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1. Preliminaries

We shall start by recalling the definition and some basic properties of a
convexity space; a topological convexity space (tcs) will then be a convexity
space together with an admissible topology, and will be a generalisation of a
topological vector space (tvs). After showing that the usual tvs results con-
necting the linear and topological properties extend to this new setting we then
prove a form of the Krein-Milman theorem in a tcs.

Let X be a non-empty set, let a, b, ... be elements of X, and let A, B, ...
be subsets of X. We do not distinguish between a point of X and the singleton
subset which it defines. Thus in X the notation € is redundant and is replaced
by =. Also we write A~B for A meets B or ANnB # (. A joinon Xis a
mapping - : X x X—2%, i.e. it associates with each ordered pair (a, b) of elements
of X a subset a-b (or simply ab) of X. Given a join and a, b= X we define
alb = {cc X: acbc}. The operations - and / can be extended to subsets of X
in the obvious way, for example AB = U ab. In particular for a, b, cc X,

acA
bcB

a(bc) is a subset of X. Note also that 4~ BC if and only if 4/Bx~C.
Definition. A pair (X, -) is a convexity space if - is a join on X satisfying
() ab# &, alb + &;
(ii) aa = a = aja;
(iii) a(bc) = (ab)c;
(iv) a/b=xc/d=ad~bc;
for all a, b, ¢, d= X.

The most familiar example of a convexity space is a real vector space with
join defined by ab = {la+(1—2)b: 0<A<1}, and other examples are given in
(2. If (X, -) and (Y, -) are convexity spaces and a join is defined on Xx Y
by (a, b).(c, d) = a.cxb.d(a,cc X; b,dc=Y), thenitis easily verified that this
product space is a convexity space. Although the above axioms are algebraic
in nature they have a strong geometric motivation based on the vector space
example. The properties of joins are discussed in more detail in (2), (5) and
some consequences of these axioms are given in (1), (3). We have included here
only those properties necessary for our subsequent study of topologies on
(X, ). One consequence of the axiom aa = a = a/a is that acab if and only
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if @ = b. Thus ab is to be thought of as the relative open line segment joining
atob.

A set A is convex if whenever a, b= A4 itfollows that ab< A, or more succinctly
if AAd<A. Similarly, a set A4 is star-shaped fromac Aif aAc A. The kernel A*
of A is the set of points in 4 from which it is star-shaped, i.e.

A* = {ac A: aAcA}.
The core A and linear access A of A are defined by

A = {a:Vbiccab with ac=4}, A = {a: 3b with abc 4}.

Some easy consequences of the axioms are that AB = BA, (4/B)Cc AC/B and
(A/B)/C = A/BC. In particular if 4 and B are convex then so are AB, A/B and
ABuUB. Also any intersection of convex sets is convex. The intersection of all
convex sets containing a set A is called its convex hull and is denoted by [4].
Full details of these resuits are given in (2), (5). The concepts of core and linear
access are familiar in a vector space and can be found, for example, in (8).

2. Topologies on (X, )

Definition. A topological convexity space (X, -, t) is a convexity space
(X, ) together with a topology = on X satisfying
(i) acab for all a, b= X;

(ii) if ab~ U € 7 then there exist V, We t with acV, b= W and such that
a'b’~ U wheneverd'cV, b’ W;

(iii) if a/b~ U € 7 then there exist V, W e t with acV, bc W and such that
a'lb’~Uwhenevera’'cV, b’ W.

We mentioned earlier that a real vector space was an example of a convexity
space. We now show that if 7 is a topology making a vector space X into a tvs,
then (X, -, 1) is a tcs. We verify (i)-(ii) of the above definition:

(i) Let g, bc X and acU e 1. Then by the continuity of the function R—»X
given by A—Aa+ (1— )b it follows that Aa+ (1 —A)b= U for some A, 0<i<].
Thus ab~ U and acab.

(ii) If ab~ U et then da+(1—A)b<=U for some 4, 0<i<l. Thus by the
continuity of the function X' x X— X given by (x, y)—Ax+(1—A)y there exist
V, WertwithacV,beWand such thata'cV, b’ cWimply o'+ (1 —A)b'<cU
and ¢'b’~U. ((iii) similarly.)

