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The main object of this paper is to give an explicit object in the
study of projective covers in the category of compact Hausdorff spaces
and continuous maps studied in [2] and [5]. Let ¢ : K—— BX be a
projective cover of the Stone-Cech compac:ification BX of a completely
regular Hausdorff space X. Here, it will be shown that the maximal
ideal space endowed with the Stone topology of the maximal ring of
quotients of the ring C(X) of all real valued continuous functions on
X is homeomorphic to K.
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his help and for many valuable suggestions.

1. For a completely regular Hausdorff space E, let O(E) be
its topology, i.e., the collection of its oper. sets, and A(L) be the
space of maximal filters M C O(E) whose topology is generated by
the set /\W(E) ={M | WeM, Me A(E)} for each W ¢ O(E). It is

known in [2] that A(E) is an extremally disconnected compact
Hausdorff space. Moreover, as a particular case of [2, Proposition 3],
if E 1is compact then the mapping limE : A(E) — E which assigns

to each M € A(E) its limit is a projective cover of E in the category
of all compact Hausdorff spaces and their continuous mappings.

LEMMA 1. Let X and Y be topological spaces such that X
is a dense subspace of Y. Then A({Y) is homeomorphic to /(X)
under the mapping M' — M!' [X, M' € A(Y).

Proof. Evidently M'|X is a filter in O(X). To show M!'|X
is maximal, let M D M!' [X be a filter in O(X). Take U € 4, then
UNV # P forall VeM |X. Let U=U'NX, V=V'NZK
where U' € O(Y) and V' e M'. Thenalso U'N V' # @ for all
V' e M'. The maximality of M' implies that U' € M' and hence
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UeM'|X, i.e., M = M'|[X. Clearly the mapping M' — M' |X is
one to one, since M' # M'" implies M' IX # M"IX. Now we show
this mapping is onto. For any M ¢ A(X), define a set

M# = {U' € O(Y)|U' N X eM}. Clearly § § M* and U' N V'e Mx
whenever U', V' € M*. Let U' ¢ M* and U' € W', W' ¢ O(Y).
Then W' = U' U W', and hence W' N X =(U' N X) U (W' N X);
thus U' N X € W' N X and hence W' N X e M, i.e., W' e M*.
Hence M* is a filter in O(Y). To show that M* is maximal, let

M' O M* be a filter in O(Y). Take any member U' e M', then

U' N V' # 0 forall V'e M*. Hence (U' 1 X) N(V' N X) # 0§ for
all V' e M*., In particular, (U' N X) N V # ¢ for all V € M; the
maximality implies that U' N X € M. Thus U' € M*, i.e., M' = M#*,
and clearly M*|X = M. Hence the mapping M' — M' [X is onto.

Finally, since /\W(YHX = /\W n X(X) for W € O(Y) where

/\W(Y)IX =4f {m XIM' € /\W(Y)} , the mapping is a homeomorphism.

Notation. For a topological space E, I‘E, IE and CE will
denote the closure operator, the interior operator and the complement
respectively with respect to the space E.

LEMMA 2. For any M ¢ A(X), if U eM, then

=1
M e Iim U).

r/\(x)l [SX( )

Proof. Let W be any member of M; then U N W # 6, and

/\W(X) is an open neighborhood of M. ILet a € U {1 W. Take a member

N in A(X) which converges to the point a. Then every member of N
intersects with W. Since N is a maximal filter, it contains W, i.e.,
N is a member of /\W(X). On the other hand N converges to the point

a of U, hence N e Iim;;;(U). Thus we have A (X) N nmé;(U) £ 9.

LEMMA 3. Let ¢: K—— BX be a projective cover in the category
of compact Hausdorff spaces and continuous mappings. Then for each

-1
dense subset D of X, ¢ (D) is dense in K.

Proof. Note that D is also dense in BX. Since K is a compact

-1
Hausdorff space, I‘K¢ (D) is also a compact subset of K. Since ¢ is
-1 -1 -1 . .
onto, D = ¢(¢ (D))ccb(rch (D)). Hence ¢(rK¢ (D)) is dense in pX.
But ¢(I‘K¢_1(D)) is compact, hence is closed in BX, i.e.,

-1 -1
¢(FK¢ (D)) = pX. Since K is the projective cover, T ¢ (D) can

328

https://doi.org/10.4153/CMB-1969-041-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-041-9

not be a proper closed subset of K, i.e., I‘ch-i(D) = K.

It is well known in [4, p.96] that a compact space K is
extremally disconnected if and only if K = BS for every dense
subspace S of K. Hence we have the following:

COROLLARY. K = B¢ (D) for each dense subset D of X.

2. Let O be a filter base of dense subsets of X. Then the
system (C*(D))DE 9’ where * denotes the boundedness, is a direct

system with respect to the restriction homomorphisms f — le,
feC*(E), D E in 8 . Let Q@(X) be the direct limit of the

system (C*(D))Dﬂg with (¢D)D619 as a family of the limit

homomorphisms [1]. It is evident that, for a member D of 8, a
function f € C*(D) defines a continuous function f o ¢ on

¢-1(D). Since K = ﬁcb-i(D), the function f o ¢ has a unique
%

f
and f € C*(D) for some D € . Define a mapping QE(X) — C(K)

continuous extension f to K. Iet u, € QE(X) with ue = ¢D(f)

by uf —— }‘ Clearly this mapping is well defined and a norm preserving
monomorphism. We also note that, for each maximal ideal M in Q§(X),
Q:S(X)/M =R [3, p.39]. Finally, let m(Qﬁ(X)) be the set of all maximal
ideals in Qz(x). For each u € QE(X), define a real-valued function Q
on m(Q;ng(X)) by GM) =u+ MeR, Me m(QiS(X)). The previous
lemmas are now used to obtain the main result.

PROPOSITION 4. If & contains all disconnected dense open
subsets of X, then the maximal ideal space ]'n(Q:;;(X)) endowed with

the weak topology determined by the functions 4, u € Qg(X) is

homeomorphic to K.

™~
Proof. Since the mapping u, — { is a norm preserving

monomorphism of Q;G(X) into C(é), it is enough to show that the
family of all }' separates the points of K. Take any a, b in K with
a # b. Since A(BX) = A (X) (: K), we may assume that a, b are
members of A(X), and hence ¢ = HmBX' Since a # b, there exist
open sets U and V in BX suchthat U NV = 9 and U N X ¢€a,

V N X eb. Then by Lemma 2, a ¢ I‘K¢-1(U N X) and
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-1
b e rKd: (V. N X). Let

D=(UNX)Uu((Xn IfXCBXU);

then clearly D € § ; and define a function f on D by

0 if xeU N X
f(x) =

1 if e X I . C .
if x nBXBXU

~

Then f ¢ Cx(D). Thus f o & has an extension f on K, and

’f(a) = Ilim (f o ¢)(z) = O,
z—>a

z e¢-1(U N x)

e

(b) = Iim (f o ¢)(z) = 1.

z—>b
ze¢-1(V n x)

~
Thus the family of f separates the points of K. By the Stone-
Weierstrass theorem the proposition holds.

Let QB (X) be the direct limit of the direct system (C(D))D <o

with respect to the homomorphisms f -———»f]D, feC(E), DS E in §.
It is known in [3, p.40] that the Stone topology on the maximal ideal
space of Q:;(X) coincides with the weak topology, and moreover the

maximal ideal space of QQ(X) with the Stone topology is homeomorphic
to that of Q;(X). Hence we have the following:

COROLLARY. The maximal ideal space of the maximal ring of
quotients of C(X) endowed with the Stone topology is homeomorphic to K.
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