# COHOMOLOGICAL CHARACTERIZATIONS OF CHARACTER PSEUDO-AMENABLE BANACH ALGEBRAS

## RASOUL NASR-ISFAHANI<sup>™</sup> and MEHDI NEMATI

(Received 17 October 2010)

#### Abstract

For a Banach algebra  $\mathcal{A}$  and a character  $\phi$  on  $\mathcal{A}$ , we have recently introduced and studied the notion of  $\phi$ -pseudo-amenability of  $\mathcal{A}$ . Here, we give some characterizations of this notion in terms of derivations from  $\mathcal{A}$  into various Banach  $\mathcal{A}$ -bimodules.

2010 *Mathematics subject classification*: primary 46H05; secondary 43A07. *Keywords and phrases*: Banach algebra, pseudo-amenable, approximate diagonal, φ-pseudo-amenable.

### 1. Introduction

Let  $\mathcal{A}$  be a Banach algebra and let  $\phi \in \sigma(\mathcal{A})$ , the set of all nonzero homomorphisms from  $\mathcal{A}$  onto  $\mathbb{C}$ .  $\mathcal{A}$  is called  $\phi$ -amenable if there exists a bounded linear functional  $F \in \mathcal{A}^{**}$  satisfying  $F(\phi) = 1$  and  $a \odot F = \phi(a)F$  for all  $a \in \mathcal{A}$ , where  $\odot$  is the first Arens multiplication on the second dual  $\mathcal{A}^{**}$  of  $\mathcal{A}$  defined by the equations

$$(F \odot H)(f) = F(Hf), \quad (Hf)(a) = H(fa), \quad (fa)(b) = f(ab)$$

for all  $F, H \in A^{**}, f \in A^*$ , and  $a, b \in A$ . This notion is introduced and studied by Kaniuth *et al.* [7]; see also [8]. The notion of character amenability is a generalization of left amenability of the class of *F*-algebras  $\mathcal{L}$  studied in Lau [9] in 1983, known as Lau algebras; see Pier [12]. The class of Lau algebras includes the group algebra  $L^1(G)$ , and the measure algebra M(G) of an amenable locally compact group *G*, as well as the Fourier and Fourier–Stieltjes algebras A(G) and B(G) of any *G*. It also includes the quantum group algebra  $L^1(Q)$  when *Q* is amenable. In this case, the character is taken to be the identity of the von Neumann algebra  $\mathcal{L}^*$ .

For a Banach A-bimodule X, a derivation  $D : A \to X$  is a linear map such that

$$D(ab) = a \cdot D(b) + D(a) \cdot b \quad (a, b \in \mathcal{A}).$$

For  $x \in X$ , define  $ad_x : A \to X$  by  $ad_x(a) = a \cdot x - x \cdot a$  for all  $a \in A$ . Then  $ad_x$  is a derivation; these are the inner derivations. Note that the dual space  $X^*$  of a Banach

<sup>© 2011</sup> Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

 $\mathcal{A}$ -bimodule X becomes a Banach  $\mathcal{A}$ -bimodule with

$$\langle a \cdot \xi, x \rangle = \langle \xi, x \cdot a \rangle, \quad \langle \xi \cdot a, x \rangle = \langle \xi, a \cdot x \rangle,$$

for all  $x \in X$ ,  $\xi \in X^*$ , and  $a \in A$ . Following Hu *et al.* [6], for  $\phi \in \sigma(A) \cup \{0\}$ , we denote by  $\phi \mathcal{M}^A$  the class of Banach A-bimodules X for which the left module action of A on X is defined by

$$a \cdot x = \phi(a)x \quad (a \in \mathcal{A}, x \in X).$$

The notion of  $\phi$ -amenability is characterized in several different ways; for example, it is equivalent to the notion that for each  $X \in {}_{\phi}\mathcal{M}^{\mathcal{A}}$ , every continuous derivation D:  $\mathcal{A} \to X^*$  is inner [7]; moreover, it was shown in [6] that  $\phi$ -amenability is equivalent to the existence of a bounded (right)  $\phi$ -approximate diagonal; that is, a bounded net ( $\mathbf{m}_{\alpha}$ ) in the projective tensor product  $\mathcal{A} \otimes \mathcal{A}$  such that

