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A three-dimensional ice-sheet flow solution
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ABSTRACT. An accurate three-dimensional reduced model (shallow-ice approximation) flow with
velocity depending on all three spatial coordinates is constructed for the commonly adopted isotropic
viscous law with temperature-dependent rate factor. The solution is for steady flow with a prescribed
temperature distribution, but can be extended to flow with a coupled energy balance, and to unsteady
flow. The accuracy hinges on the reduction to a two-point ordinary differential equation problem for the
surface profile, on an unknown span, for which established accurate numerical methods are available.
This is achieved by setting one horizontal velocity component in elliptic cylindrical coordinates to zero,
but the other two components depend on all three spatial variables. While not of direct physical interest,
such an ’exact’ solution is valuable as a test solution for the large-scale numerical codes commonly used
in ice-sheet modelling, which have not yet been subjected to such a comparison.

LIST OF SYMBOLS
A(T ) Rate factor function of temperature, T , or

of dimensionless temperature, T

bn and qn Basal melt flux and surface accumulation
flux

D and D Strain rate and effective strain rate

f , h and Δ Bed and surface heights, and ice thickness

g Constant gravity acceleration

ρ Constant ice density

σ, σ̂, p Stress, deviatoric stress and mean pressure

t (n), and Traction and normal and tangential
tn, ts components, on surface with unit outward

normal, n

ψ(J), and Constitutive function of deviatoric stress
ψ0, ψ1, ψ2 second invariant J, and coefficients in

quadratic expansion

d0, q0, D0, σ0 Units of length, velocity, strain rate and
deviatorial stress

ε and ϑ Very small dimensionless parameter which
is basis for reduced model scaling, and
dimensionless parameter, both order unity
arising in the normalized viscous law

xA, vA, and Rectangular Cartesian, and scaled
XA,VA rectangular Cartesian, coordinates and

velocity components

λ, Λ Basal friction coefficient and scaled value

θ1=η, θ2=ξ, Elliptic cylindrical coordinates
θ3=x3

c and ν Parameter and scaled value in coordinate
transformation

α2 Function of (η, ξ) arising in coordinate
transformation

Ql (l =0, 3) Coefficient functions in a net
accumulation expansion

Kk , Lk , Mk , Depth integrals, functions of (z = x3, η)
Nk , (k =0,1,2)

INTRODUCTION
The leading numerical ice-sheet modelling groups combined
over a number of years in the European Ice-Sheet Modelling
Initiative (EISMINT) to test and compare numerical results
from their related three-dimensional algorithms using the
simple Glen’s-law isotropic viscous relation in the reduced
model (shallow-ice approximation), for a radially symmetric
benchmark example. General conclusions are reported by
Payne and others (2000), and more specific conclusions are
drawn by Payne and Baldwin (2000). The latter emphasize
the discrepancies induced by thermomechanical coupling,
and particularly the appearance of ice spokes which vio-
late the radial symmetry, but show this is not caused by the
adopted rate factor temperature dependence. Hindmarsh
(2001) reviews the numerical algorithms popular in the glaci-
ology community, and points out both the merits and
demerits of the different approaches, concluding that none of
the methods yields an accurate, robust, computationally eco-
nomical approach. More recently, Hindmarsh (2004),
recognizing the failings of the reduced model, made numer-
ical comparisons for a simple flow configuration when differ-
ent terms neglected in the reduced model equations are in-
cluded, pointing to their significance in particular situations,
but these additions do not, in general, approximate to the full
equations needed for a real flow. A new Ice-Sheet Model
Intercomparison Project (ISMIP) has recently been formed
(web addresses: homepages.vub.ac.be/∼phuybrec/ismip
and pik-potsdam.de/∼calov/heino) to apply existing codes
(including some with the added terms) to more benchmark
tests, but again these are comparisons between different
approximate models and not with an accurate solution of
a given problem. These groups have not yet made com-
parisons with a variety of ’exact’ radially symmetric solu-
tions constructed by Cliffe and Morland (2000, 2001, 2002,
2004), and compared to numerical solutions obtained by a
direct radially symmetric algorithm for the full equations.
The ’exactness’ is realized by reducing the equation for the
surface profile to an ordinary differential equation on an
unknown span, for which established accurate (verified)
numerical methods are available. Confidence in a general
numerical algorithm can only be established by such com-
parisons, and while radially symmetric solutions provide a
necessary check, a genuine three-dimensional solution is
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important for an accuracy check of any three-dimensional
algorithm.
Since completing this work in July 2007, I have become

