementary material for PDFs of local divergence). On average,
however, divergence in deterministic simulations is negatively skewed, with skewness
S~ —0.12 £ 0.19, whereas S ~ 0 for FHD simulations. More spatial volume is associated
with expansion than compression in deterministic simulations (Sagaut & Cambon 2018),
whereas FHD simulations exhibit nearly equal volumes of expansion and compression.

The strength of dilatation is much stronger in FHD simulations (op & 8.7 x 10051
compared to deterministic simulations (op & 3.1 x 105 s~1). Molecular fluctuations in
FHD simluations excite both vortical and dilatational modes of fluid motion via
equipartition, whereas dilatational modes are indirectly excited through nonlinear coupling
with the fluid vorticity in deterministic simulations (Sagaut & Cambon 2018), which is a
much weaker effect for pure solenoidally forced turbulent flows considered here. In FHD
simulations with no turbulent forcing, crgl ~ 8.6 x 10°s~!, which is nearly equal to its
value in FHD simulations with turbulent forcing, thus demonstrating that molecular fluc-
tuations completely dominate the dilatational dynamics. The differences are apparent in
figures 2(b) and 2(c), which visualise local D/op fields. While deterministic simulations
exhibit extended regions of both positive and negative divergence separated by contact
discontinuities, the local divergence field is spatially nearly Gaussian in FHD simulations.

Here, we remark that in order to derive various hydrodynamic quantities, such as
vorticity and divergence discussed above, we computed the numerical derivatives of
the velocity field on the finite-volume grid. We emphasise that the discrete numerical
operators that are used to derive these quantities are the same operators that were used
to evaluate derivatives in the numerical solution algorithm for the FHD equations, thus
making them consistent with the underlying numerical algorithm. As with the numerical
solution of the FHD equations, the derived hydrodynamic quantities also depend on
the mesh resolution; however, this resolution dependence is physically correct since the
variance of thermal fluctuations depends on the scale of measurement.

3.2. Turbulence and thermal dissipation: separation of scales

In order to provide an objective comparison between deterministic Navier—Stokes and
FHD simulations, we compute various microscale and dissipation (Kolmogorov) scale
turbulence quantities from the simulations. Unlike deterministic Navier—Stokes equations,
the computation of velocity gradients in FHD is highly scale-dependent, and as such,
they do not represent an objective physical quantity. Therefore, any derived microscale
and dissipation scale turbulence quantities from local velocity gradients will depend on
the low-pass filter cut-off for the hydrodynamic and thermodynamic fields. In order to
define an objective and meaningful turbulent energy dissipation rate, we compute the
mean low-pass filtered enstrophy (§2<(k)) from the kinetic energy spectrum (E(k)) =
(1/2)(a(k) - u(k)*) as

k
(25(k)) = fo ¢*(E(q)) dq, (3.1)

where # (k) is the total velocity in the Fourier space. Subsequently, a mean low-pass filtered
dissipation rate is computed as (e =(k)) = (2(n)/{p)) £2=(k). Figure 3 shows (e=(k))
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Figure 3. Mean low-pass filtered dissipation rate (e <(k)) as a function of the wavenumber k£ computed from
the mean mean low-pass filtered enstrophy in (3.1) for deterministic Navier—Stokes and FHD simulations of
compressible turbulence.

as a function of the filtering wavenumber for deterministic Navier—Stokes and FHD
simulations. At large cut-off wavenumbers, (€ =<(k)) plateaus to a constant value owing
to very small velocities at small scales, whereas in FHD simulations, (€=(k)) plateaus
to a nearly similar constant value before rapidly increasing at even higher wavenumbers.
This increase is attributed to dissipation primarily occurring from molecular fluctuations
at small scales, which is an effect distinct from turbulent eddy fluctuations (Eyink & Jafari
2022). As such, the plateau value of (¢ =(k)), hereby denoted (€ <), provides a physically
meaningful and objective definition of turbulent energy dissipation rate in deterministic
Navier—Stokes and FHD simulations. Furthermore, the current experimental techniques
for turbulence measure coarse-grained fluid velocities and dissipation rates at scales much
larger than the Kolmogorov scale, and as such, are consistent with the low-pass filtered
definition of these quantities. Future experiments that can measure sub-Kolmogorov-
scale velocities can potentially disentangle dissipation due to molecular fluctuations from
turbulence dissipation (Bandak et al. 2022).