Given two tcs’ their product space together with their product topology is
a tcs. So, in particular, our theory incorporates the non-trivial extension to
products of tvs’.

Theorem 1. If A is open in a tcs, then so are AB and A[B.

Proof. Let (X, -, 1) be a tcs with 4, Bet and let cc4B. Then ccAb
for some b= B and c¢/bx~A € 1. Thus there exist ¥V, Wet with ccV, bc W
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and such that ¢’/b’x~ A whenever ¢'cV, b'<W. In particular, ¢'/b~A4 and
¢’ c Ab for each ¢/’cV. Thus cc VcAbc AB and cc(AB)°. It follows that
AB<(AB)° and so ABer.

Similarly, if d=A/B then dc A/b and db~A €1 for some b B. Hence
there exist V', W' et with deV’, bW’ and such that d'b’~ A whenever
dcV', bcW’'. In particular, d’b~A and d'<A[b for each d'cV’. Thus
dcV'cAlbc A|B and d<=(A/B)°. It follows that 4/B<(A4/B)° and so 4/Be 1
as required.

Now given (X, -) we shall construct T on X which makes (X, -, 7) a tcs.

Lemma. Given a convexity space (X, *) let a consist of those convex subsets A
of X with A = A. Then

(i) Aecaand ac X=>aA e o and a/A € a;
(il) A, Bea=AnBea.

Proof. (1) Let A ea, ac X and bcaAd (see figure). We show that be aA.
For given d< X there exist ccb/anAd = bjanA and d’' =cd with cd’<A. But
then b/axd’/d (in ¢) and so there exists &' cbdnad’. Thus

b'bc(ac)(ad’) = a(cd)zaA,
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and for each d= X we have exhibited b’ <bd with bb’—aAd. It follows that
bcc;l and a4 cg.;l. Since @ and A4 are convex and a’\/’i <aA it follows that a4

is convex with a4 = aA and so a4 €« as required.

In a similar way we show that given 4 € ¢, ac X and bca/A then for each
dc X there exists b’ =bd with bb’ —afA. For there exist cca/bnd = albn A4,
d'cc/d and d"cd'cnAc(c/d)cnAccldnA. But then acbccbdd” and so
there exists b’ =a/d”"nbd. Hence by the convexity of 4 (and a/A4)

bb’' =(a/d"Ya/c)=(alA)(a/A) = a/A
as required. Thus, as in the first part of the proof, a/4 € a.

(ii) If A, B € a then clearly 4~ B is convex and chnB, so we simply

show that AnB<AnB. Let ac AnB and b X. Then we construct c<ab
with accAnB. For acAnB = ANB and so there exist c,, c,cab with
ac,cA and ac,=B. Thus ¢,/axc,/a (in b) and so ac, ~ac, (in ¢, say). Hence
acca(ac,nac,)=a(ac)nalac,) = ac,nac,<=AnNB as required.

Theorem 2. Let (X, -) be a convexity space, let « consist of those convex
subsets A of X with A = A, and let B consist of all unions of members of a. Then
(X, -, B)is a tcs.

Proof. Itisclear that & = &f, X = X and &J, XeacpB. Alsoif 4, Bea
then by the lemma AnBea. It follows that f§ is a topology on X. To verify
that (X, -, p) is a tcs we prove properties (i)-(iii) of the definition:

(i) Given a, bc X and acU eu it follows that acU = U and abxU.
Hence acab.

(ii) If ab~ U € B then for some U’ € a with U’ U there exists ccabnU’.
Letdcalc, ecbfc, V = dU’ and W = eU’. Then, by the Lemma, V, We acp,
and acdccdU’' = V, bcW. Also ccabe(de)(ec) = (de)c and so cc=de and
dexU’. Hence if acV = dU’ and b'c W = eU’, then by the convexity of
Ul

U'~dec(a’'/UY)B'|UY<a'b’|/U'U =a'b’|U’".
Thus a'b’'~U'U’" = U'cU and a’b’'~ U as required.

(iii) Similarly, given a, b= X and U € § with a/b= U there exists U’ = U with
U' eaand ccalbnU’. Letdcab, V =dU’' and W = d/U’. Then, as in the
Lemma, V, Weacf. Also afcadla (in b) whence a = aaxdc and acdccV.
Similarly deabcdeb, decb and bodfccW. Finally, if a’cV = dU’ and
bW =d/U thendc(a'/U")nb" U’ whence d'[b' =~ U'U’ = U’ < U as required.

