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ABSTRACT

In this paper we investigate multivariate risk portfolios, where the risks are
dependent. By providing some natural models for risk portfolios with the
same marginal distributions we are able to compare two portfolios with
different dependence structure with respect to their stop-loss premiums. In
particular, some comparison results for portfolios with two-point distribu-
tions are obtained. The analysis is based on the concept of the so-called
supermodular ordering. We also give some numerical results which indicate
that dependencies in risk portfolios can have a severe impact on the stop-loss
premium. In fact, we show that the effect of dependencies can grow beyond
any given bound.
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1. INTRODUCTION

In traditional risk theory for means of tractability, individual risks are
usually assumed to be independent. Recent research has shown, however,
that a positive dependence between risks leads to underestimation of the
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stop-loss premium for the aggregated loss. To the best of our knowledge,
Heilmann (1986) and Hiirlimann (1993) have been the first authors, who
demonstrated the impact of dependencies on stop-loss premiums. More
recently, Dhaene and Goovaerts (1996) investigated the effect of bivariate
dependencies on the related stop-loss premium and gave an upper bound by
determining the riskiest portfolio. Dhaene and Goovaerts (1997) made a first
attempt to treat multivariate dependencies. They considered a special life
insurance portfolio with two-point distributions. Their results were general-
ized by Miller (1997) who characterized the riskiest portfolio under all
portfolios with equal marginals for arbitrary distributions. Wang (1997)
suggested a set of tools for concrete modeling of dependencies in risk
portfolios using the information given by the correlation coefficients.

In this paper we now propose some natural models for multivariate risk
portfolios with different degree of dependence and same marginal
distributions. The assumption about equal marginals is crucial here since
our focus lies on comparing dependencies only. The results can of course be
extended to unequal marginals by adding stochastic dominance. The models
are defined in such a way that it is possible to compare two portfolios from
the same class of models with respect to their stop-loss premiums. More
precisely, we consider the classical individual model from risk theory, where
the aggregate claim amount of a portfolio in a period is given by

S=3 %,
i=1

where X; is the random claim amount caused by policy i, i = 1, ..., n.
Throughout the paper we assume that the random variables X; are non-
negative with finite expectation. In a first model (model 3.1 in section 3) we
assume that the risks can be divided into several groups, where each risk of a
group is influenced by a global risk factor, a group specific risk factor and an
individual risk factor. We show how the group structure of the portfolio
affects the stop-loss premium and determine the safest and riskiest portfolio
in this model class. On that occasion, we use the notion of majorization in
order to compare the group structures.

In a second model (model 3.2 in section 3) we compare two portfolios,
where both are subject to the same economic/physical environment, but the
second portfolio contains an additional global risk factor which influences
the risks of this portfolio in the same direction. Again, the marginal
distributions are assumed to be equal for both portfolios. It can be proved
that the stop-loss premium in the second scenario is greater than in the first
one. This result is used later on to construct a portfolio, where the risks have
two-point distributions and the portfolio can be characterized by a
dependence parameter p € [0, 1]. The construction is such that increasing
p leads to a higher correlation in the portfolio and the two extreme cases
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p=0and p=1 correspond to independence and comonotonicity respec-
tively. We show that the stop-loss premium is increasing in the dependence
parameter p.

In another model we compare portfolios which are given by exchangeable
Bernoulli random variables. Here it can be shown that stop-loss order of the
mixing distribution implies more riskiness for the aggregate claims.
Moreover, in this setting, we prove that the ratio of the stop-loss premium
in the riskiest scenario divided by the stop-loss premium of an arbitrary
portfolio is increasing in the retention level.

Our models are very general and cover most of the specific parametric
models considered by Wang (1997). There is one main difference between
Wang’s paper and this one. We mainly investigate, how dependencies affect
the riskiness of portfolios, whereas Wang focuses on algorithms for
simulation and efficient computation of concrete parametric models for
correlated risks. Thus the two papers are complementary in so far as his
algorithms for simulation can be easily adapted to our models.

Most of the comparison results we provide in this paper are based on the
so-called supermodular ordering. This concept has recently proven to be
valuable for comparing dependencies in random vectors in a wide range of
applied probability models. For details see Béuerle (1997a), Shaked and
Shanthikumar (1997) and the references therein.

At the end of the paper we give a numerical example for model 3.1, which
shows that dependencies can have a severe effect on the stop-loss premium.
In particular we demonstrate that whenever the retention level exceeds the
expected aggregate claim amount, the effect of dependence can be arbitrary
worse.

