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Abstract
Inverse probability weighting is a common remedy for missing data issues, notably in causal inference.
Despite its prevalence, practical application is prone to bias from propensity score model misspecification.
Recently proposed methods try to rectify this by balancing some moments of covariates between the target
and weighted groups. Yet, bias persists without knowledge of the true outcome model. Drawing inspir-
ation from the quasi maximum likelihood estimation with misspecified statistical models, I propose an
estimation method minimizing a distance between true and estimated weights with possibly misspecified
models. This novel approach mitigates bias and controls mean squared error by minimizing their upper
bounds. As an empirical application, it gives new insights into the study of foreign occupation and insur-
gency in France.

Keywords: causal inference; difference of the convex functions algorithm; inverse probability weighting; Kullback–Leibler
divergence; missing data

1. Introduction
Causal inference in social sciences stands out as an increasingly attractive field. Currently, it is
acknowledged as a missing data problem, where one of the potential outcomes is missing for
each unit (Little and Rubin, 2019). This problem is widely addressed by inverse probability
weighting (IPW) based on the propensity score estimation under the conditional ignorability
assumption. In a review of papers in the American Journal of Political Science, the American
Political Science Review, and the Journal of Politics from 2000 to 2022,1 I found that 35 articles
employ the IPW. Notably, 30 of them appear in the past five years, making it the most widely
used method among the popular weighting or matching methods, including the entropy balan-
cing (Hainmueller, 2012), propensity score matching, and genetic matching (Diamond and
Sekhon, 2013), in each of the five years. Despite its increasing popularity, however, it is vulnerable
to propensity score model misspecification (Kang and Schafer, 2007; Imai and Ratkovic, 2014),
which is rather common in practice.

To mitigate the bias due to model misspecification, existing studies have proposed various
methods balancing some moments (or kernels) of observed covariates between the target and
weighted groups (Hainmueller, 2012; Imai and Ratkovic, 2014; Vermeulen and Vansteelandt,
2015; Zubizarreta, 2015; Chan et al., 2016; Wong and Chan, 2017; Zhao, 2019; Hazlett, 2020;
Kallus, 2020; Tan, 2020; Wang and Zubizarreta, 2020). However, the efficacy of these methods
is contingent upon stringent assumptions. Specifically, removing bias by balancing specific
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1The details are shown in Supplementary Material A.
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moments requires prior knowledge of the true outcome model (Zubizarreta, 2015; Zhao and
Percival, 2017; Zhao, 2019; Fan et al., 2021), which is an impractical expectation in the face of
real-world scenarios characterized by nonlinearity, interactions, and modifications. Instead, I pro-
pose to balance the multivariate confounder distribution. This novel perspective, while acknowl-
edged in previous works (Hainmueller, 2012; Zubizarreta, 2015; Li et al., 2018), remains largely
unexplored.

In this paper, I propose an estimation method for the IPW with a misspecified propensity
score model that mitigates bias and controls the mean squared error (MSE) by minimizing the
imbalance in the multivariate covariate distribution rather than only specific moments. The
key idea is to use the estimating equations optimized for estimating the (inverse probability)
weights rather than the treatment assignment or propensity scores. Specifically, it estimates pro-
pensity scores by minimizing the Kullback–Leibler (KL) divergence between the true and esti-
mated weights, which directly quantifies the quality of the IPW estimation. This idea builds
upon the quasi maximum likelihood estimation (MLE) with misspecified models, which mini-
mizes the KL divergence between the true and estimated distribution (Akaike, 1973; White,
1982). I demonstrate that the KL divergence between the weights can be calculated up to a con-
stant without requiring knowledge of the true weights or propensity scores and that the proposed
method mitigates bias and controls the MSE of parameters of interest by minimizing their upper
bounds (Section 3.3 and 3.5).

Figure 1 provides an overview of the proposed method, summarizing its two main goals of the
proposed method and two associated intermediate goals for each along with the propositions for
the theoretical results. The first main goal is (a) mitigating bias of the parameter of interest. The
associated intermediate goals are (a-1) minimizing imbalance in multivariate covariate distribu-
tion between the target group and the weighted group and (a-2) minimizing an upper bound of
bias. The second main goal is (b) controlling the MSE of the parameter of interest. The associated
intermediate goals are (b-1) minimizing an upper bound of the relative error of (inverse probability)
weights, and (b-2) minimizing an upper bound of theMSE. Section 2 presents a numerical example
to illustrate that the proposed method achieves these goals better than the MLE.

The proposed method has several additional attractive characteristics. First, the proposed
method can incorporate the outcome regression model to substitute for the mean balancing con-
dition (Section 4.3). This allows it to remove bias under the same conditions as the recently pro-
posed covariate balancing methods such as the covariate balancing propensity scores (CBPS) (Imai
and Ratkovic, 2014), bias-reduced doubly robust estimator (Vermeulen and Vansteelandt, 2015),
calibrated weighting (Tan, 2020), and entropy balancing (Hainmueller, 2012). Second, like the
CBPS, it models propensity scores explicitly and estimates them consistently when the model is

Figure 1. Goals of the proposed method.
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correctly specified. While weight calibration methods such as the entropy balancing have an implicit
propensity score model (Hainmueller, 2012; Zhao and Percival, 2017; Wang and Zubizarreta, 2020),
it is easier for empirical researchers to make a propensity score model by considering the treatment
assignment mechanism with their domain knowledge than to incorporate it implicitly through
moment conditions. Third, as a direct consequence of these two characteristics, it can become a
doubly robust (DR) estimator (Section 4.3) (Seaman and Vansteelandt, 2018). It is consistent either
if the propensity score model or the outcome model is correct, and it attains the semiparametric
efficiency bound if both the models are correct (Robins et al., 1994).

Despite the theoretical attractiveness, the proposed method has some difficulties in implemen-
tation. First, it is not sample-bounded because the estimated weights may not sum to one; second,
it is likely to overfit extreme data points; and third, it necessitates the non-convex optimization. I
address the first problem by imposing the normalization constraint and deriving the uncon-
strained optimization problem by the Lagrangian multiplier method (Section 4.1). I address
the second problem by utilizing the L2 regularization (Section 4.1). To address the third problem,
I develop a majorization-minimization algorithm that iteratively optimizes two convex decompo-
sitions of the original function in Section 4.2 (Wu and Lange, 2010).

The proposed method is motivated by an observational study of political devolution and resist-
ance to foreign rule in France during World War II (Ferwerda and Miller, 2014). In Section 6, I
apply the proposed method to this study and discover the treatment effect heterogeneity, suggest-
ing that spill-over effects contaminate the treatment effect. I also apply the proposed method to
another empirical study in Supplementary Materials H. Section 5 demonstrates the finite-sample
performance of the proposed method through simulation studies.

The proposed methodology is implemented via an open-source R package dbw, which is avail-
able at https://github.com/hirotokatsumata/dbw and will be soon at CRAN.

2. A numerical example
This section presents a numerical example for illustrating that the proposed method achieves
goals (a) and (b), through goals (a-1), and (b-1) better than the MLE, where goals (a-2) and
(b-2) are direct consequences of (a-1) and (b-1) as later shown in propositions 2 and 4. It also
provides intuition on how the proposed method achieves these goals by showing that it is
optimized for estimating inverse probability weights rather than propensity scores.