aware that Bueler and others (2007) have constructed
three-dimensional finite-difference solutions and compared
results with exact radially symmetric steady and unsteady
flow solutions. They have demonstrated that numerical
convergence is possible, and have also given explanations for
the asymmetric spokes obtained in the EISMINT tests. While
the present ’exact’ solution is only for steady uncoupled flow,
following Cliffe andMorland (2001, 2004) it can be extended
to solve coupled and unsteady flow. I view this solution as
a first test case for a three-dimensional flow with no radial
symmetry.
The simple coaxial isotropic viscous relation and reduced

model, with small bed slopes, will now be adopted to
construct a class of ’exact’ steady flow solutions with a
velocity field depending on all three spatial variables. The
temperature field is prescribed, uncoupled from the energy
balance, and the prescribed surface accumulation/ablation
depends on surface elevation and location. The success
again hinges on reducing the problem to an ordinary
differential equation on an unknown span, analogous to
the radial case (Morland, 1997). This is achieved by
formulating the problem in cylindrical elliptic coordinates,
and investigating a velocity field with one component
zero, but depending on all three spatial variables. Once a
steady, prescribed temperature field solution is constructed,
a thermomechanically coupled solution can be constructed
(Cliffe and Morland, 2001) by incorporating an algebraic
(not affecting the derivative approximations) heat source
in the energy balance, and the unsteady solution obtained
inversely by prescribing the ice-sheet profile evolution and
calculating the required surface accumulation (Cliffe and
Morland, 2004). Here I focus on the steady, uncoupled,
problem, to construct, for the first time, an accurate solution
with the velocity depending on all three spatial coordinates.

BOUNDARY VALUE PROBLEM
Viscous relation
The ice is assumed incompressible with density, ρ =
918 kgm−3, so the pressure, p, is a workless constraint not
given by a constitutive law, but determined by momentum
balance and boundary conditions. The deviatoric response
is defined by a non-linearly viscous fluid relation between
the strain-rate tensor, D , and the deviatoric stress tensor,
σ̂ = σ + pI, where σ is the Cauchy stress and I is the unit
tensor, with a temperature-dependent rate factor, a(T ), where
T is absolute temperature. The conventional simplifications
that D is coaxial with σ̂ and that the viscosity coefficient
depends only on the second principal invariant of σ̂, are
adopted. The viscous law is

D
D0

= ψ(J)
σ̂

σ0
, J = 1

2 tr
(

σ̂

σ0

)2
, D = a(T )D , (1)

where D is an effective strain rate. The units σ0 and D0 are
chosen, with unit rate factor, a, at the melting temperature,
so that the constitutive function, ψ(J), is of order unity for
deviatoric stresses and strain rates arising in typical ice-sheet
flows:

σ0 = 10
5 Nm−2 , D0 = 1 a−1 = 3.17 × 10−8 s−1 . (2)

An accurate polynomial correlation of ψ(J) to the Glen
(1955) data over a shear stress range 0–5×105 Nm−2,
0 ≤ J ≤ 25, adopted here, is (Smith and Morland, 1981):

ψ(J) = ψ0 + ψ1 J + ψ2 J
2, ψ0 = 0.3336,

ψ1 = 0.32, ψ2 = 0.02963, (3)

which has the mathematical advantage of a finite viscosity at
zero stress, unlike the power law proposed by Glen (1955).
Also adopted is a good simplifying approximation for a(T )
over the range of practical significance, from melting to 40K
below melting, from data presented by Mellor and Testa
(1969):

a(T ) = 0.68 exp(12 T ) + 0.32 exp(3T ) ,

T = 273.15K + [20K] T . (4)

The dimensionless temperature, T , is zero at melting, and
−2 at 40K below melting.
Balance equations and boundary conditions
Let xA (A = 1, 2, 3) be rectangular Cartesian coordinates
with the x3 axis pointing vertically upwards, against gravity,
and v be the velocity vector with components vA, then the
strain-rate tensor, D , and incompressibility condition (mass
balance) are given by