The paper is organized as follows: section 2 contains some basic
definitions and results about stochastic orderings and dependence which we
will use in the sequel. Section 3 covers model 3.1 and 3.2 and section 4 is
dedicated to the special case of risks with two-point distributions. The
numerical results are summarized in section 5.

2. STOCHASTIC ORDERINGS AND DEPENDENCE

Let us first fix the notation. A portfolio of risks is a random vector
X = (Xi, ..., X,) of nindividual risks, where an individual risk X;,1 <i<n
is a non-negative (univariate) random variable with a finite mean. For
arbitrary univariate random variables ¥ we denote the distribution function
by Fy(t):=P(Y <1), t€ R and Fy(t) := P(Y > 1) =1 — Fy(r) shall be
the corresponding survival function. We will also frequently use the stop-loss
transform 7y (t) := E(Y — )" = J77 Fy(x)dx, t € R. For a random vector
X = (X1, ..., X,,) we similarly define the distribution function

Fy(ty =P X <t)=P(X1 <t1, o, Xy < ty), t=(l1, ..., ty) € R"
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and the survival function
Fy(t):=P(X >1)=P(X; > t1, .., Xu > tn), t={(t1, ..o, 1) € R".

Note that for multivariate distributions in general Fy () # 1 — Fx(¢). If two
random Lyariables or vectors X and Y have the same distribution, we will
write X =Y. X ~ F should be read as: X has the distribution F.

Now we will introduce some stochastic order relations, which are well-
known concepts for comparing risks.

Definition 2.1 Let X, Y be real random variables with finite means.

a) We say that X precedes Y in stochastic order, written X <, Y, if
Fx(t) > Fy(t) forall t € R.

b) X precedes Y in stop-loss order, written X <y Y, if ny(t) < my(t) for all
te R.

Remarks:

a) If X < Y, where < may be any stochastic order relation, then we will also
write Fy < Fy whenever it is convenient.

b) If we have a family Fy, 8 € © C R of distributions, then we say that Fy is
stochastically increasing in 6, if Fy <, Fy for § < &',

¢) Stop-loss order means, that the stop-loss reinsurance premium for the
risk Y is higher than that for X for any retention ¢.
Now we collect some important properties of these orderings, which we

will use frequently. They can be found e.g. in Shaked and Shanthikumar

(1994) or Goovaerts et al. (1990).

Theorem 2.2
a) The following conditions are equivalent:
1. X<, 7,
2. Ef(X) < Ef(Y) for all non-decreasing functions f, o
3. There are random variables X =X and Y =Y such that X < Y almost
sure.
b) The following conditions are equivalent:
1. X <q7,
2. Ef(X) < Ef(Y) for all non-decreasing convex functions f, ~
3. There are random variables X =X and Y =Y such that E [Y|X |>x
almost sure.

As stated before, the main topic of this paper is the comparison of the
riskiness of portfolios. In order to do so we need notions of stochastic order
relations for random vectors. We say that a portfolio X = (Xj, ..., X,) is
less risky than a portfolio ¥ = (Y7, ..., Y,), if the corresponding aggregate
claims $=5%7 , X;and &' =}, ¥; are stop-loss ordered, i.e. § <y S§'. It
will turn out that a sufficient condition for this is given by the so-called
supermodular ordering or the symmetric supermodular ordering. These
stochastic order relations have recently been considered in applied
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probability by Béuerle (1997a, b), Biuerle and Rieder (1997), Shaked and
Shanthikumar (1997) and others. In the actuarial literature the super-
modular ordering has been introduced by Miiller (1997). It is based on the
comparison of integrals of (symmetric) supermodular functions, which are
defined as follows.

Definition 2.3
a) A function f : R" — IR is said to be supermodular, if

X1, ey Xide, oy X8, o X)) —f(X1 o XiFE, e Xy ey Xe) (1)
2> f(X1y ooy Xiy ooy Xj 06, oy Xn) = f (X1, oy Xiy ey Xy ey Xn)

holds for all x e R*, 1 <i<j<nandall £,6 > 0.
b) A function f:IR" — IR is called symmetric, if f(x)=f(1Ix) for all
permutations Ilx of x.

An intuitive explanation of the notion of supermodularity can be given as
follows: Let xi, ..., x, be the individual claim amounts of » policy holders
and let f(xy, ..., x,) be the loss for the insurance company caused by these
claims. Then supermodularity of the function f' means that the consequences
of an increase of a single claim are the worse, the higher the other claims are.

Symmetric functions do not depend on the order of the variables. This
means in our context that the policy holders are indistinguishable.

