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1. Preliminaries
We shall start by recalling the definition and some basic properties of a

convexity space; a topological convexity space (tcs) will then be a convexity
space together with an admissible topology, and will be a generalisation of a
topological vector space (tvs). After showing that the usual tvs results con-
necting the linear and topological properties extend to this new setting we then
prove a form of the Krein-Milman theorem in a tcs.

Let J b e a non-empty set, let a, b, ... be elements of X, and let A, B, ...
be subsets of X. We do not distinguish between a point of X and the singleton
subset which it defines. Thus in X the notation e is redundant and is replaced
by <=. Also we write AxB for A meets B or AnB / 0. A join on A" is a
mapping •: Xx X->2X, i.e. it associates with each ordered pair (a, b) of elements
of A' a subset a-b (or simply ab) of X. Given a join and a, bcX we define
a/b = {c<= X: acbc). The operations • and / can be extended to subsets of X
in the obvious way, for example AB = (J ab. In particular for a, b, c<=. X,

a{bc) is a subset of X. Note also that A xBC if and only if A/BxC.

Definition. A pair (X, •) is a convexity space if • is a join on X satisfying

(i) ab ¥= 0, alb # 0 ;
(ii) aa = a = aja;

(iii) a(bc) = (ab)c;
(iv) a/bxc/d=>adxbc;

for all a, b, c, dc X.

The most familiar example of a convexity space is a real vector space with
join defined by ab = {Xa + (l — X)b: O<A<1}, and other examples are given in
(2). If (X, •) and (Y, •) are convexity spaces and a join is defined on Xx Y
by (a, b).(c, d) = a.cxb.d (a, ccX; b, d<= Y), then it is easily verified that this
product space is a convexity space. Although the above axioms are algebraic
in nature they have a strong geometric motivation based on the vector space
example. The properties of joins are discussed in more detail in (2), (5) and
some consequences of these axioms are given in (1), (3). We have included here
only those properties necessary for our subsequent study of topologies on
(X, •). One consequence of the axiom aa = a = a/a is that a<=-ab if and only
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if a = b. Thus ab is to be thought of as the relative open line segment joining
a to b.

A set A is convex if whenever a,b<=-A it follows that ab c A, or more succinctly
ifAA<=A. Similarly, a set A is star-shapedfrom a <= A if aAc A. ThekernelA*
of A is the set of points in A from which it is star-shaped, i.e.

A* = {a<=A: aAcA}.

The core A and linear access A of A are defined by

A = {a : VWcczafe with ac<=.A}, A = {a :3b with afec4}.

Some easy consequences of the axioms are that ,45 = BA, (A/B)C<=.AC/B and
(A/B)/C = A/BC. In particular if ,4 and 5 are convex then so are AB, A/B and
ABKJB. Also any intersection of convex sets is convex. The intersection of all
convex sets containing a set A is called its convex hull and is denoted by \A\.
Full details of these results are given in (2), (5). The concepts of core and linear
access are familiar in a vector space and can be found, for example, in (8).

2. Topologies on (X, •)

Definition. A topological convexity space (X, •, x) is a convexity space
(X, •) together with a topology t o n Z satisfying

(i) aczab for all a, bczX;

(ii) if abx Ue x then there exist V, We x with aczV, b<=.W and such that
a'b'x U whenever a' cV,b'cz W;

(iii) if a/bxUe T then there exist V, We x with a<= V, b<=.W and such that
a'/b' x U whenever a' <=V,b'<= W.

We mentioned earlier that a real vector space was an example of a convexity
space. We now show that if T is a topology making a vector space .Y into a tvs,
then (X, •, T) is a tcs. We verify (i)-(ii) of the above definition:

(i) Let a, b(=X and acU ex. Then by the continuity of the function R-^X
given by kr^ka+(\-X)b it follows that Aa+(l-A)b<=U for some A, O<A<1.
Thus abxU and acab.

(ii) If abttUex then Aa + (l-2)6c:f7 for some I, O<A<1. Thus by the
continuity of the function Xx X->X given by (x, y)-±Xx + (\— X)y there exist
V, We T with a<= V, bcz Wand such that a!a V, V<=. Wimply Id + (1 -X)b'a U
and a'b'« U. ((iii) similarly.)