$$\phi(\pi(\mathbf{m}_{\alpha})) \to 1$$
 and  $||a \cdot \mathbf{m}_{\alpha} - \phi(a)\mathbf{m}_{\alpha}|| \to 0$ 

for all  $a \in A$ , where  $\pi$  denotes the product morphism from  $A \otimes A$  into A given by  $\pi(a \otimes b) = ab$  for all  $a, b \in A$ ; see also [1].

Moreover, Ghahramani and Zhang [5] introduced and studied the notion of pseudoamenability of  $\mathcal{A}$ , the existence of an approximate diagonal for  $\mathcal{A}$ ; that is, a net ( $\mathbf{m}_{\alpha}$ ) in  $\mathcal{A} \otimes \mathcal{A}$  such that

$$\|\pi(\mathbf{m}_{\alpha})a - a\| \to 0$$
 and  $\|a \cdot \mathbf{m}_{\alpha} - \mathbf{m}_{\alpha} \cdot a\| \to 0$ 

for all  $a \in \mathcal{A}$ .

Recently, in [11] we introduced and studied a notion of amenability called  $\phi$ -pseudo-amenability. In this paper we characterize  $\phi$ -pseudo-amenability of  $\mathcal{A}$  in terms of derivations from  $\mathcal{A}$  into certain Banach  $\mathcal{A}$ -bimodules.

## 2. The results

Let  $\mathcal{A}$  be a Banach algebra and let X be a Banach  $\mathcal{A}$ -bimodule. A derivation D:  $\mathcal{A} \to X$  is approximately inner if there is a net  $(x_{\alpha}) \subseteq X$  such that

$$D(a) = \lim(a \cdot x_{\alpha} - x_{\alpha} \cdot a) \quad (a \in \mathcal{A});$$

see, for example, [2, 4]. The notion of  $\phi$ -approximate diagonal was introduced and studied by Hu *et al.* [6]. We commence this section with the main definition of the paper.

DEFINITION 2.1. Let  $\mathcal{A}$  be a Banach algebra and let  $\phi \in \sigma(\mathcal{A})$ . We say that  $\mathcal{A}$  is  $\phi$ -pseudo-amenable if it has a (right)  $\phi$ -approximate diagonal (not necessarily bounded).

In our first result, we characterize  $\phi$ -pseudo-amenability of  $\mathcal{A}$  in terms of derivations from  $\mathcal{A}$  into duals of elements in  ${}_{\phi}\mathcal{M}^{\mathcal{A}}$ .

THEOREM 2.2. Let A be a Banach algebra and  $\phi \in \sigma(A)$ . Then the following statements are equivalent.

230

- (a)  $\mathcal{A}$  is  $\phi$ -pseudo-amenable.
- (b) For each  $X \in {}_{\phi}\mathcal{M}^{\mathcal{A}}$ , any continuous derivation  $D : \mathcal{A} \to X^*$  is approximately inner.

**PROOF.** (a)  $\Rightarrow$  (b). Suppose that  $X \in {}_{\phi}\mathcal{M}^{\mathcal{A}}$  and  $D : \mathcal{A} \to X^*$  is a continuous derivation. Let  $(\mathbf{m}_{\alpha}) \subseteq \mathcal{A} \otimes \mathcal{A}$  be a  $\phi$ -approximate diagonal for  $\mathcal{A}$  and let  $\Phi : \mathcal{A} \otimes \mathcal{A} \to X^*$  be the bounded linear mapping specified by