The following properties of supermodular functions are well-known.

Theorem 2.4
a) If [ is twice differentiable, then f is supermodular if and only if

82
Ox;0x;
b) Ifgy, ..., g, : IR — IR are increasing functions and f'is supermodular, then
f(g1()y -, gu(")) is also supermodular.

f(x)>0forallxe R", 1 <i<j<n.

A proof of this theorem and many examples can be found in Marshall
and Oilkin (1979, p. 146ff.). Now we will introduce the supermodular
stochastic order relation.

Definition 2.5

a) A random vector X = (X, ..., Xy,) is said to be smaller than the random
vector Y = (Y1, ..., Y,) in the supermodular ordering, written X <y, Y, if
Ef(X) < Ef(Y) for all supermodular functions f such that the expectations
exist.

b) A random vector X = (X1, ..., Xy) is said to be smaller than the random
vector Y = (Y, ..., Y,) in the symmetric supermodular ordering, written
X <gymsm Y, if Ef(X) < Ef(Y) for all symmetric supermodular functions f
such that the expectations exist.
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Supermodular ordering is a useful tool for comparing dependence
structures of random vectors. Since any function f : R” — IR that depends
only on one variable (i.e. f(xj, ..., x,) = g(x;) for some g: R — IR and
some i€ {1, ..., n}) is supermodular, it follows immediately from the
definition that only distributions with the same marginals can be compared
by supermodular ordering. Moreover, all functions f(x) = x;x;, i #j are
supermodular. Hence X <, Y implies Corr(X;, X;) < Corr(Y;, Y;), i #J.

The usefulness of these concepts in our setting is shown clearly in the next
result.

Theorem 2.6 Let X = (X1, ..., X)) and Y = (Y1, ..., Y,) be random vectors
with X <gn Y (X <gmem Y) and let

S:ZXi and S':ZYi.
-1 i=1
Then S <y S'.

Proof: For the supermodular ordering this has been shown in Miiller (1997,
Th. 3.1). The case of symmetric supermodular ordering can be shown along
the same lines, as the function x — ) x; is obviously symmetric. O

The Theorem says that stronger dependence in the sense of supermodular
ordering leads to more risky portfolios. Next we will construct a special
random vector with given marginals, which exhibits a very strong form of
dependence. Let U be a random variable uniformly distributed on [0,1] and
let Fi, ..., F, be n marginal distributions. Define X = (Xi, ..., X)) =
(F.Y(U), ..., E;Y(U)). Using the well-known fact in simulation that
F-Y(U)~F, we see that X in fact has the marginal distributions
Fy, ..., F,. Since F7! is increasing for all i it follows that X;(w;) < X;(w2)
implies Xj(wi) < Xj(w,) for all j # i. Schmeidler (1986) and Yaari (1987)
introduced the notion comonotonicity for this property. An easy calculation
shows that the distribution function of X is given by Fx(f) = min?_, F;(#;).
Summing up, we can give four equivalent definiiions of comonotonicity.

Definition 2.7 The distribution F with marginal distributions Fy, ..., F, is called
comonotonic, if one of the following four equivalent conditions is fulfilled:
1. F([)ZHEPE(II)a re Rna

2. The random vector X = (F7'(U), ..., F;1Y(U)), where U is uniformly
distributed on [0,1], has the distribution F,

3. There is a univariate random variable Z and there are increasing functions
Sy oy Ju, Such that X = (fi(Z), ..., fu(Z)) has the distribution F.

4. There is a random vector X ~ F, such that Xi(w)) < Xi(wy) implies
Xj(w1) < Xj(w2) for all j # i.
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The comonotonic distribution F is also called upper Fréchet bound, since
Fréchet has shown that for any distribution function G with marginals
Fy, ..., F, we have G < F. An even stronger result is the so-called Lorentz-
inequality. It can be found e.g. as Theorem 5 in Tchen (1980) and can be
stated as follows.

Theorem 2.8 Let X be an arbitrary random vector and let Y be the
comonotonic random vector with the same marginals as X. Then X <y, Y.

This means that comonotonicity is the strongest possible dependence
structure and hence by Theorem 2.6 the corresponding portfolio is the
riskiest one under all portfolios with the same marginals.

3. THE MODELS

In this section we consider several possibilites of modeling dependencies in
risky portfolios. In our first model we assume that the portfolio consists of
different groups, such that there is a strong dependence between the
members of one group, but much less dependence between members of
different groups. As a typical example where this is very realistic imagine a
catastrophe risk like earthquakes or hurricanes, where the groups are
specified by geographic regions. There is certainly a strong dependency
between the expected losses of people from the same region, but the losses
will be nearly independent for people who live far from each other. For such
situations we suggest the following model. It was introduced by Tong (1989)
and was further considered by Béduerle (1997a).

