
20
Some applications

We proceed to some applications of the analysis in chapter 19. Start with
closed j-shells filled up to the energy F as illustrated in Fig. 20.1, and
define particle and hole operators by [Fe71]

a†
α ≡ c†

α ; α > F

b†
α = S−αc−α ; α < F (20.1)

Recall that the phase Sα is defined by

Sα ≡ (−1)jα−mjα (−1)
1
2 −mtα (20.2)

Equations (20.1) form a canonical transformation since they leave the
anti-commutation relations in Eqs. (19.30) unchanged. Denote by |0〉 the
non-interacting ground state illustrated in Fig. 20.1. Both particle and hole
destruction operators annihilate this state

aα|0〉 = bα|0〉 = 0 (20.3)

Furthermore, by Eq. (19.31) and the discussion following Eq. (19.33), both
a† and b† are irreducible tensor operators (ITO).

To illustrate the physics and theoretical techniques, we consider some
model cases. Equations (19.35) form the starting point of this analysis.

Fig. 20.1. Closed j-shells as a basis for defining particle and hole operators.
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Fig. 20.2. A particle–particle transition.

Consider first a particle–particle transition from the single-particle state σ

to the state ρ as illustrated in Fig. 20.2. Take

|Ψi〉 = a†
σ|0〉

|Ψf〉 = a†
ρ|0〉 (20.4)

Here ρ = (nrlr
1
2jrmjρ;

1
2mtρ) ≡ (r;mjρmtρ) with a similar relation for σ. In

this case one has the very simple result that the quantum numbers a must
refer to the final state and b to the initial state

ψ
fi
J,T (ab) = δarδbs ; particle–particle (20.5)

All the angular momentum and isospin algebra has now been dealt with
in arriving at the doubly reduced matrix elements. Note that here and
henceforth we adopt the convention that the selection rules on J and T

are implicitly contained in the reduced matrix elements.
The proof of Eq. (20.5) goes as follows. The only term in the operator

ζ̂† which contributes to the transition in this case is

ζ̂†(ab; JMJ, TMT )
.
= δarδbs[a

†
ρ � S−σa−σ]JMJTMT

(20.6)

Now take the matrix element

〈Ψf |ζ̂†(rs; JMJ, TMT )|Ψi〉 = Sσ 〈jρmjρjσ,−mjσ |jρjσJMJ〉

×〈1

2
mtρ

1

2
,−mtσ |1

2

1

2
TMT 〉 (20.7)

This is just one form of the Wigner–Eckart theorem [Ed74]

l.h.s. = Sσ 〈jρmjρjσ,−mjσ |jρjσJMJ〉〈1

2
mtρ

1

2
,−mtσ |1

2

1

2
TMT 〉

× 1√
(2J + 1)(2T + 1)

〈Ψf

...
... ζ̂†(rs; JT )

...
...Ψi〉 (20.8)

A comparison of these two equations gives the stated result.
Consider next the somewhat more complicated case of a particle–hole

transition as illustrated in Fig. 20.3. Here a particle makes a transition out
of the filled ground state, leaving a hole behind. In this case one has
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Fig. 20.3. A particle–hole transition.

Fig. 20.4. A hole–hole transition.

|Ψi〉 = |0〉
|Ψf〉 = [a†

ρ � b†
σ]JMJ ;TMT

|0〉 (20.9)

In this case, the only contributing term in the operator ζ̂† is

ζ̂†(ab; JMJ, TMT )
.
= δarδbs [a

†
ρ � b†

σ]JMJTMT
(20.10)

Now take matrix elements and use the orthonormality of the Clebsch–
Gordon (C–G) coefficients [Ed74]

〈Ψf |ζ̂†(rs; JMJ, TMT )|Ψi〉 = 1 (20.11)

=
1√

(2J + 1)(2T + 1)
〈J, T ...