DAB = 1
2

(
∂vA
∂xB

+
∂vB
∂xA

)
,

∂vA
∂xA

= 0, (5)

for A, B = 1, 2, 3, where the repeated suffix implies
summation over its three values.
The momentum balances, essentially equilibrium under

gravity since the inertia terms of the very slow flow are
extremely tiny, are

∂σAB
∂xB

− ρgδA3 = 0, (6)

where g = 9.81m s−2 is the constant gravity acceleration,
and δAB is the Kronecker delta. The energy balance is not
required since the temperature field will be prescribed,
but can be satisfied if an appropriate heat source term is
included.
The unknown ice-sheet surface in steady flow, x3 =

h(x1, x2), is traction-free, since atmospheric pressure is
negligible compared to the ice overburden pressure on the
bed:

x3 = h(x1, x2) : t = σ · n = 0 →
tn = n · σ · n = 0, t s = σ · n − tnn = 0, (7)

where n is the unit outward normal, tn is the normal
traction and t s is the tangential traction. The additional kine-
matic condition to determine the surface is the prescribed
accumulation/ablation qn, the normal inward ice flux,
positive on accumulation zones, negative on ablation zones.
In general it may depend on elevation, location and
temperature, independent of time in steady flow, but here
temperature dependence is ignored:

x3 = h(x1, x2) : −vn = qn(h, x1, x2), (8)

where vn is the normal velocity at the surface. The bed x3 =
f (x1, x2) is given, and is assumed in the present magnitudes
analysis to have small slopes, not greater in magnitude than
the surface. Small, but greater, slopes yield the same leading-
order equations (Morland, 2000, 2001; Cliffe and Morland,
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2002) with greater error terms, which would also apply to
the present problem. The kinematic condition is prescribed
basal melting/refreezing, bn, positive for melting, which is
here supposed to depend only on location:

x3 = f (x1, x2) : vn = bn(x1, x2). (9)

The basal traction condition is prescribed by a sliding law

x3 = f (x1, x2) : t s = σ · n − tnn = λ(−tn)tn v s ,
tn = n · σ · n, vs = v − vnn, (10)

where λ is the basal friction coefficient, n is the unit outward
normal, −tn is the normal (positive) pressure imposed by
the ice on the bed, and t s and v s denote the tangential
traction and tangential velocity, so that the tangential traction
is assumed parallel and opposite to the sliding velocity.
Proportionality to tn implies that there is no friction at zero
overburden pressure (zero ice thickness), which leads to a
bounded surface slope at the margin, but the additional
friction coefficient may depend further on tn. No-slip is the
limit λ→ ∞.
Reduced model
Without change of notation, let the length coordinates,
xA, and velocity components, vA, refer to dimensionless
coordinates and velocities with units d0 = 2000m and q0
= 1ma−1, respectively, with D then being dimensionless
with unit q0/d0, and let σ refer to a dimensionless stress
with unit ρgd0, a typical overburden pressure, so that p is
order unity, then the viscous relation (Equation (1)) becomes

D = ε−2 a(T )ψ(J)σ̂, J = 1
2ϑtr

(
σ̂

ε

)2
, (11)

ε =
(

σ0q0
ρgd20D0

) 1
2
= 0.00167, ϑ =

ρgq0
σ0D0

= 0.09. (12)

In Equation (11), ε2 defines the very small dimensionless
viscosity magnitude, and (Morland and Johnson, 1980;
Morland, 1984) the reduced model equations are the
leading-order balances, constitutive relation and boundary
conditions of asymptotic expansions in ε, which apply
when the surface and bed slopes are not greater than ε in
magnitude. This reduced model is now expressed in terms
of cylindrical elliptic coordinates.

CYLINDRICAL ELLIPTIC COORDINATES
In cylindrical coordinates, θ1 = η, θ2 = ξ, θ3 = x3, (Magnus
and others, 1966) the horizontal coordinates are defined by

x1 = c cosh η cos ξ, x2 = c sinh η sin ξ, (−π ≤ ξ ≤ π),
(13)

so the ξ lines (θ1 = η = constant) are ellipses

x21
a2
+
x22
b2
= 1, a = c cosh η, b = c sinh η, (14)

with eccentricity e and foci at x2 = 0, x1 = ±c = ±ea, and
the η lines (θ2 = ξ = constant) are hyperbolae

x21
a2

− x22

b
2 = 1, a = c cos ξ, b = c sin ξ, (15)

with eccentricity e and the same foci, where

e2 = 1− tanh2 ξ, e2 = 1 + tan2 ξ, c = ea = ea. (16)

The length scale of a domain is defined by the parameter c
with both η and ξ of order unity. Note that

η = 0 : x2 = 0, x1 = c cos ξ ⇒ −c ≤ x1 ≤ c, (17)

represents a central section of the x1 axis and

ξ = 0 : x2 = 0, x1 = c cosh η ≥ c,

ξ = π : x2 = 0, x1 = −c cosh η ≤ −c, (18)

represents the remaining sections of the x1 axis, and

ξ = π/2 : x1 = 0, x2 = c sinh η ≥ 0,

ξ = −π/2 : x1 = 0, x2 = −c sinh η ≤ 0, (19)

represents the x2 axis.
The balance equations, constitutive equation and bound-

ary conditions have been expressed in these coordinates,
specifically using contravariant vector components and
mixed contravariant/covariant tensor components, since the
algebra/calculus is much more cumbersome if physical com-
ponents are used. The main tensor algebra and calculus re-
sults required can be found in Brandt (1947) and Simmonds
(1997). Specifically, the velocity, v , has contravariant com-
ponents vi and the deviatoric stress tensor, σ̂, has mixed
components σi j (i, j = 1, 2, 3). In rectangular coordinates
the reduced model is constructed in terms of scaled variables