For simplicity, this example examines a situation where there is only one continuous covariate
Xi following the standard normal distribution as well as a binary response variable Ri, indicating
that the outcome Yi is observed when Ri = 1 but not observed when Ri = 0, for observation i = 1,
2, …, 1000. The propensity score model is misspecified in the sense that it only includes a linear
term for Xi but the true model also includes its squared term X2

i . Specifically, the misspecified model
is Pr (Ri = 1) = expit(a+ bXi) whereas the true model is Pr (Ri = 1) = expit(− 1+ X + 0.5X2).
The inverse probability weights are estimated as ŵi = 1/P̂r(Ri = 1). To consider the possible worst-
case scenario for each estimator, I do not specify the data-generating process for the outcome Yi.

a-1: Distributional imbalance in the covariate. First, I compare the performance of the proposed
method with the MLE in terms of distributional imbalance in the covariate X. For this purpose,
a commonly used statistic is the Kolmogorov–Smirnov (KS) statistic. The KS statistics are 0.112
for the proposed method and 0.193 for the MLE, indicating that the proposed method has a smaller
covariate distributional imbalance than the MLE. To compare the distribution visually, I present a
figure showing the cumulative distribution functions of X in Supplementary Material B.

b-1: Relative error of the weights. Next, I compare the proposed method with the MLE in terms of
the relative error of the weights. As detailed in Section 3.5, this quantity is defined as
E[(ŵi/wi − 1)2], where wi and ŵi denote true and estimated weights. The relative error of the
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weights is 0.38 for the proposed method and 4.14 for the MLE, indicating that the relative error of
the proposed method is smaller than one-tenth of the MLE.

2.1 Intuition: targeting weights rather than propensity scores

To gain intuition, the left panel of Figure 2 presents the true (the x-axis) and estimated weights
(the y-axis) for each observation. The proposed method (triangles) estimates inverse probability
weights better than the MLE (circles). Most of the triangles are within or near the shaded narrow
corridor around the diagonal line, which indicates that the difference between the true and esti-
mated weights is less than two, whereas many circles lie far from the narrow corridor.

The right panel shows the true (the x-axis) and estimated propensity scores (the y-axis) for
each observation. Overall, the MLE (circles) estimates propensity scores better than the proposed
method (triangles) but the proposed method restricts the difference more effectively than the
MLE when the difference in the resulting inverse probability weights is large shown as the shaded
area. This explains why the proposed method approximates the weights better than the MLE.

These results provide intuition when the difference between the two estimators is large: It is
when some units have large estimated weights, which is likely to happen when there are unmo-
deled nonlinear effects of covariates on treatment assignment, there are unmodeled interaction
effects of covariates on treatment assignment, or the numbers of the treated and controlled
units are unbalanced. In addition, the proposed estimator is especially better than the MLE
when the outcomes of these units are extreme (relative to the true average outcome), but not
so much when the opposite is true. The difference in the estimated weights between the two esti-
mators is small when no units have large estimated weights.

The root mean squared errors (RMSEs) of the estimated weights are 1.18 for the proposed
method and 3.10 for the MLE, and RMSEs of the estimated propensity scores are 0.198 for
the proposed method and 0.131 for the MLE, indicating that the proposed method estimates

Figure 2. A numerical example: The true and estimated weights and propensity scores with a misspecified propensity
score model.
Notes: This figure compares the performance of the proposed estimator (triangles) and MLE estimator (circles) with a mis-
specified propensity score model in terms of inverse probability weights (left panel) and propensity scores (right panel). In
the left (right) panel, the x-axis represents the true weights (propensity scores), and the y-axis represents the estimated
ones. The shaded area in the left panel indicates that the difference between the true and estimated weights is small
(less than two) whereas the shaded area in the right panel indicates the corresponding area where the difference in
weights is small (not the difference in propensity scores).
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the weights better than the MLE whereas the MLE estimates the propensity scores better than the
proposed method. To estimate the quantity of interest through estimating inverse probability
weights, the proposed method is better suited than the MLE.

3. Proposed methodology
3.1 Setup

Suppose that there is a random sample of n units (i = 1, 2, …, n) from a population. Each unit
consists of a triplet (Yi, Ri, Xi), where Yi is an outcome variable, Ri is a binary outcome response
indicator variable that takes one when Yi is observed and zero otherwise, and Xi is a vector of
observed covariates whose support is denoted by X . The propensity score is defined as the con-
ditional response probability given observed covariates and denoted as Pr (Ri = 1 | Xi) = p(Xi).
We impose the overlap assumption that the propensity score is bounded away from 0 and 1: 0 < π
(x) < 1 for any x [ X . We also assume that the outcome is missing at random, i,e., the outcome
variable does not account for the response conditional on the observed covariates: Yi ⊥⊥ Ri | Xi

(Little and Rubin, 2019). These assumptions correspond to the conditional ignorability assump-
tion in causal inference.

For simplicity, the parameter of interest in this study is the average outcome m = E[Yi] for the
target group of Ri = 1 and Ri = 0, and the proposed method is easily extended to other estimands
such as the average treatment effect in causal inference (Kang and Schafer, 2007; Vermeulen and
Vansteelandt, 2015; Zubizarreta, 2015; Wong and Chan, 2017; Seaman and Vansteelandt, 2018;
Zhao, 2019; Tan, 2020; Wang and Zubizarreta, 2020).

3.2 Problems in the inverse probability weighting with the maximum likelihood estimation

The average outcome can be estimated unbiasedly and consistently by the IPW with true propen-
sity scores:

∑n
i=1 RiwiYi =

∑n
i=1 RiYi/p(Xi), where wi = 1/π(Xi) is the true inverse probability

weight for unit i. In observational studies, however, neither the true propensity scores nor the
true inverse probability weights are known. In practice, researchers use a parametric propensity
score model π(Xi, β), where the most common choice is the logistic regression model
p(Xi, b) = exp (XT

i b)/(1+ exp (XT
i b)). Typically, the nuisance parameters β are estimated

using the MLE to obtain the estimated propensity scores for each unit p̂MLE(Xi) = p(Xi, b̂MLE).
The resulting IPW estimator with the estimated propensity scores is consistent if the propensity
score model is correct.

However, if the propensity score model is misspecified, the MLE estimator for β and the result-
ing IPW estimator is not consistent. Generally, the limiting values of b̂MLE are the solution to the
following problem (Akaike, 1973; Tan, 2020; White, 1982):

b̂MLE = argmax
b

∑n
i=1

{Ri log (p(Xi, b))+ (1− Ri) log (1− p(Xi, b))} (1)

= argmin
b

{KL(R, p(X, b))+ KL(1− R, 1− p(X, b))}. (2)

This implies that the MLE estimates b̂MLE to minimizes the (generalized) KL divergence between
the true responses (R and 1− R) and their estimates (p(X, b̂MLE) and 1− p(X, b̂MLE)) for the
target group of Ri = 1 and Ri = 0, where the (generalized) KL divergence is the most common
measure of the difference between two points P and Q, which is defined as
KL(P, Q) = ∑n

i=1 {Pi log (Pi/Qi)− Pi + Qi}. The problem is that this is not the same as the
KL divergence between the true weights and estimated inverse probability weights although
the latter determines the performance of the IPW estimator.
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3.3 Distribution balancing weighting

This study proposes the distribution balancing weighting (DBW), which estimates such propen-
sity scores p(Xi, b̂DBW) that minimize the KL divergence between the true and the estimated
inverse probability weights. The idea of minimizing the KL divergence with possibly misspecified
models originates from the quasi MLE, which minimizes the KL divergence between the true and
estimated distribution when the true distribution is unknown (Akaike, 1973; White, 1982). Since
the propensity scores and their inverse probability weights have a non-linear relationship, min-
imizing the KL divergence between the true and estimated response assignment like the MLE
does not minimize that for the inverse probability weights in general. The DBW applies the
idea to the KL divergence between the true and estimated weights and obtains the following
KL divergence:

E KL
R

p(X)
,

R

p(X, b̂DBW)

( )[ ]
= E

∑n
i=1

Ri

p(Xi, b̂DBW)
+ log (p(Xi, b̂DBW))− 1− log (p(Xi))

{ }[ ]
.