Model 3.1

Consider a portfolio X = (X}, ..., X,), consisting of »n risks X1, ..., X,,. We
assume that the risks can be divided into r < n groups according to an
n-dimensional vector k = (ky, ..., k,, 0, ..., 0), k, € N, >_'_, k, = n, where
risk X; is in group vif and only if k| + ... + k1 <i<k; + ... +k,. Each
of the risks in the portfolio is influenced by three risk factors which will be
modeled as independent random variables V, G, and Z;:

1. an overall risk factor ¥ which is due to global environmental changes and

concerns all of the risks in the portfolio in the same fashion,

2. a group specific risk factor G, which influences only the risks in group v,

1 < v < r and has no effect on other risks in the portfolio,

3. an individual risk factor Z; which reflects the individual share of risk X;,
1<i<n.

Moreover, we assume that there exists a function g : R? — R such that
the i-th risk is given by X; = g(V, G,, Z;) whenever i is in group v. Since we
associate higher outcomes of a risk factor with higher risk in the portfolio,
we suppose that g is increasing. This situation is typical for a lot of insurance
portfolios. In private health insurance for example, the risk caused by an
individual person depends on an overall risk factor which collects
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environmental aspects (e.g. pollution, greenhouse effect, epidemics), on a
group specific factor like profession and on an individual risk factor which
summarizes health conditions. In car insurance, the group risk factor could
be interpreted as the local area of the policy holder. Assuming this kind of
dependence within a portfolio it is now interesting to investigate the effect,
the constellation of group sizes has on the aggregate claim of the portfolio,
since it is well-known that positive correlations in a risk portfolio increase
the payable amount of the insurance company, see e.g. Dhaene and
Goovaerts (1996, 1997) or Miiller (1997). Obviously it is quite hard to
compare two risky portfolios when for example the number and sizes of the
groups change. However, in some cases this is possible as we will show in the
next theorem. In order to state it, let k and X’ be two n-dimensional vectors with

k=(ki, ., kyy .y 0, ., 0), K =(K,, .., k), 0, ... 0)

1<r, I<n, kikje N for all i and > 7 k;=3 " ki =n. Let two
n-dimensional risky portfolios X and Y be given by

X]Zg(Z],Gl,V) Yl':g(UlaleV)
X, = 8(Zy,, G1, V) Y =g(Uy, G, V)
Xe+1 = 8(Zk 41, G2, V) Yk’l+1 Zg(Uk/]+1,G1, V)

Xk1+k2 = g(ZkH-kzv G, V) Yk’|+k’2 = g( Uk’]+k’za G, V)

X :g(Zna Gr7 V) Y, = g(Unlea V)

where the individual risk factors Zj, ..., Z,, Ui, ..., U, are i.i.d. random
variables, the group specific risk factors Gy, ..., Gy are ii.d. random

variables and the environmental risk factor V is a random variable
independent of {Z;}, {U;} and {G,}. g: R* — R is an increasing function.
Denote S =", X;and S’ = 57| Y, respectively.

Moreover, we need an appropriate order relation for vectors to compare
the group structures k and k'. Tt turns out that the notion of majorization is
best suited for this purpose. The definition is as follows.

Definition 3.1 Let x,y € INy and denote by x> ... > X the decreasing

rearrangement of x, analogously for y. We say that y majorizes x (x < y) if
and only if

r r n n
me SZym, r=1, ..., n—1, and Zx[i]:Zy[,-].
i=1 i=1 i=1 i=1
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A host of results and applications of this order relation can be found in
Marshall and Olkin (1979). Intuitively speaking k < k&’ means that in &’
the groups are larger and/or more unequal. Some examples are given in
section 5. Now we are able to state the main result for this model.

Theorem 3.2 If k < k', we obtain under the assumptions of model 3.1
a) X Ssymxm Y»
b) S <s S

Proof: A complete proof of statement a) can be found in Béuerle (1997a).
The main ideas are as follows: in a first step we show that for a sequence
{G,} of i.i.d. random variables and

X =(Gy, ..,Gi, Gy, ..., Go, ..., Gy, ..., G,)
Y = (Gh ...,Gl, Gz, ceey Gz, . G[, ceny Gl)

where the block of G;’s in X () has length k; (k}), the relation k < &’ implies
that X' <,,..m Y. Applying properties of symmetric supermodular functions
we obtain a). Part b) then follows from Theorem 2.6. O]

In this setting it is easy to determine the riskiest and the safest portfolio
with respect to the stop-loss ordering of aggregate claims. In order to do so
we only need to determine the minimum and maximum with respect to
majorization under all vectors k& with > k; = n. It is nearly obvious that the
minimum is given by k*:=(1, 1, ..., 1) and the maximum is given by
k" =(n, 0, ..., 0). This yields the following result.