Using the prescription for low-pass filtered turbulent energy dissipation rate discussed
above, we derived various microscale and dissipation-scale quantities from the
simulations. In particular, we computed the following microscale quantities: (i) turbulent
Mach number Ma; = u’/{c), where c is the local speed of sound and u’ is the root mean
square velocity that is computed from the kinetic energy spectrum as

2 2 /OO
us=- (E(k)) dk; (3.2)
3Jo

(ii) microscale Reynolds number Re,= (p)u’l,/{n) corresponding to the Taylor
microscale length (Pope 2001)

2u'?
oup
0x1

where ((9u1/9x1)%) = (2/9)(£2<) assuming isotropy of flow. Per the discussion above,
we use the plateau value of (£2=) to estimate the velocity gradients. A microscale eddy

(3.3)
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Case Ma, Re, I3 x 1073 (cm) 7 x 1077 (s) Iy x 10~* (cm) T) X 1077 (s)

D-NS 0.20 34.9 1.53 4.13 1.28 1.01
FHD 0.21 40.1 1.67 4.27 1.26 0.97

Table 1. Mean turbulence statistics obtained from the simulations. Here, D-NS denotes deterministic Navier—
Stokes, Ma is the turbulent Mach number, Re, is the microscale Reynolds number, /, is the Taylor microscale
length, 7, is the eddy turnover time, /,, is the Kolmogorov length corresponding to the total dissipation rate,
and 7, is the Kolmogorov time scale.

turnover time is also computed as 7, = [, /u’. To compute dissipation-scale quantities, we
use the plateau value of mean low-pass filtered dissipation rate (¢ <) as described above.
The dissipation (Kolmogorov) length scale is calculated as [, = ((n)3/(p)3(e<NV/4, and
the corresponding Kolmogorov (small eddy turnover) time scale is calculated as 7, =
((m)/(p)(e=N/2.

Table 1 lists the microscale and dissipation-scale turbulence statistics for deterministic
Navier—Stokes and FHD simluations. By using a low-pass filter for velocity gradients
and dissipation rates in the Fourier space as described above, we obtain a meaningful
comparison between the two simulations. We note that in the case of deterministic
simulation, the turbulent Mach number Re, computed above matches reasonably well
with its value Rej = 41.8 computed directly from the velocities in the real space on the
finite-volume grid. The small discrepancy between the two values is possibly attributed to
complex enstrophy budgeting among the nonlinearly coupled dilatational and solenoidal
components of the turbulence velocity.

3.3. Thermal energy crossover scale in the energy spectrum

We now discuss the length scales at which molecular fluctuations have an appreciable
influence on compressible turbulence beyond the dissipation scale. The total energy
spectra E (k) = (1/2){u(k) - a(k)*) of a turbulent flow can be approximately divided into
the following three regimes (see figure 4a). (i) The far-dissipation range (FDR) represents
the smallest length scales, specifically wavenumbers larger than the Kolmogorov
wavenumber k, = v3/4(e)1/4 where v is the kinematic viscosity, and (€) is the total
mean dissipation rate. This regime is dominated by viscous dissipation and strong
intermittency (Kraichnan 1967), and molecular fluctuations strongly dominate turbulence
at these length scales, as shown above. (ii) The inertial sub-range (ISR) represents length
scales where energy cascades from larger eddies to smaller eddies in a scale-invariant
manner, and energy spectra have the form E (k) (€)23k=3/3 (Frisch 1995). (iii) The
near-dissipation range (NDR) (Frisch & Vergassola 1991; Buaria & Sreenivasan 2020)
that extends approximately from k, /30 to k, represents the transition between ISR and
FDR where the viscous effects start to become important and intermittency starts growing
rapidly (Chevillard et al. 2005). Here, the turbulent spectra drop exponentially as E (k) =
u%l,, exp(—pkly), where u, = ({(e)v)V/* is the Kolmogorov velocity scale, [;, = (1)3/<E))1/4
is the Kolmogorov length, and B is the rate of exponential decay of the spectrum that
typically ranges from 3 to 7 (we have fixed 8 =5 in our analysis) (Khurshid, Donzis &
Sreenivasan 2018).