$$\Phi(a \otimes b) = D(a)\phi(b)$$

for all  $a, b \in A$ . Then  $||\Phi|| \le ||D||$  and

$$\Phi(a \cdot \mathbf{m}_{\alpha} - \phi(a)\mathbf{m}_{\alpha}) = a \cdot \Phi(\mathbf{m}_{\alpha}) + \phi(\pi(\mathbf{m}_{\alpha}))D(a) - \phi(a)\Phi(\mathbf{m}_{\alpha})$$

for all  $a \in A$ . Let  $\xi_{\alpha} := -\Phi(\mathbf{m}_{\alpha})$ . Then for each  $a \in A$  we have

$$\phi(\pi(\mathbf{m}_{\alpha}))D(a) = a \cdot \xi_{\alpha} - \phi(a)\xi_{\alpha} + \Phi(a \cdot \mathbf{m}_{\alpha} - \phi(a)\mathbf{m}_{\alpha}).$$

On the other hand,

$$\|\Phi(a \cdot \mathbf{m}_{\alpha} - \phi(a)\mathbf{m}_{\alpha}) \le \|D\| \|a \cdot \mathbf{m}_{\alpha} - \phi(a)\mathbf{m}_{\alpha}\| \to 0$$

for all  $a \in A$ . It follows that

$$D(a) = \lim_{\alpha} (a \cdot \xi_{\alpha} - \xi_{\alpha} \cdot a) \quad (a \in \mathcal{A}).$$

(b)  $\Rightarrow$  (a). Suppose that for each  $X \in {}_{\phi}\mathcal{M}^{\mathcal{A}}$ , every continuous derivation  $D : \mathcal{A} \rightarrow X^*$  is approximately inner. Consider the quotient Banach  $\mathcal{A}$ -bimodule  $X = \mathcal{A}^*/\mathbb{C}\phi$ . Let  $F_0 \in \mathcal{A}^{**}$  be such that  $F_0(\phi) = 1$  and let  $ad_{F_0} : \mathcal{A} \rightarrow \mathcal{A}^{**}$  be the inner derivation by  $F_0$ . Then the image of  $ad_{F_0}$  is a subset of  $X^*$ , and hence by our assumption, there exists a net

$$(F'_{\alpha}) \subseteq X^* = \{F \in \mathcal{A}^{**} : F(\phi) = 0\}$$

such that

$$\operatorname{ad}_{F_0}(a) = \lim_{\alpha} \operatorname{ad}_{F'_\alpha}(a)$$

for all  $a \in A$ . Thus if we define  $F_{\alpha} = F_0 - F'_{\alpha}$ , then

$$F_{\alpha}(\phi) = (F_0)(\phi) = 1$$
 and  $||a \odot F_{\alpha} - \phi(a)F_{\alpha}|| \to 0$ 

for all  $a \in A$ . We can use Goldstine's theorem to assume that  $(F_{\alpha})$  is in A when the convergence in the above equation is the weak convergence. Applying Mazur's theorem, we can get a new net  $(a_{\alpha}) \subseteq A$  such that

$$\phi(a_{\alpha}) = 1$$
 and  $||aa_{\alpha} - \phi(a)a_{\alpha}|| \to 0.$ 

Now, choose  $a_0 \in \mathcal{A}$  with  $\phi(a_0) = 1$  and put

$$\mathbf{m}_{\alpha} := a_{\alpha} \otimes a_0.$$

It is easy to check that  $(\mathbf{m}_{\alpha})$  is a  $\phi$ -approximate diagonal for  $\mathcal{A}$ . Thus  $\mathcal{A}$  is  $\phi$ -pseudo-amenable.

DEFINITION 2.3. Let A be a Banach algebra. We say that A is 0-*pseudo-amenable* if it has a right approximate identity.

THEOREM 2.4. Let A be a Banach algebra. Then A is 0-pseudo-amenable if and only if every continuous derivation  $D : A \to X^*$  is approximately inner for all  $X \in {}_{0}\mathcal{M}^{A}$ .