... ζ̂†(rs; JT )
...
... 0〉

The Wigner–Eckart theorem has again been used to obtain the second
equality. Thus, in this case also, one has the simple result

ψ
fi
J,T (ab) = δarδbs ; particle–hole (20.12)

Consider the most complicated case of a hole–hole transition as illus-
trated in Fig. 20.4. Here the initial state has a hole in the state ρ and the
final state a hole in σ. The transition is actually accomplished, of course,
by a particle going in the opposite direction. In this case

|Ψi〉 = b†
ρ|0〉

|Ψf〉 = b†
σ|0〉 (20.13)

The contributing term in ζ̂† is

ζ̂†(ab; JMJ, TMT )
.
= δarδbs[Sρb−ρ � b†

σ]JMJTMT
(20.14)
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One has to first turn the destruction and creation operators around
in computing the matrix element.1 Use of the basic anti-commutation
relations gives

ζ̂†(ab; JMJ, TMT )
.
= δarδbs

{
δJ0δT0

√
2(2ja + 1) δrs

−(−1)ja+jb−J(−1)
1
2 + 1

2 −T [b†
σ � Sρb−ρ]JMJTMT

}
(20.15)

Here the anti-commutation relations for the b’s has been employed, along
with the relation for reversing the order of coupling in the C–G coefficients
[Ed74]

〈jρmjρjσmjσ |jρjσJMJ〉 = (−1)jρ+jσ−J〈jσmjσ jρmjρ |jσjρJMJ〉
(20.16)

There is a similar relation for isospin. The first term in Eq. (20.15), now
simply a c-number, follows from∑

mjρ

〈jρmjρjρ,−mjρ |jρjρJMJ〉(−1)jρ−mjρ

=
∑
mjρ

〈jρmjρjρ,−mjρ |jρjρJMJ〉〈jρmjρjρ,−mjρ |jρjρ0 0 〉
√

2jρ + 1

=
√

2jρ + 1 δJ0 (20.17)

Again, there is a similar relation for isospin.
Now the calculation of the remaining matrix element proceeds exactly

as in the particle–particle case. Note that here S−ρ = Sρ.

ψ
fi
J,T (ab) = δarδbsδrsδJ0 δT0 [2(2ja + 1)(2Ti + 1)(2Ji + 1)]1/2

−(−1)ja+jb−J(−1)
1
2 + 1

2 −Tδarδbs ; hole–hole (20.18)

The reduced matrix element has been calculated in the first (scalar) term,
and we now observe that there will, in fact, be an additional contribution

ψ
fi
0,0(aa) of this type of term for each occupied shell a < F in Fig. 20.1.
Suppose one does elastic scattering from a ground state that has neither

particles nor holes as in Fig. 20.1

|Ψi〉 = |Ψf〉 = |0〉 (20.19)

In this case, the only non-zero contribution comes from the first term in
Eq. (20.18), and from Eq. (19.38) one has

〈0||M̂0(κ)||0〉 =
∑
a<F

√
2ja + 1 〈a||M(0)

0 (κ)||a〉 (20.20)

1 They must be normal-ordered.
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Fig. 20.5. Shell model for 16
8O ground state.

Now consider the case of elastic scattering from a (Jπ, T ) = (0+, 0)
target. In this case, the only contributing multipole is M̂0(κ), and one evi-
dently measures the Fourier transform of the ground-state charge density

√
4π 〈Ψ0|M̂00(κ)|Ψ0〉 =

∫
d3x

[
sin κx

κx

]
ρ00(x) (20.21)

As an example, consider 16
8O modeled as indicated in Fig. 20.5. In this

case, Eq. (20.20) gives

〈0||M̂0(κ)||0〉 =
√

2 〈1s1/2||M(0)
0 (κ)||1s1/2〉 +

√
4 〈1p3/2||M(0)

0 (κ)||1p3/2〉
+

√
2 〈1p1/2||M(0)

0 (κ)||1p1/2〉 (20.22)

Use of the tables in [Do79] then gives for harmonic oscillator wave
functions

√
4π 〈Ψ0||M̂0(κ)||Ψ0〉 = 8

(
1 − 1

2
y

)
e−y (20.23)

Note that at κ = 0 one must obtain Z , the total charge on the nucleus,
and this result is indeed recovered. Since s and p radial wave functions
contribute here, the coefficient of e−y is a first-order polynomial in y.
Thus there is (at most) one diffraction zero as a function of y. Figure 20.6
shows the fit to the experimental charge form factor in this model [Do75].
The data is from [Mc69]. There is one parameter in this fit, bosc = 1.77 fm.
Also shown is the result obtain with Woods–Saxon radial wave functions,
where a second diffraction minimum is observed [Do69]. Note that the
harmonic oscillator wave functions provide an excellent description of the
gross distribution of charge, and only break down when one seeks a more
detailed description at higher momentum transfer.