(3)
The DBW estimates coefficients as the minimizers of the following loss function, which is the
sample version of the KL divergence above up to a constant:

b̂DBW = argmin
b

∑n
i=1

Ri

p(Xi, b)
+ log (p(Xi, b))

{ }
. (4)

As stated formally in proposition 5, the DBW estimates propensity scores and resulting inverse
probability weights consistently, like the MLE, when the propensity score model is correctly
specified.

3.4 Minimizing an upper bound of bias

The main advantage of the DBW is that it also minimizes the imbalance in the multivariate cov-
ariate distribution in the target and weighted groups as stated in proposition 1 below, whose
importance has been acknowledged in the existing studies (Hainmueller, 2012; Zubizarreta,
2015; Li et al., 2018; Zhao, 2019). While the propensity scores estimated by the MLE minimize
the distributional imbalance in the limit when the propensity score model is correctly specified, it
does not when the model is misspecified. The DBW achieves this even when the model is mis-
specified. The following proposition summarizes this result.

Proposition 1 (Multivariate distribution balancing property): When the propensity scores and
resulting inverse probability weights are estimated using (4), the weights minimize the following
KL divergence for the multivariate covariate distribution between target and weighted groups in
the limit even when the propensity score model is misspecified.

b̂DBW
p−�b∗

DBW (5)

b∗
DBW = argmin

b

KL f (x),
f1(x)

p(X, b)

( )
, (6)

where b∗
DBW is the probability limit of b̂DBW and f(x) and f1(x) is the multivariate covariate dis-

tribution for the target group (S = {i | Ri [ {0, 1}}) and the response group (S1 = {i | Ri = 1}),
respectively.
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Proof. For any β, the following equations hold:

∑n
i=1

Ri

p(Xi, b)
+ log (p(Xi, b))

{ }
p−�



x[x

f (x)
R

p(x, b)
+ log (p(x, b))

{ }
dx (7)

=


x[x

f1(x)
p(x, b)

+ f (x) log (p(x, b))

{ }
dx (8)

= KL f (x),
f1(x)

p(X, b)

( )
+ constant. (9)

By applying the continuous mapping theorem, one can obtain

argmin
b

∑n
i=1

Ri

p(Xi, b)
+ log (p(Xi, b))

{ }
p−� argmin

b

KL f (x),
f1(x)

p(X, b)

( )
. (10)

□

This property is advantageous because it implies that bias is bounded above as stated in the
following proposition.

Proposition 2 (Minimizing a sharp upper bound of bias): Let the absolute value of bias be
denoted as B and C = max (|E[Yi − m | Ri = 1, x]|). A function of imbalance in the multivariate
covariate distribution quantified by the KL divergence sharply bounds bias from above as follows:

B ≤ C KL f (x)− f1(x)
p(X, b∗

DBW)

( )
(11)

Proof.

B =


x[x

E[Yi − m | Ri = 1, x] f (x)− f1(x)
p(X, b∗

DBW)

( )
dx

∣∣∣∣∣
∣∣∣∣∣ (12)

≤ C


x[x

f (x)− f1(x)
p(X, b∗

DBW)
dx

∣∣∣∣ ∣∣∣∣ (13)

≤ C KL f (x)− f1(x)
p(X, b∗

DBW)

( )
, (14)

where the last inequality follows from Pinsker’s inequality, and the equalities hold when the pro-
pensity score model is correct. □
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3.5 Minimizing an upper bound of the mean squared error

This section demonstrates that the proposed method sharply bounds an upper bound of the MSE
by showing that the proposed method minimizes a sharp upper bound of the relative error of
weights (proposition 3) and the relative error of weights bounds the MSE of the IPW estimator
(proposition 4).

First, the KL divergence between the weights, which the proposed method minimizes as a loss
function, bounds the relative error of the weights j(b̂) = E[(p(Xi)/p(Xi, b̂)− 1)2] from above as
the following proposition states:

Proposition 3 (Minimizing a sharp upper bound of the relative error of weights): When the pro-
pensity scores and resulting inverse probability weights are estimated using (4), a sharp upper
bound of the relative error of weights is minimized in the limit even when the propensity
score model is misspecified. If p(Xi, b̂) ≥ ap(Xi) almost surely for some constant a∈ (0, 1],
the bound is as follows:

j(b̂) ≤ 2 E KL
Ri

p(Xi)
,

Ri

p(Xi, b̂)

( )[ ]
for a = 1 (15)

j(b̂) ≤ a2 − 2a+ 1
a(1− a+ a log (a))

E KL
Ri

p(Xi)
,

Ri

p(Xi, b̂)

( )[ ]
for 0 , a , 1, (16)

where the equalities hold when p(Xi, b̂) = ap(Xi), for all i. Proof is available in Supplementary
Material C.1.

Note that the MLE does not minimize this upper bound as its coefficients converge to different
limits than the DBW unless the propensity score model is correctly specified. Note also that this
bound is tighter than Tan (2020)’s bound (Supplementary Material C.1), where the leading term
is 5/(3a) for a case where p(Xi, b̂) ≥ ap(Xi) almost surely for some constant a∈ (0, 1/2] instead
of a∈ (0, 1] in proposition 3. Tan (2020) neither provide an intuitive interpretation of this rela-
tive error nor investigate the estimator minimizing it as the loss function.

Second, the MSE of the IPW estimator is bounded above by the relative error of weights as the
following proposition states, which is also shown in Proposition 2 of Tan (2020) (a typo in the
original proposition corrected):

Proposition 4 (Minimizing a sharp upper bound of the mean squared error): The MSE of the
IPW estimator is sharply bounded above by the relative error of weights as:

E
1
n

∑n
i=1

RiYi

p(Xi, b̂)
− m

( )2[ ]
≤ 2c

nr
+ c 1+ 1

nr

( )
j(b̂), (17)

where E[Y2 | X] ≤ c and π(Xi)≥ ρ almost surely for some constants c > 0 and ρ∈ (0, 1). The
equality holds when Yi = μ and p(Xi) = p(Xi, b̂) = 0.5 for all i. Proof is available in
Supplementary Material C.2.

Propositions 3 and 4 together imply that the proposed method minimizes the upper bound of
the MSE even when the propensity score model is misspecified.
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3.6 Comparison with the existing methodologies

This section briefly discusses related literature and compares the proposed methods with existing
ones. A more detailed discussion including a comparison with the non-parametric methods is
provided in Supplementary Material F.

Table 1 summarizes the loss function and three important properties of proposed and three
existing methods, the standard IPW, calibrated weighting (Tan, 2020), and entropy balancing
(Hainmueller, 2012), for the average outcome estimation, where each of the DBW, calibrated
weighting, and entropy balancing has two of those three properties. First, the distribution bal-
ancing property minimizes the imbalance in the multivariate covariate distribution between
the target and weighted groups (Section 3.3) and an upper bound of the mean squared
error (MSE) of the parameter of interest (Section 3.5). The DBW and entropy balancing
have this property because they use the same loss function (4) with different link functions,
where the DBW uses the logistic function and the entropy balancing uses the exponential func-
tion (Wang and Zubizarreta, 2020, See also, Supplementary Material D and F). Second, the cali-
brated weighting and entropy balancing have the mean balancing property, which is increasingly
employed in recently proposed methods (Imai and Ratkovic, 2014; Vermeulen and Vansteelandt,
2015; Zubizarreta, 2015; Zhao, 2019; Wang and Zubizarreta, 2020). This property implies that
the estimators are sample-bounded (Robins et al., 2007; Wang and Zubizarreta, 2020). Third,
the estimated propensity score is bounded between 0 and 1 except for the entropy balancing,
whose implicit propensity scores can take larger values than one (See, Wang and Zubizarreta,
2020). This unboundedness implies that the implicit propensity score model in the entropy balan-
cing is always misspecified, and it cannot be a doubly robust estimator for the average outcome
estimation (Zhao, 2019), which contrasts with the double robustness property for the estimation
of the average treatment effect for the treated (Zhao and Percival, 2017).