**PROOF.** The 'if' part follows from [4, Proof of Lemma 2.2]. To prove the converse, suppose that  $(a_{\alpha}) \subseteq \mathcal{A}$  is a right approximate identity for  $\mathcal{A}$  and suppose that D:  $\mathcal{A} \to X^*$  is a continuous derivation, where  $X \in {}_0\mathcal{M}^{\mathcal{A}}$ . We set

$$\xi_{\alpha} := D(a_{\alpha})$$

for all  $\alpha$ . Therefore for each  $a \in \mathcal{A}$  we have

$$D(a) = \lim_{\alpha} D(aa_{\alpha}) = \lim_{\alpha} D(a) \cdot a_{\alpha} + a \cdot D(a_{\alpha})$$
$$= \lim_{\alpha} a \cdot D(a_{\alpha}) = \lim_{\alpha} a \cdot \xi_{\alpha}$$
$$= \lim_{\alpha} a \cdot \xi_{\alpha} - \xi_{\alpha} \cdot a.$$

Thus *D* is approximately inner.

A Banach algebra  $\mathcal{A}$  is approximately amenable if every continuous derivation from  $\mathcal{A}$  into the dual  $\mathcal{A}$ -bimodule  $X^*$  is approximately inner for all Banach  $\mathcal{A}$ -bimodules X; this notion was introduced and studied by Ghahramani and Loy [4]. Moreover, the notion of character amenability was introduced and studied by Monfared [10]; he called a Banach algebra  $\mathcal{A}$  character amenable if it has a bounded right approximate identity and is  $\phi$ -amenable for all nonzero characters  $\phi$  on  $\mathcal{A}$ . We are thus led to the following definition.

DEFINITION 2.5. A Banach algebra  $\mathcal{A}$  is called *character pseudo-amenable* if it is  $\phi$ -pseudo-amenable for all  $\phi \in \sigma(\mathcal{A}) \cup \{0\}$ .

As an application of Theorems 2.2 and 2.4 we have the following result.

COROLLARY 2.6. Let A be an approximately amenable Banach algebra. Then A is character pseudo-amenable.

The following example shows that the converse of the above corollary is not true.

EXAMPLE 2.7. (a) Let  $1 \le p < \infty$  and let *S* be an infinite set. Consider the Banach algebra  $\ell^p(S)$  of all complex-valued functions  $f := \sum_{s \in S} f(s)\delta_s$  with

$$\|f\|^p := \sum_{s \in S} |f(s)|^p < \infty$$

endowed with the pointwise multiplication, where  $\delta_s$  is the characteristic function of  $\{s\}$ . First note that

$$\sigma(\ell^p(S)) = \{\phi_s : s \in S\},\$$

where  $\phi_s(f) = f(s)$  for all  $f \in \ell^p(S)$ . Now, suppose that  $X \in \phi_s \mathcal{M}^{\ell^p(S)}$  and  $D : \ell^p(S) \to X^*$  is a continuous derivation. Then

$$D(f\delta_s) = f \cdot D(\delta_s) + \phi_s(\delta_s)D(f)$$

for all  $f \in \ell^p(S)$  and  $s \in S$ . Since  $f \delta_s = f(s) \delta_s = \phi_s(f) \delta_s$  and  $\phi_s(\delta_s) = 1$ , it follows that

$$D(f) = \phi_s(f)D(\delta_s) - f \cdot D(\delta_s).$$

Thus  $D = ad_{-D(\delta_s)}$  and hence  $\ell^p(S)$  is  $\phi_s$ -pseudo-amenable for all  $s \in S$  by Theorem 2.2. Moreover,  $\ell^p(S)$  has an approximate identity, and consequently it is character pseudo-amenable. On the other hand, it was shown in [3] that the Banach algebra  $\ell^p(S)$  is not approximately amenable.

(b) Let G be an infinite compact abelian group. Then since G is compact and abelian, the Feichtinger algebra is

$$S_0(G) = \left\{ f = \sum_{\rho \in \widehat{G}} c_\rho \delta_\rho : \|f\| = \sum |c_\rho| < \infty \right\},\$$

where  $\widehat{G}$  is the dual group of G. Hence,

$$S_0(G) \cong \ell^1(\widehat{G}),$$

where  $\ell^1(\widehat{G})$  is equipped with the pointwise product. Thus  $S_0(G)$  is character pseudoamenable, but not approximately amenable.