Corollary 3.3 Let k" = (n, 0, ..., 0) and k* = (1, ..., 1) be two n-dimensional
vectors and denote by S" and S° the aggregate claims of the corresponding risk
portfolios as in model 3.1. Then we obtain for arbitrary k € INj with
3o ki = n and respective aggregate claim S

S* <s S Ssl S

Hence the riskiest portfolio is given, when there is only one group and the
safest portfolio is obtained, when each individual forms his/her own group.

Our model 3.1 is strongly related to the component models introduced in
chapter 9 of Wang (1997). As another important class of models he considers
common mixture models, which we will investigate now.

Model 3.2

The intuition behind this model is as follows. The model for X as well as the
model for Y is a so called common mixture model. This means that there are
some external mechanisms, described by random variables, which have
influence on all the risks. Given these environmental parameters, the
individual risks are independent. The parameters can be some state of nature
(weather conditions, earthquakes, ..) as well as economic or legal
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environments (inflation, court rules etc.) which have a common impact on all
risks. In contrast to model 3.1 we will now compare the portfolios with
respect to the number of external mechanisms which affect them.

The following model for this situation has been considered by Bauerle
(1997a) (cf. also Shaked and Tong (1985)): Suppose there are two n-
dimensional random vectors X and Y with the structure

(le ey Xn) = (gl(Zl’ W)7 ey gn(ZVH W)) (2)
(Y1, ..., Y) =(&(U,V, W), ..., 8,(Uy, V,W)) (3)
where Zi, ..., Z, are i.i.d. random variables, U, ..., U, are i.i.d. random

variables and (¥, W) is a random vector independent of Z; and U;.
Moreover, the functions g; : R*> =R and g; : R* — R are such that for
every fixed wand all i = 1, ..., n we have

i Ziw) 22U, V), (4)

1.e. they have the same distribution.

We will show now, that the portfolio Y = (Y7, ..., Y,) is more risky than
the portfolio X = (X}, ..., X,), if the functions g; are increasing in the
second argument. In fact, let S:=37  X; and §':=>_ | Y,. Then the
following holds.

Theorem 3.4 If the functions g; are increasing in the second argument, then
a) X Ssm Y!
b) S<yS.

Proof: a) can be found as Theorem 3.1 in Béuerle (1997a). Part b) then
foliows immediately from a) by Theorem 2.6. 0

The model for Y contains an additional environmental variable V, which has
an influence on Yi, ..., Y, in the same direction. Hence there is more
dependence in Y than in X, since the external mechanism, which has a
common influence on all risk, is more important in Y. This will become more
explicit in the special case we will treat now.

Let us assume that W is constant. Hence Y; = g;(U,, V) and X; = g,(Z;).
This means that Y;, ..., Y, are conditionally independent given ¥ = v and
the monotonicity of g; in the second argument means that the conditional
distribution of Y; given V' = v is stochastically increasing in v for all i =
1, ..., n. Moreover, X, ..., X, are independent random variables, which by
(4) have the same marginal distributions as Yj, ..., Y,. Summing up, we get
the following corollary of Theorem 3.4.

Corollary 3.5 Let V be any random variable and let Y = Yy, ..., Y, be a

random vector such that Yy, ..., Y, are conditionally independent given V = v
and such that the conditional distributions P(Y; € ||V = v) are stochastically
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increasing in v for all i = 1, ..., n. Moreover, let X = (Xi, ..., X,,) be a vector
of independent random variables with the same marginal distributions as Y.
Then

n n
X<mY and S:=) X;<¢§ := Z Y;.
i=1 i=1

Another application of Theorem 3.4 will be given in the next section. Many
more examples can be found in chapter 7 of Wang (1997).

4. RISKS WITH TWO-POINT DISTRIBUTIONS

Now we consider the important special case of portfolios consisting of risks
X; having a two-point distribution in 0 and «; with P(X; = 0) = p;. This
occurs e.g. in the individual life model. Dhaene and Goovaerts (1997)
determined the riskiest portfolio with given marginals for this case and
especially considered portfolios with dependencies only between couples.