Given two tcs' their product space together with their product topology is
a tcs. So, in particular, our theory incorporates the non-trivial extension to
products of tvs'.

Theorem 1. If A is open in a tcs, then so are AB and A/B.

Proof. Let (X, •, T) be a tcs with A, Bex and let c<=AB. Then c<=Ab
for some b<=B and c/bxAe x. Thus there exist V, We x with c c V, bcW
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and such that c'/b'xA whenever c'czV, b'<=W. In particular, c'/bxA and
c'cAb for each c'<=V. Thus c<= VcAbcAB and ccz(AB)°. It follows that
ABa(AB)0 and so AB e r.

Similarly, if d<=.A\B then dcA/b and dbxAei for some 6cB. Hence
there exist V, Wet with d<=V, b<=W and such that d'b'xA whenever
d'cV, b'czW. In particular, d'bxA and d'cA/b for each cf'cK'. Thus
rfc V'cA/bcA/B and dc(A/B)°. It follows that A/B<=(A/B)° and so .4/5e T
as required.

Now given (X, •) we shall construct x on X which makes (X, •, T) a tcs.

Lemma. Given a convexity space (X, •) let a. consist of those convex subsets A
of X with A = A. Then

(i) A e a a«rf a c Z=>fl̂  6 a c«J a/̂ 4 £ a;

(ii) .4, 5 e <x=>AnB e a.

Proof, (i) Let ABO., ac X and b<=.aA (see figure). We show that be aA.
For given fcj' there exist cab/anA = b/anA and d'czcd with cd'aA. But
then b/axd'/d (in c) and so there exists b'abdnad'. Thus

b'b<=(ac)(ad') =
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and for each dczX we have exhibited b'cbd with bb'<=.aA. It follows that

b<=.aA and aAaaA. Since a and A are convex and aA<=aA it follows that a A

is convex with aA = aA and s o a i e a as required.

In a similar way we show that given Ae a, a c l a n d b<= a/4 then for each
d<=X there exists b'<=bd with bb'<=alA. For there exist cca/bnA = a/br\A,
d'ccfd and d"cd'cnA<=(c/d)cnAccldr\A. But then acbcabdd" and so
there exists b'c=a/d"nbd. Hence by the convexity of A (and a/4)

bb' <=(a/d")(a/c)<=(a/A)(a/A) = a/4

as required. Thus, as in the first part of the proof, ajA e a.

(ii) If A, Be a then clearly Ac\B is convex and AnBcAnB, so we simply

show that AoBcAnB. Let aczAnB and bczX. Then we construct caab
with acc4n.B. For aczAnB = Ar\B and so there exist cl5 c2cab with
ctCicz4 and ac2cB. Thus c^laTac^a (in Z>) and so aclxac2 (in c, say). Hence

:a(ac1)na(ac2) = flcx n a c 2 c 4 n 5 as required.

Theorem 2. Ler (JT, •) be a convexity space, let a consist of those convex
subsets A of X with A = A, and let fi consist of all unions of members of a. Then
(X, •, P) is a tcs.

Proof. It is clear that 0 = 0 , X = X and 0 , A'eacjS. Also if 4 , 5 e a
then by the lemma /4ni? e a. It follows that /? is a topology on Jf. To verify
that (A', •, P) is a tcs we prove properties (i)-(iii) of the definition:

(i) Given a, b<=X and a c C / e a it follows that acU = U and abxU.
Hence a<=ab.

(ii) If abxUe /? then for some U' e a with U'cU there exists ccabnU'.
Let (/ca/c, e<=6/c, F = «"£/' and fF = eC/'. Then, by the Lemma, V, We a c £ ,
and aczdcczdU' = V, b<=W. Also ccabcz(dc)(ec) = (de)c and so cede and
ae« V. Hence if a'<=• V = dU' and b' c W = eU', then by the convexity of
U'

U'xdecz(a'/U'Xb'IU')<=a'b'IU'U' = a'b'jU'.

Thus a'V xU'U' = U'<=U and a'b'« C/ as required.