Let  $\mathcal{M}_{\phi}^{\mathcal{A}}$  denote the class of Banach  $\mathcal{A}$ -bimodules X for which the right module action of  $\mathcal{A}$  on X is defined by  $x \cdot a = \phi(a)x$  ( $a \in \mathcal{A}, x \in X$ ). We have the following analogue of a result in [6] on  $\phi$ -amenable Banach algebras.

**PROPOSITION 2.8.** Let  $\mathcal{A}$  be a Banach algebra and  $\phi \in \sigma(\mathcal{A}) \cup \{0\}$ . Then the following statements are equivalent.

- (a)  $\mathcal{A}$  is  $\phi$ -pseudo-amenable.
- (b) For every  $X \in \mathcal{M}_{\phi}^{\mathcal{A}}$ , any continuous derivation  $D : \mathcal{A} \to X^{**}$  is approximately inner.
- (c) For every  $X \in \mathcal{M}_{\phi}^{\mathcal{A}}$ , any continuous derivation  $D : \mathcal{A} \to X$  is approximately inner.

**PROOF.** Clearly, (a) implies (b) and (c) implies (a) by Theorem 2.2. Thus it suffices to show that (b) implies (c). Suppose that  $X \in \mathcal{M}_{\phi}^{\mathcal{A}}$  and  $D : \mathcal{A} \to X$  is a continuous derivation. Then the map  $\Delta : D^{**}|_{\mathcal{A}} \to X^{**}$  is a derivation. By assumption, there exists a net  $(\Xi_{\alpha}) \subseteq X^{**}$  such that

$$\Delta(a) = D(a) = \lim_{\alpha} (a \cdot \Xi_{\alpha} - \Xi_{\alpha} \cdot a).$$

Then by Goldstine's theorem, we can assume that  $\Xi_{\alpha} \in X$  when the above limit converges in the weak topology of X. Applying Mazur's theorem, we can get a new

net  $(x_{\alpha}) \subseteq X$  such that

$$D(a) = \lim_{\alpha} (a \cdot x_{\alpha} - x_{\alpha} \cdot a)$$

for all  $a \in A$ , and this completes the proof.

COROLLARY 2.9. Let A be a finite-dimensional Banach algebra and  $\phi \in \sigma(A) \cup \{0\}$ . Then A is  $\phi$ -pseudo-amenable if and only if A is  $\phi$ -amenable.

**PROOF.** Suppose that  $D: \mathcal{A} \to X^*$  is a continuous derivation for some  $X \in {}_{\phi}\mathcal{M}^{\mathcal{A}}$ . Let *E* be the subspace of  $X^*$  generated by  $D(\mathcal{A}) + \mathcal{A} \cdot D(\mathcal{A})$ . Thus *E* is a finitedimensional submodule of  $X^*$  and  $E \in \mathcal{M}^{\mathcal{A}}_{\phi}$ . Using the fact that

$$\mathcal{B}^1(\mathcal{A}, E) = \{ \mathrm{ad}_{\xi} : \xi \in E \}$$

is a finite-dimensional space, we conclude that it is a closed subspace of  $\mathcal{L}(\mathcal{A}, E)$ , the set of bounded linear mappings from  $\mathcal{A}$  into E, in the strong operator topology. Define  $D_E : \mathcal{A} \to E$  by  $D_E(a) = D(a)$  for all  $a \in \mathcal{A}$ . Since  $\mathcal{A}$  is  $\phi$ -pseudo-amenable and  $E \in \mathcal{M}_{\phi}^{\mathcal{A}}$ , there exists a net  $(\xi_{\alpha})$  in E such that for each  $a \in \mathcal{A}$ ,

$$D_E(a) = \lim_{\alpha} \operatorname{ad}_{\xi_\alpha}(a)$$

by Proposition 2.8. It follows that  $D_E \in \mathcal{B}^1(\mathcal{A}, E)$ , and hence there exists  $\xi \in E \subseteq X^*$  such that  $D_E = \operatorname{ad}_{\xi}$ . Therefore *D* is inner.