X1 = εx1, X2 = εx2, X3 = x3, (20)

V1 = εv1, V2 = εv2, v3 = v3, (21)

where the variables represented by upper-case letters are
order unity. Here the horizontal coordinate stretching is
obtained through scaling the factor c, and in turn the
horizontal covariant base vectors, so the coordinates η, ξ
are unchanged, and the horizontal velocity scaling follows
from that of the covariant base vectors, leaving the horizontal
contravariant velocity components, vi (i = 1, 2), unchanged:

c = νε−1, ν = O(1). (22)

Note that the scaling on c implies that the central x1 section,
η = 0, which will describe a ridge, has the same magnitude
as the margin ellipse major axis, and to retain a central
ridge section with only the thickness magnitude it would be
necessary to scale the η coordinate instead.
The leading-order balances now show that the simplifica-

tion to an ordinary differential equation for a surface profile
h = h(η) requires v2 = 0. With the further restrictions that
f = f (η), that the temperature has the form T = T (h, h− x3),
depending on surface elevation and depth below the surface,
that the accumulation and basal melting have the forms qn =
qn(h, η,α) and bn = bn(η,α), where

α2 = cosh2 η − cos2 ξ, (23)

it follows that ξ dependence arises only through the variable
α. The solution therefore has reflexional symmetry about
the x1 and the x2 axes, but the velocity components, v

1

and v2, still depend on all three spatial coordinates. The
solution is constructed with these simplifications. Integrating
the leading-order momentum balances gives

p = h − z, σ̂31 = −(h − z)∂h
∂η
, σ̂32 = 0, (24)

and mass balance is satisfied by introducing a stream
function, ω(z, η,α), such that

2α v1
∂ω

= , 2α v3
∂ω

=
∂z

− . (25)
∂η
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Table 1. Spans ηM, divide heights h0, semi-axes X1M, X2M, for
different ν and χ = 0.01

ν ηM h0 X1M X2M

2.0 0.80868 1.41007 2.69038 1.79949
1.0 1.14165 1.41004 1.72561 1.40632
0.5 1.61252 1.41002 1.30371 1.20401
0.2 2.54677 1.41001 1.28441 1.26874

The viscous relation (Equation (11)) then gives

∂2ω

∂z2
= −2a(T )ψ(J)ν−2(h − z)γ(η), γ = h′(η),

J = ϑν−2α−2(h − z)2γ2, (26)

subject to the one non-trivial sliding relation

z = f :
∂ω

∂z
= −ν

−2γ
Λ(Δ)

, Δ = h − f , Λ = ε−2λ, (27)

where Λ is order unity or greater since v1 at the bed is order
unity or less, and the surface and bed kinematic conditions
are

z = h(η) :
dω
dη

= α2qn(h, η,α),

z = f (η, ξ) :
dω
dη

= α2bn(η,α). (28)

In the Appendix it is shown, first, how the solution h(η)
can now be constructed for a linearly viscous law with
qn = qn(h, η), bn = bn(η), then for the non-linearly viscous
law (Equation (1)) with Equation (3), provided that the net
accumulation has the expansion

q = qn − bn = α−2Q0(h, η) + α−2
3∑
l=1

α−2lQl (η), (29)

where Q0(h, η) is prescribed but the extra coefficients, Ql (η)
(l = 1, 2, 3) in the expansion cannot be prescribed, but are
determined by the solution. A brief outline of the numerical
procedure, which is an extension of the radially symmetric
case, is also presented.