The comparison shows that the drawback of the DBW is the lack of mean balancing and
sample-boundedness properties. However, the DBW can incorporate or substitute for these prop-
erties. First, it can substitute the mean balancing with outcome models as explained in Section
4.3, which removes bias under the same assumptions as the mean balancing methods such as
the calibrated weighting and entropy balancing. I also demonstrate that incorporating the linear
outcome model is equivalent to modify the DBW weights to have the mean balancing property.
Second, it can incorporate the normalization constraint to gain the sample-boundedness as
explained in Section 4.1.

4. Improvement, estimation, and inference
4.1 Normalization, regularization, and estimation

Like the IPW with the MLE, a drawback of the DBW is that estimated weights may not sum to
one. To become normalized and thus sample-bounded, the normalized DBW (nDBW) estimator

Table 1. Comparison of the proposed and existing methods for the average outcome estimation

Estimator Loss function
Distribution
balancing

Mean
balancing

PS
bounded

Proposed estimator (A) KL divergence between true and estimated
weights

✓ ✓

Standard IPW (B) KL divergence between true and estimated
responses

✓

Calibrated weighting (A) + (B) ✓ ✓
Entropy balancing (A) KL divergence between true and estimated

weights
✓ ✓

Notes: The standard IPW is the IPW with the MLE.
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incorporates the normalization restriction as follows:

b̂nDBW = argmin
b

∑n
i=1

log (p(Xi, b)) s.t.
∑n
i=1

Ri

p(Xi, b)
− 1

( )
= 0. (18)

This nDBW estimator minimizes the distribution imbalance and an upper bound of the MSE
under the normalization constraint. When the propensity score model is correctly specified,
the limiting values of the DBW and nDBW estimators are the same because the (unnormalized)
DBW estimator asymptotically satisfies the normalization constraint.

Using the Lagrangian function, the solution to this constrained optimization problem is
obtained as the solution to the following unconstrained optimization problem:

b̂nDBW = argmin
b

∑n
i=1

log (p(Xi, b))+
∑n

i=1 (1− p(Xi, b))
n0

∑n
i=1

Ri

p(Xi, b)
− 1

( ){ }
(19)

n0 =
∑n
i=1

(1− Ri). (20)

To estimate coefficients for the nDBW in (19), we can use the M-estimation under the regu-
larity conditions that the solution to (19) is unique and an element of the interior of a compact
set. The second condition is satisfied when the objective function in (19) is bounded below, which
is similar to the nonseparation condition for the MLE (Vermeulen and Vansteelandt, 2015; Tan,
2020). To satisfy this condition, we can utilize the L2 regularization:

b̂nDBW = argmin
b

gnDBW(b) (21)

gnDBW(b) =
∑n
i=1

log (p(Xi, b))+
∑n

i=1 (1− p(Xi, b))
n0

∑n
i=1

Ri

p(Xi, b)
− 1

( )
+ 1

2
lT‖b−1‖2, (22)

where λ is a hyper-parameter controlling for the regularization, β−1 is β without the intercept, and
|| ⋅ || denotes the Euclidean norm.

As the properties of the M-estimator, the following results regarding the consistency and
asymptotic normality of the nDBW estimator are obtained (Stefanski and Boos, 2002).

Proposition 5 (Large sample properties): Under the conditions that the solution to (21) is
unique and that (21) is bounded below, b̂nDBW and resulting inverse probability weights
1/p(Xi, b̂nDBW) converge in probability to their limiting values b̂∗

nDBW and 1/p(Xi, b̂∗
nDBW),

and since (21) is a smooth function, b̂nDBW is asymptotically normally distributed with a certain
variance Σ as follows:

��
n

√
(b̂nDBW − b∗)

d−�N (0, S) (23)

S = g ′′nDBW(b)−1E[g ′nDBW(b)g ′nDBW(b)T]g ′′nDBW(b)−T , (24)

where β* is the true values of the coefficients, which is the solution for (3), g′nDBW
(β) = ∂gnDBW(β)/∂β and g ′′nDBW(b) = ∂g ′nDBW(b)/∂bT are the first and second derivatives of
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gnDBW(β) with respect to β. When the propensity score model is correctly specified, b̂nDBW and
1/p(Xi, b̂nDBW) are consistently estimated.

To demonstrate the benefits of normalization and regularization, I conduct a simulation in
Section 2 for the non-normalized DBW and the nDBW with regularization. First, the RMSEs
of the estimated weights are 1.23 for the non-normalized DBW against 1.18 for the nDBW, indi-
cating that the normalization improves the weight estimation.

Second, Figure 3 presents the performance of the proposed estimators with different levels of
regularization. The optimal value of the regularization hyper-parameter is 0.22 as depicted by the
vertical dotted line. Beyond this value, the RMSE of the weights increases as the regularization
becomes stronger, approaching the RMSE of the uniform weights shown in the horizontal dotted
line. Although tuning hyper-parameters is still a difficult and unsolved open problem
(Zubizarreta, 2015; Wong and Chan, 2017; Zhao, 2019), I recommend using regularization
mainly to avoid the separation problem by choosing the smallest one that addresses the separ-
ation problem as I do in the simulation studies in Section 5. Another way is choosing the one
that minimizes the upper bound of bias estimated by the kernel balance method in Hazlett
(2020), which I adopt in the empirical application in Section 6.

4.2 Algorithm

In this section, I explain the algorithm for estimating the DBW without the normalization and
regularization for simplicity, and the algorithm for the nDBW with regularization is explained
in Supplementary Material E. Since the loss function in (4) is non-convex with respect to β,
the convex optimization algorithm such as the Newton’s method is not applicable. For this non-
convex optimization, I develop a majorization-minimization algorithm that iteratively optimizes
two convex decompositions of the original function (Wu and Lange, 2010). It exploits the char-
acteristics that the minimization problem of the non-convex loss function of (4) is equivalent to
the minimization problem of the difference of the two convex functions as follows:

g(b) ;
∑n
i=1

Ri

p(Xi, b)
+ log (p(Xi, b))

{ }
= g1(b)− g2(b) (25)

Figure 3. The performance of
the proposed estimators with dif-
ferent levels of regularization
Notes: The horizontal dotted line
indicates the RMSE of the uniform
weights.
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g1(b) =
∑n
i=1

Ri

p(Xi, b)
+ (1− Ri) log (p(Xi, b))− (1− Ri) log (1− p(Xi, b))

{ }
(26)

g2(b) =
∑n
i=1

−Ri log (p(Xi, b))− (1− Ri) log (1− p(Xi, b))
{ }

. (27)

This equivalence implies that the loss function for the DBW (25) is equivalent to the difference
of the convex loss functions for the calibrated weighting (26) and the MLE (27). Note that the
DBW does not minimize the absolute difference of the two functions but it minimizes the sum
of the loss functions of the calibrated weighting and the negative of the loss function of the
MLE. Thus, we should not interpret the DBW as the combination of the calibrated weighting
and the MLE but rather the calibrated weighting should be regarded as the combination of the
DBW and the MLE (Tan, 2020). Since the DBW is better at controlling the mean squared error
than the MLE as shown in Section 3.5, the DBW is also better than the calibrated weighting in
this regard.