Figure 4.2 shows the quality of elastic (e, e) data presently available.
Figure 21.5 in the next section illustrates the quality of the nuclear charge
distribution which can now be extracted from elastic (e, e) charge scatter-
ing. Note the small uncertainty band on the experimental result in that
figure.
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Fig. 20.6. Elastic charge form factor for 16
8O showing results using harmonic

oscillator (solid curve) and Woods–Saxon (dashed curve) radial wave functions
[Do69, Do75, Mc69].

Fig. 20.7. Ground states of 3
2He and 3

1H.

Consider elastic magnetic scattering. It is proven in appendix E that
only the odd magnetic multipoles contribute to elastic scattering through
the transverse interaction. Consider the simplest nuclear case of elastic

scattering from 3
2He and 3

1H with (Jπ, T ) = (1
2

+
, 1

2 ) as illustrated in Fig.

20.7. Here only T̂
mag
1 (κ) contributes. Although very sophisticated three-

body calculations are available for this system (see later), we consider it
here as a very simple illustration.
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Table 20.1. Comparison of experimental and theoretical magnetic moments of
the three-nucleon system calculated in the harmonic oscillator shell model.

μ(3H) + μ(3He) μ(3H) − μ(3He)

Theory 0.8795 4.7059
Experiment 0.8513 5.1064

The shell model configuration in Fig. 20.7 is a (1s1/2)
−1 hole in the 1s

shell. Use of Eq. (20.18) in this case leads to

ψJT [(1s1/2)
2] = 4δJ0δT0 − (−1)J+T (20.24)

From the general result in Eq. (19.38), and the tables in [Do79], one finds(
4π

2

)1/2

〈1

2

+

;
1

2
mt||M̂0(κ)||1

2

+

;
1

2
mt〉 =

(
3

2
+ mt

)
e−y

= Z e−y

i

(
4π

2

)1/2

〈1

2

+

;
1

2
mt||T̂mag

1 (κ)||1
2

+

;
1

2
mt〉

= −
√

2

(
κ

2m

)[
1

2
(μp + μn) − mt(μp − μn)

]
e−y

= −
√

2

(
κ

2m

)
μ e−y (20.25)

Here Z is the charge of the target and μ its magnetic moment. The
proportionality of the matrix element of T̂

mag
1 to the magnetic moment

is a general result as shown in appendix A. At higher κ one probes the
spatial distribution of the magnetic moment distribution. Table 20.1 shows
the (well-known) comparison between the calculated and experimental
magnetic moments for this system.

Figure 20.8 shows the low-κ elastic (e, e) data compared with this shell
model calculation with an oscillator parameter chosen as bosc = 1.59 fm
[Do76, Wa95]. Again, it is only the deviations from these simple results
that show up the more sophisticated elements of nuclear structure, to
which we shall return.

With higher nuclear angular momentum Ji, higher multipoles can con-
tribute to elastic scattering. It is shown in appendix E that parity and
time-reversal invariance of the strong and electromagnetic interactions
imply that only the even charge multipoles and odd transverse magnetic
multipoles can contribute in the elastic case. Consider a 1g9/2 proton as

the single-particle shell model assignment for the ground state of 93
41Nb as

depicted in Fig. 20.9. The highest magnetic multipole that can contribute
in this case is T̂

mag
9 (κ). Use of the previous particle–particle results and
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Fig. 20.8. Longitudinal and transverse elastic scattering form factors for the
three-nucleon system compared with harmonic oscillator shell model results.
Here fL = ZfSN/

√
4π and fT = (κ/2m)μfSN/

√
2π. The correction factor fCM has

been included. [Do76, Wa84]. Data from [Co65, Ch69, Mc70].

Fig. 20.9. Single-particle shell model assignment for the ground state of 93
41Nb.

the tables in [Do79] gives

〈9

2

+

||T̂mag
9 (κ)||9

2

+

〉 = 〈π1g9/2||T9(κ)||π1g9/2〉 (20.26)

= − 25

32
√

5 · 11 · 13 · 17
y4e−y

(
κμp

2m

)
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Fig. 20.10. M1 transition in 12
6C as example of particle–hole transition.

Note that only the intrinsic magnetization contributes to the highest
multipole in the stretched configuration j = l + 1

2 , and note the simplicity
of this result. Note also that this multipole has the highest possible
number of powers of y, which implies that it will be the dominant
contribution at high momentum transfer κ. The experimental results for
elastic magnetic scattering from 93

41Nb have already been shown in Fig.
12.4.2 In contrast to the case with real photon interactions where the
long-wavelength limit is relevant and the lowest multipole dominates
(appendix A), here the rank of the dominant multipole increases as the
momentum transfer is increased until at high κ the dominant contribution
is indeed M9 — one can effectively dial the multipole one wants to
examine.