In the case when X is a vector space, f is the familiar convex core topology
(4). Note that all the linear topologies discussed in (4), (7) can be extended to
a convexity space.
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A tcs (X, -, 1) is called locally star-shaped if given ac U e 1 there exists
Vet with acV* (i.e. ¥V star-shaped from a) and ac V< U. Similarly (X, -, 7)
is locally convex if given ac U € 7 there exists V € T with ¥ convex and ac V< U.
Further (X, -, 7) is strongly convex if given 4 compact, convex and AcUert
there exists ¥V € T with ¥V convex and Ac V< U. 1t is clear that strongly convex
=locally convex=-locally star-shaped. Also, a locally convex tvs is strongly
convex. For if A is compact, convex and contained in an open set U in a locally
convex tcs, then U° is closed and disjoint from 4. Hence there exists a convex
open set B containing the origin with (4+B)n(U°+ B) = & (6, page 65). It
follows that 4+ B is convex and open with Ac A+ Bc U. Also, the product of
locally convex tvs’ is strongly convex.

The tcs (X, -, B) constructed above is clearly locally convex since § has a
basis of convex sets. Furthermore, we shall see in the next section that § is the
finest locally convex topology making (X, ) into a tcs.

3. Linear properties

Unless otherwise stated, the following results are in a tcs (X, -, 7). The
equivalent results in a tvs can be found, for example, in (8).

Theorem 3. If A is Convex then AA° = A°.

Proof. Let 4 be convex, ac A, b= A° and assume that ab~(4°)° (i.e. the
complement of A°). Then there exists ccabn(4°° and c/ax A% €t. Hence
there exist ¥, Wet with ccV, acW and such that c¢'/a’~A° whenever
ccV,a cW. Since cc(4°° it follows that ¥~ A, and since ac 4 it follows
that W~ A. Thus, by the convexity of 4, A/A~A%cA and A~ A4 = A
which is a contradiction. Hence ac 4, bc A® imply abc A° and so A4°< A°.
Also A°c A°A° <= AA° and the result follows.

Corollary. If A is convex then so is A°.
Proof. If A is convex then 4°4°c44° = A°.
Theorem 4. If A is convex then so is A.

Proof. Leta, bc A, ccaband ccUe . We shall show that Ua: A whence
ccA. For abx U and so there exist ¥, W et with ac ¥V, b W and such that
a'b’~Uwhenevera’'cV, b’ W. Now since a, bc A and A is convex it follows
that VA, Wx~A and Ux~AA = A. Thus cc A4, abc A, AA<A and A is
convex.

Theorem 5. In a locally star-shaped tcs A°c A and A< A.

Proof. If acA° in a locally star-shaped space then there exists U € t with
acUc A® and ac U*. Now for any bc X we have acab and so there exists
ccabnU. But then acc U*UcUc A4, ac A and A°c 4 as required.

Secondly, if ac 4 then ab<= A for some b. Hence acabc A and A< 4 as
required.
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Theorem 6. If A is convex and A° # & in a locally star-shaped tcs then

A=A=4and A° = 4.

Proof. Let 4 be convex and ac A°® in a locally star-shaped tcs. Then we
show A= A° and A<= A°n A, which together with Theorem 5 gives the required
results. If b= A and b’ cbja then bb’' ~ A (in ¢, say). Thus ccbb’ cb(b/a)cbla
and by Theorem 3, bcacc A°A=A°4 = A°. Hence Ac A°.

Secondly, if 5= 4 then again by Theorem 3, abc 4°4 = 4° and

—_— N\ _0 s
. bcabnabc A°NA.
Hence Ac A°nA.

Theorem 7. If (X, -) is a convexity space then B is the finest topology making
it into a locally convex tcs, i.e. if (X, -, 1) is a locally convex tcs then T f.