The difference of the convex functions algorithm for the DBW repeats the following two steps
until convergence. First, as the majorization step, it constructs a surrogate function u(β, βt) for
iteration t by the Taylor expansion of the second component of (25) as follows:

u(b, bt) = g1(b)− {g2(bt)+ g ′2(bt)
T(b− bt)}, (28)

where βt is the initial values or values obtained in the previous iteration and g ′2(b) = ∂g2(b)
∂b .

Next, as the minimization step, it estimates βt+1 such that minimizes (28) with respect to
β while keeping βt fixed. This minimization is easily conducted, e.g., via the Newton’s
method, because the objective surrogate function is convex. This algorithm is proved to
decrease the loss monotonically in every steps and converge to a stationary point (Wu
and Lange, 2010).

4.3 A substitute for the mean balancing condition: doubly robust distribution balancing weighting
estimator

Another drawback of the DBW is that it lacks the mean balancing property, which is increasingly
employed by recently proposed methods as a safeguard against model misspecification
(Hainmueller, 2012; Imai and Ratkovic, 2014; Vermeulen and Vansteelandt, 2015; Zubizarreta,
2015; Zhao, 2019; Tan, 2020; Wang and Zubizarreta, 2020). This removes bias when the true out-
come model is a linear regression model with the balanced covariates (Zubizarreta, 2015; Zhao
and Percival, 2017; Zhao, 2019; Fan et al., 2021).

To substitute the mean balancing property, the (n)DBW can incorporate the outcome regression
model. Specifically, this study considers the augmented IPW where the weights are estimated by the
(n)DBW instead of the MLE. The augmented IPW combines the outcome model and propensity
score model in the following manner (Robins et al., 1994; Seaman and Vansteelandt, 2018):

m̂ = 1
n

∑n
i=1

RiYi

p(Xi, b̂)
− Ri − p(Xi, b̂)

p(Xi, b̂)
m̂(Xi)

( )
, (29)

where p(Xi, b̂) is the estimated propensity scores and m̂(Xi) is the estimated conditional expect-
ation function m(Xi) = E[Yi | Xi]. The (n)DBW DR estimator uses the WLS to estimate m(Xi)
because it has better performance than the OLS (Kang and Schafer, 2007; Imai and Ratkovic,
2014). Under the same condition for the mean balancing methods, the (n)DBW estimator
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eliminates bias by using a linear regression outcome model. It can also utilize more flexible methods
such as machine learning techniques for estimatingm(Xi). This estimator is doubly robust, i.e., con-
sistent when either the propensity score or the outcome model is correctly specified (Vermeulen
and Vansteelandt, 2015; Seaman and Vansteelandt, 2018). Moreover, the (n)DBW DR estimator
achieves semiparametric efficiency bound if both of the models are correctly specified
(Vermeulen and Vansteelandt, 2015; Seaman and Vansteelandt, 2018).

Recently, Chattopadhyay and Zubizarreta (2023) demonstrates that the augmented IPW is
expressed as the (non-augmented) IPW with modified weights with the covariate balancing prop-
erty. Chattopadhyay and Zubizarreta (2023) also proves that the modified weights minimize the
Chi-square-type distance from the (inverse probability) weights used in the augmented IPW with
the WLS. This implies that the (n)DBW DR estimator can be expressed as the (non-augmented)
IPW estimator with weights ŵnDBWDR satisfying the following conditions:

ŵnDBWDR = argmin
w

∑n
i=1

Ri
wi − 1/p(Xi, b̂nDBW)

1/p(Xi, b̂nDBW)

( )2

s.t.
∑n
i=1

(Riwi − 1)Xi = 0, (30)

which demonstrates that the (n)DBW DR estimator equips the covariate balancing property with
the approximate multivariate covariate distribution balancing.

Since the covariate balancing methods satisfy 1
n

∑n
i=1 (Ri − p(Xi, b̂))Xi = 0 by construction,

their DR estimators with the linear outcome model of m̂(Xi) cannot improve their non-DR esti-
mators because the augmented term, the second term in (29), is always 0. I will examine the
finite-sample performance of the nDBW DR estimators through simulation studies in Section 5.

5. Simulation studies
This section examines the finite-sample performance of the proposed methods through simula-
tion studies. The standard simulation setting is proposed by Kang and Schafer (2007), which
showed that even the DR estimators may suffer from large bias and variance when both the out-
come and propensity score models are misspecified. To examine the performance of newly pro-
posed methods, many studies have utilized the same data-generating process (Robins et al., 2007;
Imai and Ratkovic, 2014; Vermeulen and Vansteelandt, 2015; Zubizarreta, 2015; Zhao and
Percival, 2017; Tan, 2020; Wang and Zubizarreta, 2020).

Following these studies, I use the following data-generating process. There are n units and each
unit i has four covariates Xi = (Xi1, Xi2, Xi3, Xi4), each of which is independently and identically
distributed according to the standard normal distribution. Each unit also has an outcome Yi and
a response indicator variable Ri∈ {0, 1}, where outcome is observed only for the response group
Ri = 1. The response indicator variable is assigned according to the Bernoulli distribution Ri =
Bernoulli (π(Xi)), where π(Xi) is a true propensity score. Following Robins et al. (2007);
Vermeulen and Vansteelandt (2015), this study considers two types of the true propensity
score model, where the signs of the coefficients are reversed each other: the type A model π
(Xi) = expit(− Xi1 + 0.5 Xi2− 0.25 Xi3− 0.1 Xi4) and type B model π(Xi) = expit(Xi1− 0.5 Xi2 +
0.25 Xi3 + 0.1 Xi4). The target parameter is m = E[Yi], where the outcome variable Yi is independ-
ently and identically distributed according to the standard normal distribution
Yi 
 N (m(Xi), 1). Following the extension of the standard simulation study by Tan (2020),
this study considers six versions of the true outcome model m(Xi): (Linear 1) m(Xi) = 210 +
27.4 Xi1 + 13.7 Xi2 + 13.7 Xi3 + 13.7 Xi4 and μ = 210; (Linear 2) m(Xi) = 210 + 13.7 Xi1 + 27.4
Xi2 + 27.4 Xi3 + 27.4 Xi4 and μ = 210; (Quadratic 1) m(Xi) = 210+ 27.4

∑4
j=1 {max (Xij, 0)}

2

and μ = 264.8; (Quadratic 2) m(Xi) = 210+ 27.4
∑4

j=1 {max (− Xij, 0)}
2 and μ = 264.8;

(Exponential 1) m(Xi) = 210+ 27.4
∑4

j=1 exp (Xij) and μ≈ 390.7; (Exponential 2)
m(Xi) = 210+ 27.4

∑4
j=1 exp (− Xij) and μ≈ 390.7.
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To represent misspecified working models, non-linear transforms of the covariates
Zi= (Zi1, Zi2, Zi3, Zi4)= (exp(Xi1/2), Xi2/(1+exp(Xi1))+10, (Xi1Xi3/25+0.6)3, (Xi1+Xi4+20)2)
are used in some models (Robins et al., 2007; Imai and Ratkovic, 2014; Vermeulen and
Vansteelandt, 2015; Zubizarreta, 2015; Zhao and Percival, 2017; Tan, 2020; Wang and
Zubizarreta, 2020). Specifically, this study examines the following two scenarios for each simula-
tion setting. In the first scenario, the working propensity score model is correctly specified and
uses the logistic regression with Xi as linear predictors whereas in the second scenario it is mis-
specified and uses the logistic regression with Zi as linear predictors. Since the focus is on the
relative performance of the different propensity score estimation methods, the working outcome
model in both the scenarios is misspecified with the linear regression with Zi as linear predictors.