Molecular fluctuations introduce another length scale in the turbulence spectrum
(Bandak et al. 2021). From equilibrium thermodynamics, the contribution of molecular
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Figure 4. (a) Comparison of the total kinetic energy spectrum (E (k)) in FHD versus deterministic simulations.
Three approximate ranges of length scales are highlighted: inertial sub-range (ISR, in blue), near-dissipation
range (NDR, in pink) and far-dissipation range (FDR, in green). In FHD simulations the thermal spectrum
Ey (k)= Q3kp(T)/ 2(,0))43'rk2 (red dash-dotted line) dominates for wavenumbers larger than the thermal
crossover scale k;;, where kg is the Boltzmann constant. (b) Standard deviation in total kinetic energy spectrum
SE(k) = ((E(k) — (E(k)))*)'/? normalised by (E (k)).

fluctuations to the energy spectrum (assuming no net flow, i.e. (u) =0) is

3kp(T
Ent =220y e, (3.4)
2(p)
which is ‘equipartitioned’ white noise with variance 3kp(T)/2(p) at all scales. The
wavenumber kg, at which molecular fluctuations are approximately equal in magnitude
to the turbulent spectrum is (Bandak et al. 2021)

kp(T)
(p)

Indeed, in figure 4(a), we observe that for FHD simulations, the total energy spectrum
crosses over from an exponential decay in the NDR to being dominated by the thermal
spectrum Ey, (k) at high wavenumbers. The agreement with Ey, (k) is remarkable without
any fitting parameters. The thermal crossover wavenumber ky, is approximately three times
smaller than the Kolmogorov wavenumber k,,, and its predicted value from (3.5) (shown by
the dashed vertical black line) matches well with the observed crossover to Ey; (k) (shown
by the dash-dotted red line). While the ratio ky;/ k;, depends on turbulence conditions, such
as density, viscosity, temperature and mean dissipation rate (Bandak et al. 2022; Bell et al.
2022), the relationship between k;; and k,, is fairly robust, and varies only very marginally
across a wide range of turbulence conditions (Bell et al. 2022).

The crossover into the thermal regime is also observed for the dilatational part of the
energy spectrum Eg(k) = (1/2){ay(k) - ag(k)*), as shown in figure 5(a), where @ty is
the dilatational (curl-free) part of the total velocity &. At low wavenumbers, the total
kinetic energy is dominated by solenoidal modes since the external turbulence forcing
is solenoidal (see figure S4 of the supplementary material for (E;(k)/E (k))). However,
following a rapid decay in the NDR, E,(k) crosses over to Eg4 (k) = (1/3) Ey (k) at the
wavenumber ky, in FHD simulations. The factor 1/3 appears because one-third of the
thermal energy of molecular fluctuations is ‘equipartitioned’ into the dilatational part, and
two-thirds into the solenoidal part of the total kinetic energy.
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Figure 5. (a) Comparison of dilatational kinetic energy (E4(k)) in FHD versus deterministic simulations.
The FHD simulations transition over to the thermal energy spectrum is Ey 4 (k) = (1/3) Ey,(k) (red dash-
dotted line) at ky,. (b) Standard deviation in the dilatational kinetic energy spectrum §E (k) = ((Eq(k) —
(Eq(k)))%)1/? normalised by (E,(k)).

The picture that emerges from these observations is that the impact of molecular
fluctuations on turbulence is not limited to dissipation scales in the FDR, but appears at
larger thermal crossover scales in the NDR. While the simulations in this study have been
conducted at low Reynolds numbers due to computational constraints, we can estimate the
scales at which molecular fluctuations will be significant in several practical scenarios. For
example, following Garratt (1994) and Bandak et al. (2021), in an atmospheric boundary
layer assumed to be composed entirely of nitrogen at 7 = 300 K, the energy dissipation
rate is € = 400 cm? s~3, kinematic viscosity of nitrogen is v = 0.16 cm? s !, and density is
p =1.1 x 1073gcm™3. The mean free path is Imfp = 70 nm, while the Kolmogorov length
scale is /;, = 0.57 mm. From (3.2), the thermal crossover length scale at which molecular
fluctuations will dominate is Iy ~ 1.3 mm, which is over four orders of magnitude larger
than the mean free path.

3.4. Molecular fluctuations impact turbulence statistics across the near-dissipation range

It is apparent that mean turbulence properties are significantly modified in the NDR at all
length scales smaller than 1/ ky,. However, it is well known that intermittency in turbulence
starts building up in the ISR, and rapidly increases in the NDR, where viscous effects start
to intensify (Frisch & Vergassola 1991; Chevillard et al. 2005). Therefore, even though
molecular fluctuations do not affect the ensemble-averaged turbulence properties such
as the energy spectrum (E (k)) for k < k;,, we can expect them to modify the statistical
properties of turbulence.