Proof. By Theorem 2, (X, -, p) is a locally convex tcs. Now if (X, -, 7)
is another such and U e 7, then for each a= U there exists V, € T with ¥, convex

and acV,cU. But then by Theorem 5, ¥V, = V2c I7ac V,and so V, = 17,,
Thus V,ea, U= () V,ep and T <p as required.

acU

4. Faces and the Krein-Milman theorem

Here we only deal with the separation properties and facial structure of
convex sets insomuch that they concern the Krein-Milman theorem in a tcs.
Full details of separation in a convexity space can be found in (3) and publica-
tions on faces and on finite-dimensional results are under preparation.

If F, A are convex in (X, -) then Fc A4 is a face of A if whenever a, b= A4 and
F=ab it follows that a, b F. If ais a face of A then g is called an extreme
point of A and the collection of all such is the profiile A of A. It is easy to check
thatif G is a face of Fand Fis a face of A then Gisafaceof 4. Forif GeFc A,
x, ycA and xyx~G, then xy~F and, since F is a face of 4, xycF. Thus
x,y<F, xy~G and, since G is aface of F, x, yc G. Alsoif F; (i) is a family
of faces of 4, then (") F,is a face of 4. Forif x, ycAand xy~F = (| F, then

iel iel
xy=~F; for each i, x, y= F; for each i and x, yc F.

Lemma. Let (X, -, 1) be a strongly convex tcs with © Hausdorff, let A be
compact, convex and let B be closed with (5 # B A, B #A. Then there exists
a non-empty closed face G of A with GnB = (J. Further if B is a singleton then
the result holds in a locally convex space.

Proof. We prove the part of the lemma concerning strongly convex spaces,
the proof of the remaining part being very similar. Let (X, -, 7), 4 and B be
as stated and let ac 4\B. Then since &° is open there is a U € T with U convex
and BcUca®. Consider the non-empty collection % of all convex open sets
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containing B but not A, and partially order % by inclusion. Then any totally-
ordered subfamily %, of % has an upper bound, namely their union, since by

compactness A¢ () U. Hence by Zorn’s Lemma % has a maximal member
Ue ‘7[0

Uy, say. Let G = AnU§(+# ). We shall show that G is the required face of A4.

Firstly, G is convex. For if ¢, d= G with cd¢ G then there exists ec cdnU,.
Then choosing ¢’ = ¢/e and putting U’ = Uyuc’'U, gives U’ convex (Section 1),
open (Theorem 1), containing B, not containing A (d=A\U’) and properly
containing U, (cc U'\U,). This contradicts the maximality of U, in # and so
G is convex as claimed.

Next, G is a face of 4. For if a, bc 4 and c<abnG then we claim that
a, bcG. If say, a¢G then acU, and by the convexity of U, and the
fact that c< U§ it follows that b< U§. But then in a similar fashion to the above
Uy,ubU, € % contradicts the maximality of U,. Thus G is a face of 4.

Finally G is closed and GAB = ¢ since Uye %. Thus G is the required
face of A.

Theorem 8. If A is compact and convex with non-empty closed face F in a
locally convex Hausdorff tcs then F~ A.

Proof. Note firstly that if F, is a minimal such face of 4 then F, is a single-
ton. For if ac F,, a # F,, then by the second part of the Lemma applied to
ac F, there exists a non-empty closed face G of F, with a# G and G # F,.
But then G is a non-empty closed face of 4 properly contained in F,, and F, is
not minimal.

Now let F be as stated and let & be the collection of all families of non-
empty closed faces of A4 satisfying

(o) Fe 7,
®) Fi, ... e F=>F,n...nF, # &.

Then & is non-empty since the family consisting of F alone is in &#. Partially-
order Z by inclusion of the families and observe that each totally-ordered sub-
collection of & has an upper bound (namely its family-wise union). Thus by

Zorn’s Lemma & has a maximal member &, say. Let Fo= () B. Then,
Be %o

by the compactness of 4, Fy # & and hence it is a minimal non-empty closed
face of A. Thus by our earlier comments F, = ac 4 and by construction
F,cF. Thus F~ A4 as required.

Theorem 9. (Krein-Milman). If A is compact and convex in a strongly convex

Hausdorff tcs then A = [7] (i.e. the closure of the convex hull of the profile of A).

Proof. LetB = [d]cA = A. Then,if B # A, by the Lemma there exists a
non-empty closed face G of 4 with GnB = ¢. But then by Theorem 8

G~ Ac B which is a contradiction. Thus 4 = B = [—Zj as required.
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