The propensity scores and/or (inverse probability) weights are estimated by the nDBW and
four existing methods (MLE, CBPS, calibrated weighting, and entropy balancing). The
unweighted (difference-in-means) and the true propensity score estimators are also used for com-
parison. For each of these methods, the simple IPW type estimator m̂IPW = ∑n

i=1 RiYi/(np̂(Xi))
and the augmented IPW type estimator (29) are utilized for the target parameter, where the OLS
is used to estimate the outcome regression model. I conduct 2000 Monte Carlo simulations with
two different sample sizes (n = 200 and 1000) and calculate the bias and root-mean-squared error
(RMSE) for each estimator in each of the 48 scenarios (two versions of the true propensity score
model, six versions of the true outcome model, two versions of the working propensity
score model, and two versions of the sample size). Although the adaptive optimization
would improve the estimation, the regularization parameters for the nDBW are simply fixed at
λ = 0.03 for n = 200 and λ = 0.007 for n = 1000, which are minimal values to obtain the conver-
gence in all the Monte Carlo draws. Note that the CBPS DR estimator and the bias-reduced dou-
bly robust estimator (Vermeulen and Vansteelandt, 2015) produce the same estimate when the
linear outcome regression model uses the same covariates as the propensity score model, i.e.,
in the misspecified propensity score model cases in this simulation setting.

The results for the augmented IPW type estimators are shown in Table 2–4 and the full results are
shown in Table I.1–I.6 in Supplementary Materials I. Note that the unweighted estimator is an IPW
type estimator with uniform weights, and the imputation estimator is an augmented IPW type of that.

When the propensity score model is correctly specified, the proposed nDBW DR estimator has
at least comparably small bias and RMSE as the calibrated weighting DR, and it has the smallest
RMSE in all the cases with a moderate sample size (n = 1000) and in most of the cases with a
small sample size n = 200. Unlike the other estimators, the entropy balancing estimator is not
consistent even in the correct propensity score model scenarios except for the linear outcome
model cases because it is not doubly robust.

When the propensity score model is misspecified, all the estimators except for the true pro-
pensity score DR estimator are no longer consistent, and the MLE DR estimator suffers from
large bias and variance when the true propensity score model is type A. Even in these difficult
scenarios, the nDBW DR estimator, as well as the calibrated weighting DR estimator, have
small biases and RMSEs. To visually compare the relative performance of the estimators with
the misspecified propensity score model and moderate sample size (n = 1000), Figure 4 shows
the absolute bias and RMSE of nDBW DR estimator in the x-axis against those of the calibrated
weighting DR (circles), CBPS DR estimator (triangles), and entropy balancing DR (squares) esti-
mators in the y-axis. The symbols above (below) the diagonal line indicate that the nDBW DR
estimator performs better (worse) than other estimators. The nDBW estimator outperforms
the calibrated weighting DR and CBPS DR estimators both in terms of bias and RMSE in
most of the cases. The performance of the nDBW DR estimator is also preferable to the entropy
balancing DR estimator, although the latter performs better than the former in some scenarios.
Compared with the entropy balancing DR estimator, the nDBW DR estimator has smaller
RMSEs by more than 30% in one-third of the cases but larger RMSEs by more than 30% in
none of the cases.
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Finally, the full results are shown in Table I.1–I.6 in Supplementary Materials I, which enable
to compare the IPW estimators and their DR variants. In most of the scenarios, the nDBW esti-
mator is improved by incorporating outcome models. In contrast, as explained in Section 4.3, the
calibrated weighting and entropy balancing estimators have the same biases and RMSEs as their
DR variants in the misspecified propensity score model scenarios, where the linear outcome
model uses the same covariates as the propensity score model.

6. Empirical analysis
Can foreign occupiers reduce resistance by devolving political authority to native elites? This
question is central in the literature on foreign occupation but also challenging because rando-
mized experiments are almost impossible, and strategic determination of political devolution
causes an endogeneity problem in observational studies.

To address this issue, Ferwerda and Miller (2014) utilizes a natural experimental setting in
France during World War II, where municipalities were plausibly viewed as randomly assigned
into German or Vichy-governed zones in the neighborhood of the demarcation line. After

Table 2. Simulation results: linear outcome models

Type A PS coefficients Type B PS coefficients

n = 200 n = 1000 n = 200 n = 1000

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Linear outcome model 1: correct PS model
Unweighted −9.78 10.39 −9.97 10.09 10.05 10.68 9.95 10.07
nDBW DR 0.54 2.89 0.17 1.31 0.74 2.80 0.09 1.20
MLE DR 0.36 3.65 0.01 1.74 0.44 3.74 0.00 1.76
CBPS DR 0.49 3.25 0.07 1.59 0.38 3.08 0.02 1.46
Calibrated weighting DR 0.54 2.97 0.12 1.41 0.42 2.74 0.04 1.22
Entropy balancing DR 1.15 3.16 0.91 1.64 1.40 3.10 1.11 1.66
True propensity score DR 0.37 3.57 0.04 1.81 0.62 4.08 0.05 1.96
Linear outcome model 1: misspecified PS model
Unweighted −10.02 10.64 −9.97 10.10 9.92 10.51 10.01 10.14
nDBW DR −1.98 3.73 −2.61 2.99 2.49 3.81 1.79 2.18
MLE DR −5.97 22.52 −16.30 129.23 3.11 4.49 3.07 3.39
CBPS DR/BRDR −2.73 4.36 −3.57 3.97 3.07 4.39 3.33 3.63
Calibrated weighting DR −2.14 3.83 −2.76 3.14 2.31 3.70 2.23 2.58
Entropy balancing DR −1.52 3.56 −1.95 2.46 3.79 4.80 3.77 4.00
True propensity score DR 0.31 3.66 0.09 1.77 0.47 4.09 0.12 1.97
Linear outcome model 2: correct PS model
Unweighted −3.59 6.18 −3.76 4.37 3.76 6.29 3.73 4.34
nDBW DR 0.07 3.64 0.03 1.65 0.62 3.66 0.08 1.63
MLE DR −0.06 4.89 −0.13 2.19 0.43 5.14 0.02 2.35
CBPS DR 0.06 4.40 −0.08 2.01 0.34 4.37 0.04 2.01
Calibrated weighting DR 0.10 3.77 −0.05 1.72 0.37 3.73 0.06 1.67
Entropy balancing DR 0.02 3.85 −0.08 1.74 1.18 3.91 0.95 1.91
True propensity score DR −0.12 5.19 −0.09 2.48 0.63 5.56 0.07 2.62
Linear outcome model 2: misspecified PS model
Unweighted −3.88 6.33 −3.74 4.34 3.69 6.13 3.73 4.36
nDBW DR −3.36 5.48 −3.56 4.02 3.27 5.32 2.58 3.17
MLE DR −6.05 17.36 −9.29 62.15 4.34 6.43 4.25 4.73
CBPS DR/BRDR −4.42 6.42 −4.53 4.99 4.44 6.44 4.49 4.95
Calibrated weighting DR −3.55 5.59 −3.73 4.18 3.27 5.33 3.15 3.66
Entropy balancing DR −3.49 5.70 −3.51 4.03 4.54 6.33 4.45 4.86
True propensity score DR −0.32 5.28 −0.02 2.42 0.47 5.75 0.07 2.63

Notes: This simulation compares the performance of various methods for estimating propensity scores and (inverse probability) weights by
investigating combinations of two versions of the true outcome model (Linear 1 and 2) and two versions of coefficients for the propensity
score model (type A and B) with the two different numbers of observations (n = 200 and n = 1000). For each estimation method, I use two
propensity score model specifications (correct and misspecified) and report the bias and RMSE for each in the table.
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Germany defeated France in June 1940, an armistice provided for the division of France into an
occupied zone in northern France and the western coast ruled by Germany directly and an
unoccupied zone in the south ruled by the Vichy government. In November 1942, in response
to the landing of the Allies in North Africa, German forces invaded and occupied the unoccupied
southern zone. However, the formal administrative division remained, which kept the extent of
political devolution between the two zones different. Ferwerda and Miller (2014) analyzes this
period (November 1942 to September 1944), when German military forces were present in
both the zones and most of the resistance events occurred (mainly after 1943).