3
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1.0 −− h1(X 1) h1(X 1)

0.5 −−

h2(X 2) h2(X 2)

| |
0 1 2

Scaled horizontal coordinate, X

Fig. 1. Profiles h1(X1) and h2(X2) for ν = 2 (solid curves) and ν = 1
(dashed curves).

|

Table 2. Spans ηM, divide heights h0, semi-axes X1M, X2M, for
different ν and χ = 0.1

ν ηM h0 X1M X2M

2.0 0.84590 1.41255 2.75925 1.90091
1.0 1.18064 1.41160 1.78177 1.47469
0.5 1.65295 1.41097 1.35346 1.25772
0.2 2.58865 1.41047 1.33869 1.32367

ILLUSTRATIONS
A temperature distribution used in previous applications,
which depends on the surface elevation, h, and the depth
below the surface, h − x3, is adopted; namely

T = −0.8h + 0.5(h − x3)
− 0.125Δ

[
Δ(h − x3)− 0.5(h − x3)2

]
. (30)

The corresponding thermal boundary conditions are

z = h(η) : T s = −0.8h(η) , z = f (η) : ∂T
∂x3

= −0.5 , (31)

with the realistic properties that the surface temperature
decreases at a rate of 0.8 K per 100m rise, and that there is a
uniform heat flux into the base equivalent to a temperature
gradient of 0.5 K per 100m, and the Laplacian of T , arising in
the energy balance, is bounded. Zero basal melting, bn ≡ 0,
is assumed, then by Equation (29), the net surface and basal
accumulation/ablation distribution is q0 = α−2Q0 for the
linearly viscous problem. To incorporate the required η3

behaviour as η → 0 (see Appendix), but avoid a very small
q0 extending far beyond the ends of the central ridge, an
accumulation form, QL, used in previous applications is
modified to

Q0 =
(

η3

η + χ

) [
0.5− 6.5 exp(−4h̃)

]
, 1	 χ > 0. (32)

This has a decay height scale h̃ = 0.25 (500m). The
equilibrium height (snowline) where Q0 = 0 is at h = 0.64
(1280m). Q0 will not exceed 0.5 in magnitude provided ηM
(where subscript ’M’ denotes a margin value) remains order
unity, and the margin (ablation) magnitude will be of order
−6. Recall that q0 incorporates a further factor, α−2, whose
behaviour varies from order η−2 near ξ = 0 to order unity
near ξ = π/2 as η → 0, so q0 will become order unity near
ξ = 0 once η is of order χ or greater, but behaves like η2

near ξ = π/2.
A flat bed, f ≡ 0, is assumed, a constant friction

coefficient, Λ ≡ 25, is adopted, and the cases χ = 0.01
and χ = 0.1 are treated.
Tables 1 and 2 show the spans ηM, divide heights h0 and

the scaled semi-major and minor axes X1M, X2M of the ice-
sheet domain defined by Equation (13) at different values of
the dimensionless semi-ridge length, ν = εc, for χ = 0.01
and χ = 0.1, respectively. While the elevation and slope
matching error was always better than 10−6, the integrated
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Fig. 2. Surface profile over sheet domain in first quadrant.

accumulation matching error increases from 5×10−6 at ν =
2 to 1.5×10−4 at ν = 0.2. In each case the divide height, h0,
changes little with ν, but the span, ηM, increases significantly
as the semi-ridge length, ν, decreases. While the domain
semi-major axis, X1M, decreases as ν decreases, the semi-
minor axis, X2M, first decreases then increases. However, the
ratio X1M/X2M increases with ν, from∼1 to 1.5 for χ = 0.01,
and to 1.45 for χ = 0.1; the global parameters for the two
values of χ are very similar, but the central accumulation
will increase more quickly with η for the smaller χ. All
further illustrations are for the case χ = 0.01. The domain
boundary is close to circular for the smaller ν, so the non-
radial symmetry will be more pronounced for the larger ν.
These examples show that a variety of profiles and domains
can be obtained by varying ν, with the difference from radial
symmetry greater for larger ν.
Figure 1 shows h = h1(X1) along the major axis, showing

the ridge of length ν, and h = h2(X2) along the minor axis,
for ν = 2 and ν = 1, illustrating the distinct profiles along
the major and minor axes.
The radial and tangential velocities, Vr and Vt, are given

by

Vr = V〈1〉 cos(δ−θ), Vt = V〈1〉 sin(δ−θ), V〈1〉= ναv1, (33)

where V〈1〉 is the dimensionless physical velocity component
along ξ = constant in the increasing η direction, and

tan θ = X2/X1, tan δ = coth η tan ξ. (34)

Table 3. Radial and transverse velocities at ηM for ν = 2

ξ 0 π/8 π/4 3π/8 π/2

Vr 0.43762 0.38655 0.31801 0.29307 0.29270
Vt 0 0.11292 0.13137 0.085617 0

VrVr VtVt

0 0.03
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Fig. 3. Radial and transverse velocity profiles with depth at ξ = π/4:
Vr (solid curve), Vt (dashed curve) at η = 0.75ηM; Vr (dotted curve),
Vt (dot–dash curve) at η = 0.5ηM.