Let  $\mathcal{A}$  be a Banach algebra and  $\phi \in \sigma(\mathcal{A}) \cup \{0\}$ . Then we can consider ker $(\phi) \in \mathcal{M}_{\phi}^{\mathcal{A}}$  with the right action

$$b \cdot a = \phi(a)b \quad (a \in \mathcal{A}, b \in \ker(\phi)),$$

and the left action to be the natural one. In the following result we consider ker( $\phi$ ) as an A-bimodule with these actions.

COROLLARY 2.10. Let  $\mathcal{A}$  be a Banach algebra and  $\phi \in \sigma(\mathcal{A}) \cup \{0\}$ . Then the following statements are equivalent.

- (a) A is  $\phi$ -pseudo-amenable.
- (b) Any continuous derivation  $D : \mathcal{A} \to (\ker(\phi))^{**}$  is approximately inner.
- (c) Any continuous derivation  $D : \mathcal{A} \to \ker(\phi)$  is approximately inner.

**PROOF.** Clearly, (a) implies (b) and (b) implies (c) by Proposition 2.8. It suffices to show that (c) implies (a). To that end first suppose that  $\phi \in \sigma(\mathcal{A})$  and choose any  $b \in \mathcal{A}$  with  $\phi(b) = 1$ . Then

$$D(a) = ab - \phi(a)b \quad (a \in \mathcal{A})$$

defines a continuous derivation from  $\mathcal{A}$  into ker( $\phi$ ). Thus D is approximately inner by (c), and so there is a net  $(b_{\alpha}) \subseteq \text{ker}(\phi)$  such that

$$D(a) = \lim_{\alpha} (ab_{\alpha} - \phi(a)b_{\alpha})$$

https://doi.org/10.1017/S0004972711002267 Published online by Cambridge University Press

234

[6]

for all  $a \in A$ . If we set  $a_{\alpha} := b - b_{\alpha}$  for all  $\alpha$ , then we have  $\phi(a_{\alpha}) = 1$  and for each  $a \in \mathcal{A}$ .

$$aa_{\alpha} - \phi(a)a_{\alpha} \to 0.$$

Trivially,

$$\mathbf{m}_{\alpha} := a_{\alpha} \otimes a_0$$

is a  $\phi$ -approximate diagonal for  $\mathcal{A}$ , where  $a_0 \in \mathcal{A}$  with  $\phi(a_0) = 1$ . Therefore  $\mathcal{A}$  is For the case  $\phi = 0$ , the proof is similar to the proof of  $\phi$ -pseudo-amenable. Theorem 2.4.  $\square$ 

Let  $\Theta : \mathcal{A} \to \mathcal{B}$  be a Banach algebra homomorphism and  $\phi \in \sigma(\mathcal{A}) \cup \{0\}$ . Then  $\mathcal{B}$ is a Banach A-bimodule by the module actions

$$a \cdot b = \Theta(a)b, \quad b \cdot a = \phi(a)b \quad (a \in \mathcal{A}, b \in \mathcal{B}).$$

We denote by  $\mathcal{B}_{\phi}^{\Theta}$  the above  $\mathcal{A}$ -bimodule in  $\mathcal{M}_{\phi}^{\mathcal{A}}$ .

THEOREM 2.11. Let A be a Banach algebra and  $\phi \in \sigma(A) \cup \{0\}$ . Then the following statements are equivalent.