The riskiest portfolio has the property that if a policy holder with a low
mortality dies, then all policy holder with higher mortality also die with
probability 1. We think that this is very unrealistic. It would be desirable
to have a parametric model with a dependence parameter p, which
continuously varies between independence and maximal dependence as
described above.

We investigate here two such models, one for the case of indistinguishable
individuals and one for the case that the probability for no claim differs
between the individuals.

Indistinguishable individuals
We say that the individuals in a portfolio are indistinguishable, if the joint
distribution of the random vector of their risks is not affected by
permutations of the risks. In probability theory a sequence of such random
variables is said to be exchangeable (or interchangeable), see e.g. Feller
(1966, p. 228ff.) or Chow and Teicher (1978). Of course this implies that all
risks have the same marginal distribution, i.e. there is a p € (0, 1) and some
a>0such that P(X;,=0)=p=1~ P(X;=«) foralli = 1, ..., n. Without
loss of generality we can assume « = 1, so that the random variables
X\, X», ... form a sequence of exchangeable Bernoulli variables.

Therefore let us assume that S, is the total claim amount of a portfolio of
n risks, which stem from a sequence of exchangeable Bernoulli variables. A
well-known theorem of de Finetti (see e.g. Feller (1966, p. 228)) states that in
this case S, is a mixture of binomial distributions, i.e.

P(S, = k) = /01 (Z)ﬁk(l p—
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for some mixing distributions F. Thus, the distribution of S, is completely
determined by the mixing distribution F. In fact, it is completely determined
by the first » moments of F. For a survey on exchangeable Bernoulli
vanables, including many examples and methods for estimating their
parameters we refer to Madsen (1993).

Now we want to show, how the mixing distribution F affects the riskiness
of the portfolio S,. We have the following result.

Theorem 4.1 Let S, (S)) be the total claim amount of a portfolio of n risks,
which stem from a sequence of exchangeable Bernoulli variables with mixing
distribution F (F'). Then F <y F' implies S, <4 S,

Proof: This follows directly from Corollary 3.7 in Lefévre and Utev
(1996). O

Remark: From Theorem 4.1 it follows easily that the least risky portfolio of
exchangeable Bernoulli variables with given marginals is the one that
consists of independent risks and the riskiest portfolio is the one with mixing
distribution concentrated on {0, 1}, which means that the risks are
comonotonic. In fact, this means that the portfolio consists of identical
risks X = (X1, X1, ..., Xi) and the distribution of the total claim amount
S, = n- X is a two-point distribution with P(S, =0)=p =1 — P(S, = n).
If we compare the stop-loss premiums of this portfolio with an arbitrary
other portfolio of bi(1, p)-distributed risks, then we can strengthen Theorem
4.1 to the following result.

Theorem 4.2 Let X = (X}, ..., X,) be a portfolio of bi(1, p)-distributed risks
with an arbitrary dependence structure and let Y = (Y1, ..., Yy) be a portfolio
of identical risks with the same distribution. Let ny(t) := E(3Y. X; — )" be the
net stop-loss reinsurance premium of portfolio X and define 7y (t) similarly.
Then the ratio wy(t)/7x(t) is increasing on its range [0, n).

Proof: Since Y Y; = nY) is a two-point distribution on {0, n}, the function
my 1s affine linear. Since any stop-loss transform is decreasing and convex
(see e.g. Miiller (1996)) this implies that g(x) := 7y o w3 (x) is a convex
function. Differentiation yields that

Ty o Ty (x)
- Ty oyt (x)

g (x)

is increasing, and hence 7 (x)/7y(x) is decreasing, since 73! is decreasing.
This can be written equivalently as

()7 (s) > 7y ()7 (1) forallr<s

https://doi.org/10.2143/AST.28.1.519079 Published online by Cambridge University Press


https://doi.org/10.2143/AST.28.1.519079

MODELING AND COMPARING DEPENDENCIES IN MULTIVARIATE RISK PORTFOLIOS 71

and hence

| Ao dsz [ momiods

& my(Omy () < mx () (t)
7ry(l‘)
mx (1)

is increasing.

|

Remark: Computational results indicate that Theorem 4.2 may be true for
arbitrary distributions. We are, however, not yet able to give a proof for this
conjecture.

Distinguishable individuals.