(iii) Similarly, given a, b<=X and £/ e /? with a/6 « £/ there exists U'<=U with
[/' e a and ccza/bnU'. Let a"<=aZ>, V = a*£/' and ^ = d/U'. Then, as in the
Lemma, V, We<x<=p. Also a/civ dja (in Z>) whence a = aaxdc and a<=dc<=V.
Similarly daab<=dcb, d<=cb and bczd/ccW. Finally, if a ' c F = a*£/' and
b'<=W = d/U'then dc(a'/U')nb'U'v/hence a'/b'xU'U' = U'cU as required.

In the case when X is a vector space, j? is the familiar convex core topology
(4). Note that all the linear topologies discussed in (4), (7) can be extended to
a convexity space.
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A tcs (X, •, T) is called locally star-shaped if given aczUex there exists
Vex with aczV* (i.e. V star-shaped from a) and acz Vc U. Similarly {X, •, x)
is locally convex if given aczUex there exists Vex with V convex and a <= V<= U.
Further (X, •, x) is strongly convex if given A compact, convex and A c U e x
there exists Vex with V convex and A a Vc U. It is clear that strongly convex
=>locally convex=>locally star-shaped. Also, a locally convex tvs is strongly
convex. For if A is compact, convex and contained in an open set Urn a locally
convex tcs, then Uc is closed and disjoint from A. Hence there exists a convex
open set B containing the origin with (A + B)n(Uc + B) = 0 (6, page 65). It
follows that A + B is convex and open with A c A+B c U. Also, the product of
locally convex tvs' is strongly convex.

The tcs (X, •, P) constructed above is clearly locally convex since ft has a
basis of convex sets. Furthermore, we shall see in the next section that ft is the
finest locally convex topology making (X, •) into a tcs.

3. Linear properties
Unless otherwise stated, the following results are in a tcs (X, •, T). The

equivalent results in a tvs can be found, for example, in (8).

Theorem 3. If A is Convex then AA° = A0.

Proof. Let A be convex, acz A, bczA0 and assume that abx(A°)c (i.e. the
complement of A0). Then there exists cczabn{A°)c and c/axA° e x. Hence
there exist V, Wex with cczV, acW and such that c'/a'xA° whenever
c'<=• V, a'<=W. Since cc{A°)c it follows that VxAc, and since aczA it follows
that WxA. Thus, by the convexity of A, Ac/A&A°cA and AcxAA = A
which is a contradiction. Hence aczA, bcA° imply abczA0 and so AA°cA°.
Also A°<=A°A°c:AA0 and the result follows.

Corollary. If A is convex then so is A0.

Proof. If A is convex then A°A°cAA° = A0.

Theorem"4. If A is convex then so is A.

Proof. Let a, be A, c cab and ccUex. We shall show that UxA whence
cc A. For abxU and so there exist V, We x with acV, bcW and such that
a'b'« U whenever a ' c ^ ' c W . Now since a, bcA and A is convex it follows
that VxA, WxA and UxAA = A. Thus cc:A, abczA, AAcA and A is
convex.

Theorem 5. In a locally star-shaped tcs A0 c A and AczA.
Proof. If acA° in a locally star-shaped space then there exists Uex with

acz U<zA° and aa U*. Now for any ftclwe have aczab and so there exists
ccabriU. But then acczU*U<=U<=.A, a<=A and A°c=A as required.

Secondly, if acz A then abczA for some b. Hence acz abcz A and Acz A as
required.
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Theorem 6. If A is convex and A0 # 0 in a locally star-shaped tcs then

Proof. Let A be convex and acA° in a locally star-shaped tcs. Then we
show Ac A0 and AczA°nA, which together with Theorem 5 gives the required
results. If be: A and b' a b/a then bb'xA (in c, say). Thus cczbb'c b(b/a) <= b/a
and by Theorem 3, b<=acczA°A<=A°A = A0. Hence Ac A0.

Secondly, if be: A then again by Theorem 3, aba A0 A = A0 and

bcabnabe:AonA.
Hence AcA°nA.

Theorem 7. If(X, •) is a convexity space then /? is the finest topology making
it into a locally convex tcs, i.e. if(X, •, i) is a locally convex tcs then zcfl.