- $\mathcal{A}$  is  $\phi$ -pseudo-amenable. (a)
- For every Banach algebra  $\mathcal{B}$  and every homomorphism  $\Theta: \mathcal{A} \to \mathcal{B}$ , any (b) continuous derivation  $D : \mathcal{A} \to \mathcal{B}_{\phi}^{\Theta}$  is approximately inner. For every Banach algebra  $\mathcal{B}$  and every injective homomorphism  $\Theta : \mathcal{A} \to \mathcal{B}$ , any
- (c) continuous derivation  $D : \mathcal{A} \to \mathcal{B}^{\Theta}_{\phi}$  is approximately inner.

**PROOF.** The implications (a)  $\Rightarrow$  (b)  $\Rightarrow$  (c) are trivial. We show that (c)  $\Rightarrow$  (a) holds. Suppose that (c) holds and let  $X \in \mathcal{M}^{\mathcal{A}}_{\phi}$  and  $D : \mathcal{A} \to X$  be a continuous derivation. Consider the module extension Banach algebra  $X \oplus_1 \mathcal{A}$ ; that is, the space  $X \oplus \mathcal{A}$ endowed with the norm

$$||(x, a)|| = ||x|| + ||a|| \quad (a \in \mathcal{A}, x \in X)$$

and the product

$$(x_1, a_1)(x_2, a_2) = (x_1 \cdot a_2 + a_1 \cdot x_2, a_1a_2)$$

for all  $a_1, a_2 \in A$  and  $x_1, x_2 \in X$ . Obviously the map  $\Theta : A \to X \oplus_1 A$  defined by

$$\Theta(a) = (0, a) \quad (a \in \mathcal{A})$$

is an injective Banach algebra homomorphism. Now, if we define  $D_1: \mathcal{A} \to X \oplus_1 \mathcal{A}$ by

$$D_1(a) = (D(a), 0) \quad (a \in \mathcal{A}),$$

then for each  $a, b \in \mathcal{A}$  we have

$$D_1(ab) = (D(ab), 0) = (\phi(b)D(a) + a \cdot D(b), 0)$$
  
=  $\phi(b)(D(a), 0) + (0, a)(D(b), 0)$   
=  $\phi(b)D_1(a) + \Theta(a)D_1(b).$ 

Thus,  $D_1$  is a derivation from  $\mathcal{A}$  into  $(X \oplus_1 \mathcal{A})^{\Theta}_{\phi}$ , and so  $D_1$  is approximately inner by assumption. That is, there exist nets  $(a_{\alpha}) \subseteq \mathcal{A}$  and  $(x_{\alpha}) \subseteq X$  such that

$$D_1(a) = \lim_{\alpha} \operatorname{ad}_{(x_{\alpha}, a_{\alpha})}(a)$$

for all  $a \in A$ . Thus, for each  $a \in A$  we have

$$(D(a), 0) = D_1(a) = \lim_{\alpha} \operatorname{ad}_{(x_{\alpha}, a_{\alpha})}(a)$$
  
= 
$$\lim_{\alpha} (\Theta(a)(x_{\alpha}, a_{\alpha}) - \phi(a)(x_{\alpha}, a_{\alpha}))$$
  
= 
$$\lim_{\alpha} ((0, a)(x_{\alpha}, a_{\alpha}) - \phi(a)(x_{\alpha}, a_{\alpha}))$$
  
= 
$$\lim_{\alpha} (ax_{\alpha} - \phi(a)x_{\alpha}, aa_{\alpha} - \phi(a)a_{\alpha}).$$

Therefore,  $D(a) = \lim_{\alpha} \operatorname{ad}_{x_{\alpha}}(a)$ . So, for each  $X \in \mathcal{M}_{\phi}^{\mathcal{A}}$ , any continuous derivation  $D : \mathcal{A} \to X$  is approximately inner; this is equivalent to  $\phi$ -pseudo-amenability by Proposition 2.8.

We end this work with the following description of  $\phi$ -amenability which is of interest in its own right.

THEOREM 2.12. Let  $\mathcal{A}$  be a Banach algebra and  $\phi \in \sigma(\mathcal{A})$ . Then  $\mathcal{A}$  is  $\phi$ -pseudoamenable if and only if there exists a net  $(\mathbf{n}_{\alpha}) \subseteq \mathcal{A} \otimes \mathcal{A}$  such that  $\phi(\pi(\mathbf{n}_{\alpha})) \to 1$  and  $\|a \cdot \mathbf{n}_{\alpha}\| \to 0$  for all  $a \in \text{ker}(\phi)$ .