Indeed, a remarkable picture emerges where the large temporal statistical variability of
turbulence in the NDR is significantly reduced due to molecular fluctuations. Figures 4(b)
and 5(b) respectively show the standard deviation of the total energy 6 E (k) and dilatational
energy spectra § E4(k) normalised by the mean value averaged over at least 87,. The
growth of §E (k) and §E;(k) is much slower in FHD than in deterministic simulations
for k < kg, thus implying increased statistical stability of the dynamical turbulent system
with molecular fluctuations. For k > ky,, the statistical variability plummets by two orders
of magnitude in FHD simulations, whereas it keeps increasing with k for deterministic
simulations up to the beginning of the FDR. The eventual drop-off in § E (k) and § E;4 (k)
at very high k results from limitations in numerical precision.
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Figure 6. (a) Filtered kurtosis (flatness) K~ (k) and (b) filtered skewness S~ (k) of the velocity gradient dyu~,
where u~ is the high-pass filtered velocity obtained by zeroing out all the Fourier modes for wavenumbers
lesser than k in the velocity field. The horizontal dashed line corresponds to the kurtosis and skewness of a
Gaussian random field with > =3 and S~ =0 for all wavenumbers. The error bars denote the ensemble
standard deviation.

Next, we quantify scale-dependent spatial intermittency of turbulence through high-pass
filtered skewness S~ (k) and kurtosis (flatness) K~ (k) of the velocity gradient d,u~ that
are computed as

PSs s
5 )= — ot Ky = ot (3.6)
[ @u)?] [@u)?]
where
- 1 n
G =, [ ar )", 3.7

and u~ is the high-pass filtered velocity. Numerically, u~ is obtained by first computing

the discrete Fourier transform of the velocity field over the finite-volume grid and zeroing
out the Fourier modes for wavenumbers smaller than k, followed by a discrete inverse
Fourier transform to obtain the high-pass filtered velocity on the same finite-volume
grid. Once u~ is obtained, S~ (k) and K~ (k) are calculated by numerically computing
the derivative d,u~ using the same gradient operators as employed in the numerical
simluation of the FHD equations.

In an intermittent dynamical system, U~ (k) is expected to grow unboundedly with k in
the NDR and into the FDR as regions of intense turbulent activity become increasingly
localised in smaller fractions of the system volume (Frisch 1995). A negative skewness for
a turbulent system implies energy cascade from large to small scales (Frisch 1995), and its
magnitude ranges from § &~ —0.5 to S ~ —0.3. In a fully Gaussian distribution, S = 0 and
K=3.

In the present simulations, rapidly increasing intermittency from its build up in the ISR
and propagation through the NDR and into the FDR is observed in the deterministic case,
as seen by the variation of K~ in figure 6(a). In a remarkable contrast, K~ (k) ~ 3 at
all wavenumbers in FHD simulations, thus demonstrating that the intermittent dynamics
is completely inhibited not just in the FDR, but well into the NDR. Furthermore,
large variations in C~ (k) in deterministic simulations at high k, which are indicative
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Figure 7. Cross-sectional visualisations of the local vorticity magnitude |w| (normalised by the ensemble
mean (|w|)) only for wavenumbers k < ky, in (a) deterministic and (b) FHD simulations. (c,d) Same as
(a,b), respectively, but only for wavenumbers k > ky;. Cross-sectional visualisation of the local divergence
D (normalised by the ensemble standard deviation op) only for wavenumbers k < ky, in (e¢) deterministic and
(f) FHD simulations. (g,#) Same as (e, f), respectively, but only for wavenumbers k > k.

of highly intermittent behaviour, are not observed in FHD simulations. On the other
hand, the skewness of velocity gradient S~ (k) in figure 6(b) saturates to its Gaussian
value, as expected, for both FHD and deterministic simulations at high k. However
at low k, deterministic simulations exhibit a negative skewness with large variability,
whereas it is of a much smaller magnitude and variability in FHD simulations. We
note that in a recent study on the role of molecular fluctuations in incompressible
turbulence (Bell et al. 2022), the skewness and kurtosis of the velocity gradient were
reported to be unaffected by molecular fluctuations. Furthermore, through the analysis
of structure functions in recent studies on stochastic shell modelling of incompressible
turbulence (Bandak et al. 2022) and molecular gas dynamics simulations of compressible
turbulence (McMullen, Torczynski & Gallis 2023), it was observed that while the far-
dissipation range intermittency is replaced by Gaussian fluctuations, the intermittency in
the intermediate range persists. While our results are consistent with the studies in the
far-dissipation range, our observations of drastically reduced intermittency in the near-
dissipation range can potentially be attributed to low-Re flows simulated here and/or
compressibility effects.