Tables 3 and 4 show Vr and Vt at the ice-sheet margin,
ηM, at five equally spaced ξ values between 0 and π/2 for
ν = 2 and ν = 1, respectively. The magnitude of Vt at
the margin is greater for ν = 2, as expected, and is not
negligible compared to Vr away from the symmetry axes,
indicating that a significantly non-radially symmetric flow is
obtained.
The final illustrations will be for ν = 2. Figure 2 shows the

surface profile over the resulting elliptic ice-sheet domain
in the first quadrant, illustrating the ridge and distinct non-
radial symmetry. Figure 3 shows the radial and transverse
velocity depth profiles, Vr(X3) and Vt(X3), at ξ = π/4 for
η = 0.75ηM (X1 = 1.68240,X2 = 0.91129) and for η =
0.5ηM (X1 = 1.53140,X2 = 0.58753). These illustrate further
that the flow is not close to radial symmetry, with transverse
velocities exceeding radial velocities in some zones, but the
velocities clearly decrease moving inward from the margin.
Note that the velocities are determined by Equations (A1) and
(A4) using the integrals (A3) and (A5) from the bed to each
given elevation, and it is verified in the numerical algorithm
that the resulting surface velocities satisfy the accumulation
condition (Equation (8)) with v2 = 0 to an accuracy better
than 10−8.
Figure 4 shows the prescribed net accumulation, q0, over

the elliptic solution domain which determines the linearly
viscous solution, and Figure 5 shows the extra accumulation,
qx, given by the Ql (l =1, 3) terms in Equation (29),
needed for the non-linearly viscous solution, both in the first
quadrant. The actual domain must be determined as part
of the solution, so both q0 and q = q0 + qx have been
extended uniformly along curves ξ = constant to a larger
ellipse boundary, corresponding to a span 2ηM, to provide
a prescribed accumulation for code testing. The decrease
of q0 and qx to zero on the ridge occurs in a very thin
domain, by the choice of the prescribed accumulation,
and does not show in the figures. The extra accumulation,
qx, for the non-linearly viscous solution is very small

Table 4. Radial and transverse velocities at ηM for ν = 1

ξ 0 π/8 π/4 3π/8 π/2

Vr 0.39497 0.37808 0.34649 0.32749 0.32270
Vt 0 0.05508 0.07139 0.04771 0
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Fig. 4. Net accumulation, q0, over the sheet domain.

compared to q0. Data files for the example solution, and
others, are available from the author for testing direct
numerical codes. In particular, the surface accumulation
can be provided as the elevation- and location-dependent
q0 prescribed analytically, and the extra location-dependent
part as a data file. The solution is symmetric about both
the X1 and X2 axes, but this symmetry would be lost if a
direct numerical code were applied in rotated horizontal
rectangular coordinates, unlike in the radially symmetric
case.

CONCLUSIONS
A variety of accurate three-dimensional, non-radially sym-
metric, reduced model (shallow-ice approximation) flows
with velocity depending on all three spatial co-ordinates
have been constructed for the commonly adopted isotropic
viscous law with temperature-dependent rate factor. The
solutions are for steady flow with a prescribed temperature
distribution, but can be extended to flow with a coupled
energy balance, and to unsteady flow. While not of direct
physical interest, such an ’exact’ solution is valuable as a
test solution for the large-scale numerical codes commonly
used in ice-sheet modelling, which have not yet been sub-
jected to such a comparison. Data files for the prescribed
surface accumulation and resulting surface profiles and
velocity distributions for the illustrated and other examples
can be provided.

ACKNOWLEDGEMENT
I thank A. Thornton in the Mathematics Department at
Manchester University for constructing the three-
dimensional plots of Figures 2, 4 and 5.

Fig. 5. Net extra accumulation, qx, over the sheet domain.
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APPENDIX: SOLUTION CONSTRUCTION
Integrating the second-order differential equation, (26), twice
subject to boundary conditions (27) and (28), and using the
relations of (25), gives

−ν2α2v1 = γ

Λ(Δ)
+

2∑
k=0

ckα
−2kγ2k+1Lk (z, η), (A1)

−ν2(ω−ωf ) = γ

Λ(Δ)
(z−f )+

2∑
k=0

ckα
−2kγ2k+1Kk (z, η), (A2)

ck = ψkϑ
kν−2k , Kk (z, η) =

∫ z

f
2a(T )(h−z)2k+1(z−z ) dz,

Lk (z, η) =
∫ z

f
2a(T )(h − z)2k+1 dz, (A3)

ν2α2
[
v3 + bn(η,α)

]
= Λ−2

{
(z − f )