Using the regression discontinuity design, Ferwerda and Miller (2014) finds that political
devolution decreases sabotage events in the close neighborhood of the demarcation line, which
was drawn arbitrarily at the local level, cutting across the preexisting administrative borders
and geographic features such as mountain ranges and rivers. There is, however, a concern
about the spill-over effects: Resistance fighters operating from the Vichy zone, not residents in
the German-governed zone, may increase sabotage events in the German zone at the demarcation
line. To address this concern, it is necessary to compare the municipalities at some distance from
the line like the robustness checks in their article. A problem that arises here is that the

Table 3. Simulation results: quadratic outcome models

Type A PS coefficients Type B PS coefficients

n = 200 n = 1000 n = 200 n = 1000

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Quadratic outcome model 1: correct PS model
Unweighted −6.85 8.93 −6.91 7.36 7.16 9.77 6.94 7.52
nDBW DR −2.16 6.08 −0.48 2.66 −0.86 5.67 −0.20 2.53
MLE DR −1.43 7.45 −0.31 3.53 −0.53 6.95 −0.14 2.96
CBPS DR −1.58 6.63 −0.39 3.11 −0.55 6.18 −0.14 2.79
Calibrated weighting DR −1.78 6.15 −0.45 2.81 −0.64 5.74 −0.17 2.56
Entropy balancing DR −3.68 6.86 −2.72 3.79 −2.13 5.92 −1.67 2.94
True propensity score DR −1.63 7.58 −0.30 3.71 −0.78 6.88 −0.22 3.15
Quadratic outcome model 1: misspecified PS model
Unweighted −6.95 9.03 −6.85 7.30 6.85 9.42 6.99 7.55
nDBW DR −1.89 6.17 −0.47 2.66 0.32 6.24 1.00 2.83
MLE DR 1.71 25.10 17.40 174.96 1.02 7.76 1.34 3.51
CBPS DR/BRDR −2.04 6.71 −0.09 3.13 1.32 7.02 1.21 3.21
Calibrated weighting DR −1.83 6.22 −0.43 2.73 0.65 6.30 1.07 2.87
Entropy balancing DR −3.63 6.87 −2.40 3.59 −0.95 6.30 −0.62 2.70
True propensity score DR −1.57 7.53 −0.27 3.68 −0.78 7.05 −0.23 3.11
Quadratic outcome model 2: correct PS model
Unweighted 6.75 9.34 6.93 7.52 −6.90 8.88 −6.88 7.33
nDBW DR −1.60 6.20 −0.39 2.69 −3.03 6.61 −0.71 2.86
MLE DR −1.11 7.63 −0.12 3.43 −1.53 9.63 −0.17 4.80
CBPS DR −1.33 6.87 −0.23 3.16 −1.75 7.36 −0.33 3.74
Calibrated weighting DR −1.50 6.38 −0.32 2.84 −2.10 6.51 −0.49 3.06
Entropy balancing DR −4.30 7.49 −3.42 4.36 −5.09 7.81 −4.02 4.86
True propensity score DR −1.26 7.52 −0.18 3.54 −1.87 10.22 −0.31 5.16
Quadratic outcome model 2: misspecified PS model
Unweighted 7.05 9.65 6.94 7.54 −7.00 9.00 −6.85 7.34
nDBW DR 4.31 8.24 5.18 6.03 −6.63 8.71 −4.70 5.38
MLE DR 10.72 31.50 26.53 186.73 −7.23 10.21 −6.63 7.37
CBPS DR/BRDR 5.69 9.57 6.97 7.83 −7.15 9.54 −7.01 7.61
Calibrated weighting DR 4.67 8.46 5.46 6.30 −6.40 8.63 −5.40 6.05
Entropy balancing DR 2.30 7.29 3.15 4.41 −9.16 10.71 −8.50 8.88
True propensity score DR −1.04 7.63 −0.25 3.47 −1.90 10.36 −0.31 5.24

Notes: This simulation compares the performance of various methods for estimating propensity scores and (inverse probability) weights by
investigating combinations of two versions of the true outcome model (Quadratic 1 and 2) and two versions of coefficients for the propensity
score model (type A and B) with the two different numbers of observations (n = 200 and n = 1000). For each estimation method, I use two
propensity score model specifications (correct and misspecified) and report the bias and RMSE for each in the table.
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demarcation line is drawn at random only locally, which leaves some imbalance in the confoun-
ders between municipalities with high (the Vichy zone) and low (the German zone) levels of pol-
itical devolution distant from the demarcation line.

To address this issue, I employ the nDBW DR estimator, and compare the results with the
MLE DR, calibrated weighting DR, CBPS DR, entropy balancing DR, and the unweighted
difference-in-means estimators. Following Ferwerda and Miller (2014), I construct a propensity
score model with the following variables: the distance from the demarcation line, local state cap-
acity (Population from the 1936 census, the distance to the nearest train station, an index variable
indicating whether a municipality possessed a telephone bureau, a telegraph station, or a post
office in 1939), forest cover and urbanization (the number of actively farmed hectares), the rug-
gedness of terrain (the mean and standard deviation of the elevation), and the political ideology
(leftist and rightist vote shares in the 1936 election).

With these methods, I compare the occurrence of sabotage events, which counts all attacks
against infrastructure (largely railroad and communications), between the treatment
(German-zone) and control (Vichy-zone) municipalities within some pre-specified bandwidths

Table 4. Simulation results: exponential outcome models

Type A PS coefficients Type B PS coefficients

n = 200 n = 1000 n = 200 n = 1000

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Exponential outcome model 1: correct PS model
Unweighted −14.23 17.95 −14.34 15.16 14.79 19.57 14.41 15.45
nDBW DR −3.58 10.77 −0.94 5.06 −1.10 10.49 −0.32 4.81
MLE DR −2.44 13.31 −0.58 6.69 −0.58 12.93 −0.22 5.52
CBPS DR −2.64 11.91 −0.75 5.85 −0.67 11.60 −0.22 5.21
Calibrated weighting DR −2.94 10.97 −0.86 5.31 −0.88 10.69 −0.28 4.82
Entropy balancing DR −5.56 11.72 −4.10 6.35 −2.60 10.61 −2.05 4.96
True propensity score DR −2.67 13.96 −0.55 6.98 −0.85 13.00 −0.31 5.90
Exponential outcome model 1: misspecified PS model
Unweighted −14.52 18.28 −14.28 15.09 14.28 18.98 14.47 15.48
nDBW DR −5.13 11.96 −2.63 5.88 2.05 11.98 2.78 5.88
MLE DR 0.81 61.38 45.24 601.02 3.69 14.97 4.11 7.91
CBPS DR/BRDR −5.84 13.06 −2.35 6.95 4.23 13.75 3.96 6.94
Calibrated weighting DR −5.15 12.06 −2.62 6.04 2.61 12.17 3.17 6.08
Entropy balancing DR −7.48 13.07 −5.40 7.52 0.83 11.72 1.23 5.15
True propensity score DR −2.69 13.86 −0.47 7.26 −0.99 13.08 −0.34 5.91
Exponential outcome model 2: correct PS model
Unweighted 14.03 18.73 14.34 15.41 −14.39 18.03 −14.31 15.13
nDBW DR −2.85 11.43 −0.77 5.09 −5.32 12.05 −1.41 5.48
MLE DR −1.91 14.22 −0.20 6.55 −2.77 17.88 −0.33 9.64
CBPS DR −2.35 12.78 −0.42 6.00 −3.17 13.59 −0.69 7.28
Calibrated weighting DR −2.67 11.79 −0.60 5.40 −3.78 12.00 −1.00 5.95
Entropy balancing DR −7.04 13.28 −5.60 7.53 −8.70 13.92 −6.93 8.60
True propensity score DR −2.06 14.14 −0.31 6.79 −3.27 19.39 −0.55 10.54
Exponential outcome model 2: misspecified PS model
Unweighted 14.67 19.55 14.42 15.51 −14.46 18.11 −14.24 15.12
nDBW DR 7.97 15.57 9.73 11.41 −11.74 15.76 −8.50 9.80
MLE DR 20.04 59.54 49.55 355.21 −13.17 18.47 −12.22 13.54
CBPS DR/BRDR 10.71 18.34 13.09 14.81 −13.05 17.38 −12.94 14.02
Calibrated weighting DR 8.62 16.01 10.26 11.93 −11.35 15.56 −9.81 11.04
Entropy balancing DR 4.84 14.05 6.36 8.68 −16.36 19.28 −15.34 16.07
True propensity score DR −1.59 14.40 −0.43 6.71 −3.20 19.84 −0.49 10.52