Now we propose a model where the individuals in the portfolio may
have different probabilities for claims and different claim amounts. We
want to construct a portfolio of risks X; with P(X;=0)=p;, and
P(X;i=«w;)=¢q;=1-p; where 0 < p; < 1 and «; > 0 are arbitrary. More-
over we want to introduce a dependence parameter p € [0, 1] such that p =0
corresponds to independence and p = 1 corresponds to comonotonicity. A
very simple model with this property would be to take some mixture of the
independent and the comonotone case. We think, however, that this is not
very realistic. We propose some sort of an additive damage model, which is
well known in reliability theory. Assume that there are two sources, that
cause some normally distributed damage. One source influences all
individuals in the same manner, whereas the other source depends on the
individual behavior of each individual. A claim of amount «; occurs, if the
sum of these two damages exceeds some level z;.

The formal construction will be based on model 3.2 with distributions
and functions, which assume only two values. We denote by N(u,d?) the
univariate normal distribution with mean g and variance o > 0. For
convenience we extend the definition to the case o =0, where N(u,0)
denotes the one-point distribution in y. The p-quantile of the standard
normal distribution will be denoted by z,, ie. if X ~ N(0,1), then
P(X < z,) = p. Now assume that 0 < ¢? < 7° < 1 and consider modet 3.2
with W~ N(0,0%), ¥V ~N(0,72 —0?), Z;~ N(0,1 —0?) and U;~ N(0,1 —72).
All random variables shall be independent. We define

Qi Z+W 2z,

gi(Za W) = Q¢ l{Z“J!' w Z Zpi} = { 0 else

and

gilu, vy w)=oy - Hu+v+w>2z,}.
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Recall t(glat X, =gi(Z;y,W) and Y; =g;(U;,V, W) for i = 1, ..., n. Since
U+ Vd: Z;~ N, 1—-0°), condition (4) 1is fulfilled. Moreover,
Zi+W=U+V+W~N(0,1), so that P(X;=«;)=P(Z;+ W >z,)=¢q; and
P(X;=0)=P(Z;+ W <z,)=p;. Similarly P(Y;=0)=p;=1-P(Y;=q;). By
Theorem 3.4 X <,,, Y and hence X is less risky than Y.

Now let us write X(o) = (X1(0), ..., Xu(0)) for the above defined
portfolig) X to make the dependency on o explicit. The definition of Y implies
that ¥ £ X (72) which can be seen by interchanging the roles of Z; and U; as
well as the one of W and V' + W. Hence we obtain the following result.

Theorem 4.3 Let 0 < p < p' < L. Then X(p) <gn X(p") and hence

iX,-(ﬂ) < zn:Xi(pl)~
i=1 i=1

It is easy to see that X(0) is a portfolio of independent risks and X(1) is a
portfolio of comonotonic risks, which is the riskiest portfolio under all
portfolios with given marginals, as has been shown by Miiller (1997) for
general distributions and in Dhaene and Goovaerts (1997) for the case of
two-point distributions as considered here. Now we will show that we can
get any positive dependence structure by varying p continuously between
these two extreme cases. In fact, we have the following result.

Theorem 4.4 The function p — Corr(Xi(p), X;(p)) is non-negative and
continuously increasing for all i, j = 1, ..., n, i # J.

Proof: The marginal distribution of X;(p) and hence also the variance of
X;(p) is independent of p for i = 1, ..., n. Thus we only have to examine the
covariance. A straightforward calculation shows that

Cov(Xi(p), Xi(p)) = aicyj - (P(Xi(p) = ai, Xj(p) = 0}) — qig)-
Hence it is sufficient to consider the expression
P(Xi(p) = i, Xj(p) = o) = P(Zi+ W 2 2, Z; + W > z,) =t F(2),, 25

where F, is the survival function of a bivariate normal distribution with
standard normal marginals and correlation coefficient p. It follows from
Slepian’s inequality and its proof as given e.g. in Tong (1980, p. 8ff.) that
p — F, is increasing and continuous. Hence p — Corr(X;(p), X;(p)) is also
increasing and continuous. Non-negativity then follows from the fact that
X(0) is a vector of independent random variables. O
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5. NUMERICAL EXAMPLE

Let us now illustrate the effect of dependencies in model 3.1 by a numerical
example. In order to keep the computation simple, we have chosen g(x, y, )
= y. The sequence of random variables {G,} is i.i.d. with a two-point
distribution on 0 and 4, where the value of 4 occurs with probability 0.06.
The portfolio consists of 20 risks. We have computed the relative stop-loss
premiums for 8 different scenarios which are given by their group structures
ki, i =1, .., 8listed in table 1.