[
γ′Λ− γ2Λ′(Δ)

]}

+
2∑
k=0

ckα
−2k

[
(2k + 1)γ2kγ′ − kα−2γ2k+1sinh 2η

]
Kk (z, η)

+
2∑
k=0

ckα
−2kγ2k+1

[
(2k + 1)γMk (z, η) +Nk (z, η)

]
, (A4)

Mk (z, η) =
∫ z

f
2a(T )(h − z)2k (z − z) dz,

Nk (z, η) =
∫ z

f
2a′(T )

∂T
∂η

∣∣∣∣
z
(h − z)2k+1(z − z ) dz, (A5)

where ωf and Tf denotes values on the bed and γ
′(η) = h′′(η).

Setting z = h in Equation (A2) and differentiating with

respect to η gives

−ν2 d(ωh − ωf )
dη

= Λ−2
{
ΛΔγ′ + γ2

[
Λ−ΔΛ′(Δ)]}

+
2∑
k=0

ckα
−2kγ2k

[
−kα−2γ sinh2η + (2k + 1)γ′)

]
Kk (h, η)

+
2∑
k=0

ckα
−2kγ2k+1

[
(2k + 2)γMk (h, η) + Nk (h, η)

]
, (A6)

where ωh denotes the surface value.
First consider the linearly viscous case when ψ(J) ≡ ψ0,

ψ1 = ψ2 = 0, with Q1 = Q2 = Q3 = 0, then the derivative,
Equation (A6), is independent of α, and Equation (A6) with
expansion (29) gives a second-order differential equation for
h(η): [

Δ
Λ
+ ψ0K0(h, η)

]
d2h
dη2

+
[
2ψ0M0(h, η) +

1
Λ

− ΔΛ′(Δ)
Λ2

](
dh
dη

)2

+ψ0N0(h, η)
dh
dη

= −ν2Q0(h, η), (A7)

where Δ also contains h(η). This equation applies over an
unknown span 0 ≤ η ≤ ηM. At η = 0, the ice-sheet divide
is a ’ridge line’ x2 = 0, −c ≤ x1 ≤ c, −ν ≤ X1 ≤ ν,
with unknown elevation, h0, across which the surface slope
γ(0) = 0. The dimensionless scaled ridge length is 2ν. At the
margin η = ηM, the ice thickness Δ = 0, and the surface
slope is γM, which, analogous to the plane and radially
symmetric flow equations (Morland and Johnson, 1980;
Morland, 1997), can be expressed in terms of margin values
by an asymptotic expansion of Equation (A7) as η → ηM and
Δ → 0. Thus, noting that the integrals K0, M0 and N0 all
vanish when Δ = 0, and that Λ(0) > 0,

η = 0 : h = h0, γ = 0, (A8)

η = ηM : h = 0, γ = γM = − 1
2

√
−4ν2Λ(0)Q0M. (A9)

Q0M < 0 for net margin ablation consistent with a steady
flow with no net mass flux in or out of the sheet, driven by
accumulation in elevated central zones. Then γM < 0, as
required for the ice to thicken inward from the margin.
For the non-linearly viscous relation, substituting this

linearly viscous solution, h(η), in the integrals of Equations
(A3) and (A5) to determine the stream function gradient
expansion (Equation (A6)) in powers of α−2, and comparing
terms with the remaining three powers of α−2 as factors in
Equation (29), determines the additional Ql (η) (l = 1, 2, 3)
necessary to satisfy Equation (A6):

Q1(η) = −c1ν−2γ2

·
[
3γ′K1(h, η) + 4γ

2M1(h, η) + γN1(h, η)
]
, (A10)

Q2(η) = c1ν
−2γ3K1(h, η) sinh 2η

−c2ν−2γ4
[
5γ′K2(h, η) + 6γ2M2(h, η) + γN2(h, η)

]
, (A11)

Q3(η) = 2c2ν
−2γ5K2(h, η) sinh 2η; (A12)

that is, for the same h(η) to be also the non-linearly viscous
solution. This is the solution construction adopted here. Note
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that the elliptical symmetry of h(η) is with reference to el-
lipses with different major and minor axes and eccentricities
for different values of η, with the velocity locally normal
to the corresponding ellipse. Furthermore, the magnitudes
of the velocity components, and the net accumulation, q,
depend significantly on the second horizontal coordinate, ξ,
through α2. This applies to both linearly and non-linearly
viscous solutions.
A physically valid solution requires that the net accumu-

lation, q, is bounded, and the velocities, v1 and v3, are
bounded and continuous. By Equation (29), q has a factor
α−2, and α2 vanishes at the foci η = 0, ξ = 0 or π, with
neighbourhood behaviour