Notes: This simulation compares the performance of various methods for estimating propensity scores and (inverse probability) weights by
investigating combinations of two versions of the true outcome model (Exponential 1 and 2) and two versions of coefficients for the
propensity score model (type A and B) with the two different numbers of observations (n = 200 and n = 1000). For each estimation method, I
use two propensity score model specifications (correct and misspecified) and report the bias and RMSE for each in the table.
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of the distance from the demarcation line (Ferwerda and Miller, 2014). To examine whether the
effects are observed only locally near the demarcation line or not, I use rolling windows of 15 km,
where municipalities within each of 0–15, 2.5–17.5, …,20–35 km from the demarcation line are
compared. I denote them by the upper limit: e.g., the results for the municipalities that are 20 km
distant from the demarcation line indicate results for those within 5–20 km distant from the line.

6.1 Bias due to imbalance in multivariate covariate distribution

While bias induced by multivariate distributional imbalance is difficult to evaluate, an upper
bound of bias can be estimated by the kernel technique (Hazlett, 2020). I use this upper
bound to compare the performance of various methods.

Figure 5 presents the upper bounds of bias due to multivariate distributional imbalance for the pro-
posed (shown in red) and other estimators. Those for the calibrated weighting for the distance larger
than 30 km are missing because the weights cannot be estimated due to the convergence issue. As the
distance from the demarcation line increases, bias due to multivariate distributional imbalance
becomes severe, but the proposed estimator mitigates the bias more effectively than the others.

6.2 Results

The results are presented in Figure 6, and the details are shown in Supplementary
Material G. The left panel presents point estimates of the ATE for the proposed (shown in red)

Figure 4. Simulation results: Bias and RMSE with misspecified propensity score models
Notes: This figure compares the performance of the DBW DR estimator (x-axis) with the calibrated weighting DR (circles),
CBPS DR (triangles), and entropy balancing DR (squares) estimators (y-axis) in terms of the absolute bias (left panel) and
RMSE (right panel). Those above the diagonal line indicate that the DBW DR works better than each of these estimators
and those below indicate the opposite.
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Figure 5. Upper bounds of bias
due to distributional imbalance
for various methods,
Notes: As the distance from the
demarcation line increases, bias
due to multivariate distributional
imbalance becomes severe, but
the proposed estimator mitigates
it more effectively than the others.

Figure 6. Political devolution decreases resistance activities only near the demarcation line
Notes: The left panel presents the ATE estimates by various estimators, diverging as the distance from the demarcation line
increases. This divergence is consistent with the estimated upper bounds of bias shown in Figure 5. The right panel pre-
sents the ATE estimates and their standard errors estimated by the nDBW DR estimator, which demonstrates that the treat-
ment effects decrease steeply toward zero as the distance from the demarcation line increases.
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and other estimators, which diverge when the distance exceeds 25 km. Estimates by the other
estimators than the proposed and entropy balancing estimators show unnatural U-shaped effects
fluctuating sharply.2 These results are consistent with the upper bound of the bias shown in
Figure 5.

Why do these estimators provide such different estimates? The key is multivariate distribu-
tional imbalance. To examine the distribution balance obtained by these estimators, I conduct
the following analysis. First, to represent a possibly complex function of covariates, I prepared
the constitutive terms, their squared terms, and all the first-order interactions. Then, to select
relevant terms influencing potential outcomes, I estimated outcome models using LASSO and
selected terms with non-zero coefficients. This procedure selected sixteen terms out of 54
terms as relevant, of which four were squared terms and nine were interactions, implying that
the outcome model consists of a complex function of covariates, highlighting the importance
of the distribution balance. Finally, I calculated the absolute mean difference for these selected
terms.

Figure 7 presents the results for the treated municipalities with a 20–35 km distance from the
demarcation line as an illustration. The proposed estimator (circles) attains better balance than
the CBPS estimator (triangles) in all but two terms while avoiding large imbalances unlike the
entropy balancing estimator (squares). These results confirm the superiority of the proposed
method in the distribution balance.

Figure 7. Distribution balance by various methods.

2The estimates of the calibrated weighting for the distance larger than 30 km are not shown because the weights cannot be
estimated due to the convergence issue.
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The right panel of Figure 6 presents the ATE estimates estimated by the nDBW DR estimator
and their jack-knife standard errors, which demonstrate that the treatment effects decrease steeply
toward zero as the distance from the demarcation line increases. The decreasing effect indicates
that political devolution reduces resistance activities only near the demarcation line, which raises
concern about the spill-over effects that the resistance operating from the Vichy zone increases
sabotage events in the German zone. This result suggests the possibility of the contamination
of the treatment effects by spill-over effects.

7. Conclusions
The IPW estimators are widely utilized to address missing data problems including causal infer-
ence. However, their practical application is susceptible to bias due to propensity score model
misspecification. In response, existing studies proposed various methods balancing some
moments (or kernels) of observed covariates (Hainmueller, 2012; Imai and Ratkovic, 2014;
Vermeulen and Vansteelandt, 2015; Zubizarreta, 2015; Chan et al., 2016; Wong and Chan,
2017; Zhao, 2019; Tan, 2020; Wang and Zubizarreta, 2020), but specifying the moment condi-
tions remains a formidable task because it requires knowledge of the true outcome model
(Zubizarreta, 2015; Zhao and Percival, 2017; Zhao, 2019; Fan et al., 2021).

This study proposes the distribution balancing weighting, which mitigates bias and controls
the MSE by minimizing their upper bounds. These goals are achieved by balancing covariate dis-
tribution through minimizing the KL divergence between the true and estimated weights,
inspired by the quasi MLE with misspecified models (Akaike, 1973; White, 1982). The proposed
method has several attractive properties as demonstrated in this study.

Finally, I show some future directions for the improvement and the application of the pro-
posed method. First, the key idea of the distribution balancing weighting is to minimize the sta-
tistics measuring the discrepancy between the true and estimated weights. This idea may also
apply to recently proposed machine learning techniques for propensity score estimation, such
as the decision tree, random forest, and generalized random forest. Second, the proposed method
may be useful in other missing data problems such as mediation analysis, causal inference with
time-series cross-section data, and continuous treatment cases. I am currently exploring these
potential directions.
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