TABLE 1

scenario i ki
1 L L., 1L

2 (4,3,3,22,,1,1,1,1, 1)
3 (8,2,2,2,2,2,2)

4 (4,4,4,3,3,2)

5 (15,2, 1,1, 1)

6 (5,5.5.5)

7 (10, 5, 5)

8 (20

Scenario 1 corresponds to the safest portfolio with 20 independent risks and
scenario 8 is the riskiest portfolio, where the same risk occurs 20 times. In the
next table we summarize the ordering relations of these vectors with respect
to the majorization ordering.

TABLE 2

ki k> k3 ks ks ke kg kg
ky < =< =< < = < =< =<
ks ~ ~ < = < ~ <
ks < 4 ~ £ =< <
ks = =< =< = =<
ks =< £ £ =<
ke < ~ ~
ks =< =<

The symbol 4 indicates that the vectors cannot be compared. The following
table now contains the relative stop-loss premiums (divided by the
independent case i = 1) multiplied by 100 for several retention levels. Note
that the expectation of the aggregate claims equals 4.8 and the outcomes
range between 0 and 80.
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TABLE 3
scenario
retention ki k> k3 ky ks ke k7 kg
0 100 100 100 100 100 100 100 100
1 100 105 109 110 111 112 113 116
2 100 113 i21 124 126 129 132 139
3 100 124 140 145 150 155 161 173
4 100 144 173 182 191 200 2i0 233
6 100 174 210 229 272 272 295 347
8 100 270 330 385 537 506 572 717
10 100 327 478 480 830 700 834 1128

Because of Theorem 3.2 we know that given a retention level, the relative
stop-loss premium increases in k. Table 3 shows that the increase is moderate
if k; and k; are in some sense nearby as for example k¢ and k7. In the cases
where we were not able to establish the comparison theoretically like for
example for scenario 5 and 6, we find that the order can change when the
retention level increases. Theorem 4.2 explains the monotonicity of the
relative stop-loss premium with respect to the retention in scenario 8. The
numerical data suggest that this is also true for the other scenarios. This was
already observed by Dhaene and Goovaerts (1996). To our knowledge this is
still an open problem.

A very important conclusion that we can draw from the computation is
that the increase in the relative stop-loss premium can be dramatic in the
presence of positive dependence. Even minor occurrence of dependence like
in scenario 2 has a severe effect. Moreover, if a portfolio contains positive
dependence between the risks, the situation deteriorates in the number of
insured risks.

Suppose Y, Xi, ..., X, are i.i.d. random variables (w.l.o.g. we assume
that they are concentrated on [0,1]) and we are interested in the stop-loss
premiums of the safest portfolio 7% () = E(3_7_, X; — nt)" and the riskiest
one (1) = E(nY —nt)", where ¢ € (0, 1) gives the retention percentage. In
this setting we obtain

Theorem 5.1 The ratio (1) /7y (t) is increasing in the number n of aggregate
risks and the limit is equal to E(Y — )" /(EY — 1) if t < EY and +oc if
t>EY.

Proof: We obtain that
()  EmY -n)"  E(Y -t
() E(C Xi—n)t EAY Xi—1)°
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Hence it suffices to prove that E(% S Xi— )" is decreasing in n. Since
X1, ..., X, are i.i.d. it follows from Theorem 4 in Arnold and Villasenor
(1986) that

1 n+l 1

and the monotonicity follows.

Since the random variables Xj, X3, ... are independent and identically
distributed with a finite mean, the assumptions of the strong law of large
numbers are fulfilled. Therefore

1 n
lim ;in = EX, =EY. (6)
n—0C 1:1
Hence the stated limit follows. O

Remark: Arnold and Villasenor (1986) have shown that for Equation 5 it is
sufficient, that X, X3, ... are exchangeable. Hence the monotonicity part of
Theorem 5.1 remains true for the more general case of exchangeable random
variables, but in that case the limit will be different. In fact, there is also a
version of the strong law of large numbers for sequences of exchangeable
random variables. It states that in this case

1 n
lim - X; = E[X,|09],
n—oo 1 £
i=1
where © is the random variable, which describes the mixing mechanism in
de Finetti’s Theorem (cf. Feller (1966) and Chow and Teicher (1978) for

more details). Hence in this case we get

() E(Y -0

(1) E(E[Y]6]— 1)

From Theorem 5.1 we see that the relative stop-loss premium can be
arbitrary high, when the retention exceeds the expected aggregate claim.
Altogether we can conclude that the usual assumption of independence in
risky portfolios leads to a dangerous underestimation of the risk. Hence the
adequate modeling of dependent risks will remain an important task for
future research.
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