A visual analysis of the filtered invariants of velocity gradient (i.e. vorticity magnitude
|w| and divergence D) highlights our observations. Figures 7(a) and 7(b) show
two-dimensional slices of vorticity magnitude |w|, and figures 7(e) and 7(f) show
two-dimensional slices of divergence D filtered for wavenumbers k < ky. Similarly,
figures 7(c) and 7(d), and figures 7(g) and 7(h), show the same data but filtered for
wavenumbers k > k;,. While these fields ‘appear’ similar at large wavelengths, k < kg,
in FHD and deterministic simulations, the visual differences are significant wavenumbers
k > k. Here, FHD simulations exhibit a nearly homogeneous spatial distribution of
vorticity and divergence with no signs of intermittency, whereas deterministic simulations
exhibit classic signs of dissipation-range intermittency with localised bursts of high
vorticity and divergence in a ‘sea’ of quiescent fluid.
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4. Discussion

Our simulations demonstrate that molecular fluctuations fundamentally modify
compressible turbulence across the entire dissipation range, in both the energy spectrum
and significantly reduced spatio-temporal intermittency. We propose that compressible
fluctuating hydrodynamics (FHD) equations are a more appropriate mathematical
model for compressible turbulence than the Navier—Stokes equations, especially for
modelling dissipation-range physics. While FHD equations assume local thermodynamic
equilibrium, they have successfully modelled compressible flows with large density
gradients that compared well with molecular gas dynamics that make no such assumption
(Srivastava et al. 2023). Importantly, even for weakly compressible turbulent flows, the
present results correspond well to recent molecular gas dynamics simulations of decaying
turbulence (McMullen et al. 2022). However, the validity of FHD in strongly compressible
turbulent flows with hydrodynamic shocks remains to be established and is a significant
mathematical challenge.

In principle, our predictions can be tested in experiments; however, most current
experiments lack spatial and temporal resolution, and sensitivity, to accurately probe
dissipation-range turbulence (Bandak et al. 2022). While some recent advances appear
promising (van de Water et al. 2022), the role of molecular fluctuations in turbulence
can also be indirectly evidenced in physical processes (Bandak et al. 2022). For example,
molecular fluctuations have large observed macroscale effects in laminar diffusive mixing
(Vailati & Giglio 1997) and reacting flows (Lemarchand & Nowakowski 2004); we can
expect that molecular fluctuations will also impact the turbulent form of these processes.
However, existing models of turbulent mixing (Sreenivasan 2019) and combustion
(Sreenivasan 2004) do not account for them. Molecular fluctuations can also play an
important role in transition to turbulence (Betchov 1961), and recent efforts have explored
the receptivity of a compressible boundary layer to molecular fluctuations, with design
implications for high-speed aircraft (Fedorov 2015; Luchini 2017).

Our results motivate new theoretical developments in turbulence closure models (Zhou
2021) that correctly account for molecular fluctuations and its impact on intermittency.
Correspondingly, the latest developments in computational FHD to model thermal noise
in multicomponent (Srivastava et al. 2023) and reactive (Polimeno et al. 2025) flows
will facilitate a new class of direct numerical simulations that can utilise exascale
supercomputers to directly investigate the role of molecular fluctuations in a variety of
large-scale turbulent flows.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10796.
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Appendix. High-performance computing

The numerical method described here is implemented within the AMReX framework
(Zhang et al. 2019), which uses an MPI paradigm for massively parallel simulations along
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with GPU-based performance acceleration. The numerical method has been implemented
in the fluctuating hydrodynamics software FHDeX, and it is available online as open-
source code at https://github.com/AMReX-FHD/FHDeX.

Most of the simulations were performed on the exascale supercomputing platform
Frontier, at the Oak Ridge National Laboratory. Each simulation run utilised either 256 or
512 compute nodes of Frontier; each compute node has 64-core AMD ‘Optimized 3rd Gen
EPYC’ CPUs and 4 AMD Instinct MI250X GPUs, where each GPU features two Graphics
Compute Dies (GCDs) for a total of eight GCDs per compute node. All the simulations
were run for approximately 1.5 x 10° to 2 x 10° time steps, including the initial run to
reach the steady state, followed by simulation runs to extract turbulence statistics. In total,
approximately 15 000 GPU-hours were utilised to perform the simulations and analysis in
this work, and ©O(10?) terabytes of raw data were generated.
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