α2 ≈ η2 + δ2 as η, δ → 0, where ξ = ±δ or π ± δ, (A13)

0 ≤ η2α−2 ≤ 1, η3α−2 → 0 as η → 0. (A14)

The variable η2α−2 is bounded but indeterminate at the foci,
while the variable η3α−2 is continuous. If Q0(h, η) ≈ η2 as
η → 0, q is bounded, but indeterminate, at the foci, which
would also apply to v3. It is therefore assumed that

Q0(h, η) = η3Q0(h, η) ≈ η3 as η → 0, (A15)

where Q0 is non-zero at η = 0, for which q is bounded and
continuous. It then follows from the differential equation,
(A7), that γ ≈ η4 as η → 0, since the dominant balance is
between Q0 and the second derivative term, so the surface
across the divide, η = 0, is very smooth. In the velocity
expressions, (A1) and (A4), the dominant terms are α−2γ
and α−2γ′, respectively, which approach zero continuously
as η → 0, so the velocities are bounded and continuous.
The additional α−2(l+1)Ql determined by relations (A10–
A12) also vanish continuously on η = 0. Note that this class
of solutions requires that the net accumulation is zero on the
divide, η = 0, and the vertical velocity remains at its basal
value throughout the depth under the divide.
Following Cliffe and Morland (2002), the numerical

solution is constructed in normalized coordinates, (t , y ),
which map the (η, z) domain onto the same unit square for
all ηM:

η = ηM t , h(η) − z = Δ(η) y , (0 ≤ t , y ≤ 1). (A16)

The margin contour is the ellipse defined by t = 1, and
the surface and bed are, respectively, y = 0 and y = 1 for
all η. Expanding the zero margin thickness to a unit length
edge does not cause numerical difficulty since all the
integrals vanish there. The second-order equation, (A7), is
then expressed as four first-order equations for h, γ as
functions of t , treating the two unknown constant param-
eters, ηM and h0, as variables, subject to the four end condi-
tions, two at each end,

t = 0 : h = h0, γ = 0; t = 1 : h = 0, γ = γM. (A17)

The complexity lies in the expression for the normalized
slope derivative, dγ/dt . This is also indeterminate at the
margin where Δ→ 0, but has a finite asymptotic limit.
The four differential equations, subject to the two-point

end conditions, are integrated from both ends to match
accurately (errors <10−5) both elevation and slope at an
interior point, using a shooting algorithm with trial ηM
and h0, and an accurate fifth-order Runge–Kutta integration
routine with adaptive step length (Press and others, 1992).
The accuracy of this algorithm has been confirmed by
applying it to a problem of similar mathematical structure
with an exact analytic solution obtained by inverse methods.
As an additional check, the resulting accumulation balance
is also shown to match, though with slightly lower accuracy
for the smaller values of the scaled semi-ridge length, ν. This
is given by

∫ ηM

0
Q0(h, η) dη = η4M

∫ 1

0
t3Q (h, t ) dt = 0, (A18)

which must be satisfied for the correct h(t ); this is the steady
flow condition that there is no net ice flux into the sheet. The
balance, (A18), is equivalent to a fifth differential equation

dA
dt
= t3Q (h, t ), A(0) = 0, A(1) = 0, (A19)

where A(t ) is a measure of the net accumulation from
t = 0 to t , which is integrated from both ends with the
given end conditions to match at the interior point. The
additional accumulation terms balance automatically by
their construction.
The profile, h(t ), is calculated at n equal t intervals, and

illustrated as a function of X1 along the major axis, and as a
function of X2 along theminor axis, for a variety of prescribed
conditions. For a particular example, the surface, h, is shown
over the determined ice-sheet domain in the first quadrant.
The prescribed net accumulation, q0, which determines
the linearly viscous solution, and the total accumulation,
q, for the non-linearly viscous solution, incorporating the
additional ξ-dependent contributions through α2, are also
shown for this example in the first quadrant, but q is extended
uniformly outside the domain, since as a test solution for
direct numerical codes the actual domain is part of the
solution. The radial and transverse velocity components, Vr
and Vt, are calculated at a series of m uniformly spaced y
intervals at a set of (η, ξ) locations, and shown as profiles in
X3 for this example, demonstrating the significant difference
from radially symmetric flow, as well as the dependence on
both horizontal coordinates.
The integrations were performed on a (t , y ) mesh with

n = 400 t intervals δt = 0.0025 and m = 100 y intervals
δy = 0.01, giving very tiny error estimates with fifth-order
integration routines.
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