Proof. By Theorem 2, (X, •, /?) is a locally convex tcs. Now if (X, •, T)
is another such and U e T, then for each acU there exists Vaex with Va convex

and aaVa<=:U. But then by Theorem 5, Va = F j c K . c Va and so Va = Va.
Thus Va e a, U = (J Kae/? and rcj? as required.

a<=U

4. Faces and the Krein-Milman theorem

Here we only deal with the separation properties and facial structure of
convex sets insomuch that they concern the Krein-Milman theorem in a tcs.
Full details of separation in a convexity space can be found in (3) and publica-
tions on faces and on finite-dimensional results are under preparation.

If F, A are convex in {X, •) then FcA is a. face of A if whenever a, be: A and
Fxab it follows that a, b<=F. If a is a face of A then a is called an extreme
point of A and the collection of all such is the profiile A of A. It is easy to check
that if G is a face of F and F is a face of A then G is a face of A. For if G <= Fa A,
x, ye:A and xyxG, then xyxF and, since F is a face of A, xye:F. Thus
x, y e: F, xy « G and, since G is a face of F, x, y <= <J. Also if Ft (i e /) is a family
of faces of ^4, then f] Ff is a face of A. For if x, ye: A and xyxF = (") Ff then

xyxFt for each /, ^, y c F f for each / and x, ye:F.

Lemma. Let {X, •, T) be a strongly convex tcs with % Hausdorff, let A be
compact, convex and let B be closed with 0 # Be: A, B ^A. Then there exists
a non-empty closed face G of A with GnB = 0. Further if B is a singleton then
the result holds in a locally convex space.

Proof. We prove the part of the lemma concerning strongly convex spaces,
the proof of the remaining part being very similar. Let (X, • ,i), A and B be
as stated and let ae:A\B. Then since ac is open there is a Ue x with U convex
and BczUccf. Consider the non-empty collection °U of all convex open sets
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containing B but not A, and partially order % by inclusion. Then any totally-
ordered subfamily °UQ of "U has an upper bound, namely their union, since by
compactness A <£ \J U. Hence by Zorn's Lemma % has a maximal member

Uo, say. Let G = AnUc
0(=£ 0 ) . We shall show that G is the required face of A.

Firstly, G is convex. For if c, da G with cd<£ G then there exists eccdn Uo.
Then choosing c'<=c/e and putting V = UOKJC'UO gives V convex (Section 1),
open (Theorem 1), containing B, not containing A (d<=.A\V) and properly
containing Uo (c<= U'\U0). This contradicts the maximality of Uo in % and so
G is convex as claimed.

Next, G is a face of A. For if a, b<=A and caabnG then we claim that
a, i c G . If say, a<£G then a<=U0 and by the convexity of C/o and the
fact that CCUQ it follows that b c JJC

O. But then in a similar fashion to the above
U0KjbU0 e fy contradicts the maximality of Uo. Thus G is a face of A.

Finally G is closed and GnB = 0 since i/0 6
 aU. Thus G is the required

face of A.

Theorem 8. If A is compact and convex with non-empty closed face F in a
locally convex Hausdorff tcs then FxA.

Proof. Note firstly that if Fo is a minimal such face of A then Fo is a single-
ton. For if ac:F0, a # Fo, then by the second part of the Lemma applied to
(icF0 there exists a non-empty closed face G of Fo with a<£ G and G / Fo.
But then G is a non-empty closed face of A properly contained in Fo, and Fo is
not minimal.

Now let F be as stated and let & be the collection of all families of non-
empty closed faces of A satisfying

(a) Fe&;

(b) Fu ...,Fke^=>F^...nFk # 0 .

Then IF is non-empty since the family consisting of F alone is in J*\ Partially-
order J*" by inclusion of the families and observe that each totally-ordered sub-
collection of ^ has an upper bound (namely its family-wise union). Thus by
Zorn's Lemma ^ has a maximal member J^o* saY- Let Fo = f] B. Then,

Be 5=0

by the compactness of A, Fo # 0 and hence it is a minimal non-empty closed
face of A. Thus by our earlier comments Fo = a<=A and by construction
F0<=F. Thus Fx A as required.

Theorem 9. (Krein-Milman). If A is compact and convex in a strongly convex

Hausdorff tcs then A = [A] {i.e. the closure of the convex hull of the profile of A).

Proof. Let B = [^] c A = A. Then, if B # A, by the Lemma there exists a
non-empty closed face G of A with GnB = 0. But then by Theorem 8

GxAcB which is a contradiction. Thus A = B = [A~] as required.
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