**PROOF.** The 'only if' part follows from the definition of  $\phi$ -pseudo-amenability and  $\phi$ -approximate diagonal. Now, assume that there exists a net  $(\mathbf{n}_{\alpha}) \subseteq \mathcal{A} \otimes \mathcal{A}$  such that

$$\phi(\pi(\mathbf{n}_{\alpha})) \to 1 \text{ and } \|a \cdot \mathbf{n}_{\alpha}\| \to 0$$

for all  $a \in \ker(\phi)$ . Choose  $a_0 \in \mathcal{A}$  with  $\phi(a_0) = 1$ . Then  $aa_0 - \phi(a)a_0 \in \ker(\phi)$  for all  $a \in \mathcal{A}$ . Set

$$\mathbf{m}_{\alpha} := a_0 \cdot \mathbf{n}_{\alpha}$$

for all  $\alpha$ . Thus  $\phi(\pi(\mathbf{m}_{\alpha})) = \phi(a_0\pi(\mathbf{n}_{\alpha})) \to 1$  and, for each  $a \in \mathcal{A}$ ,

$$\|a \cdot \mathbf{m}_{\alpha} - \phi(a)\mathbf{m}_{\alpha}\| = \|(aa_0 - \phi(a)a_0) \cdot \mathbf{n}_{\alpha}\| \to 0.$$

This shows that  $(\mathbf{m}_{\alpha})$  is a  $\phi$ -approximate diagonal for  $\mathcal{A}$ .

#### References

- M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, 'Character amenability and contractibility of abstract Segal algebras', *Bull. Aust. Math. Soc.* 82 (2010), 274–281.
- [2] P. Bharucha, 'Approximate weak amenability of  $I_0(SL(2, \mathbb{R}))$ ', Bull. Aust. Math. Soc. 82 (2010), 18–21.
- [3] H. G. Dales, R. J. Loy and Y. Zhang, 'Approximate amenability for Banach sequence algebras', *Studia Math.* 177 (2006), 81–96.

[8]

### [9] Cohomological characterizations of character pseudo-amenable Banach algebras

- [4] F. Ghahramani and R. J. Loy, 'Generalized notations of amenability', J. Funct. Anal. 208 (2004), 229–260.
- [5] F. Ghahramani and Y. Zhang, 'Pseudo-amenable and pseudo-contractible Banach algebras', Math. Proc. Cambridge Philos. Soc. 142 (2007), 111–123.
- [6] Z. Hu, M. S. Monfared and T. Traynor, 'On character amenable Banach algebras', *Studia Math.* 193 (2009), 53–78.
- [7] E. Kaniuth, A. T. Lau and J. Pym, 'On φ-amenability of Banach algebras', *Math. Proc. Cambridge Philos. Soc.* 144 (2008), 85–96.
- [8] E. Kaniuth, A. T. Lau and J. Pym, 'On character amenability of Banach algebras', J. Math. Anal. Appl. 344 (2008), 942–955.
- [9] A. T. Lau, 'Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups', *Fund. Math.* 118 (1983), 161–175.
- M. S. Monfared, 'Character amenability of Banach algebras', *Math. Proc. Cambridge Philos. Soc.* 144 (2008), 697–706.
- [11] R. Nasr-Isfahani and M. Nemati, 'Character pseudo-amenability of Banach algebras', Preprint.
- [12] J. P. Pier, Amenable Banach Algebras, Pitman Research Notes in Mathematics Series, 172 (Longman Scientific and Technical, Harlow, 1988).

RASOUL NASR-ISFAHANI, Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran e-mail: isfahani@cc.iut.ac.ir

MEHDI NEMATI, Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran e-mail: m.nemati@math.iut.ac.ir