What does one learn from this? Figure 12.5 shows the surface of half-
maximum intrinsic magnetization density μ(x)max/2 for 51

23V (chosen so
that it would fit on a 10 fm square). Here the configuration assignment
is (1f7/2)π , and the nucleus is aligned so that its angular momentum
points along the z-axis with mj = j. The intrinsic magnetization maps
the location of the valence nucleon. The nucleus is a small magnet with
a current loop provided by the motion of the orbiting proton. Elastic
magnetic electron scattering at all κ provides a microscope to see the
spatial structure of this small current loop [Do73].

As an example of particle–hole states consider the celebrated isovector
M1 transition to the (1+, 1) state at 15.11 MeV in 12

6C as illustrated in Fig.
20.10. Make the simplest shell model assignments

|Ψi〉 = |0〉
|Ψf〉 = [a

†
1p1/2

� b
†
1p3/2

]1+,1 |0〉 (20.27)

Then from the above discussion of particle–hole transitions and the tables

2 Here qeff ≡ κ.
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Fig. 20.11. The quantity F2
T (κ) for the 1+, 1 state in 12

6C(15.11 MeV). The curve
is a best fit with bosc = 1.77 fm and ξ = 2.25 [Do75]. Here q ≡ κ.

in [Do79] one finds

i
√

4π 〈1+, 1 0||T̂mag
1 (κ)||0+, 0〉 = i

(
4π

2

)1/2

〈1p3

2
||Tmag (1)

1 (κ)||1p3

2
〉

=
2

3

(
κ

2m

)[
1 − 2(μp − μn)

(
1 − 1

2
y

)]
e−y

(20.28)

Now it is clear that the model of a pure particle–hole transition is an
oversimplification. With configuration mixing, even within just the 1p-shell,
the amplitudes in Eq. (19.28) will be changed from the pure particle–hole
value, and in general reduced from this value. A fit to the experimental
data for this transition using Eq. (20.28) with an oscillator parameter
bosc = 1.77 fm and an overall reduction factor of ξ = 2.25 is shown in Fig.
20.11 [Do75].3

3 In this figure dσ/dΩ ≡ 4πσM[(q4/q4)F2
L + (q2/2q2 + tan2 θ/2)F2

T ]r.

https://doi.org/10.1017/9781009290616.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.025


20 Some applications 167

Fig. 20.12. Inelastic electron scattering to the 1+, 1 state in 12
6C(15.11 MeV)

plotted in terms of the polynomial p(y) in Eq. (20.29). The straight line is a fit
with 1p-shell harmonic oscillator wave functions [Do79a]. Again, q ≡ κ.

Fig. 20.13. Particle–hole configuration (1f7/2)(1d5/2)
−1.

If both the ground and excited states are configuration mixed, but still
both described within the 1p-shell oscillator model, then the polynomial
in the above transition amplitude must indeed be of the form

p(y) = α0 − α1 y (20.29)

Figure 20.12 shows such a straight-line fit to the data [Do79a]. This fit

determines two of the four possible one-body amplitudes ψ
fi
J,T (ab) for this

transition, if it is indeed described within the 1p-shell oscillator model.
Note that this straight-line plot, now on a linear scale, gives some credence
to this description.

As an example of magnetic excitation of high-spin states, consider the
isovector transition to the stretched member (6−, 1) of the particle–hole
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configuration in Fig. 20.13. Model the ground and excited states by

|Ψi〉 = |0〉
|Ψf〉 = [a

†
1f7/2

� b
†
1d5/2

]6−,1 |0〉 (20.30)

Then, as before,

i
√

4π 〈6−, 1 0||T̂mag
6 (κ)||0+, 0〉 = i

(
4π

2

)1/2

〈1f 7

2
||Tmag (1)

6 (κ)||1d5

2
〉

= −
(

κ

2m

)
(μp − μn)

23

3
√

3 · 11
y5/2 e−y

(20.31)

Note the simplicity of this result. Again, only the magnetization con-
tributes to this highest multipole in the stretched configuration, and this
multipole gives the maximum power of y. The large isovector magnetic
moment of the nucleon in Eq. (19.4) implies that isovector transitions are
preferentially excited in electron scattering at large scattering angles and
high momentum transfers. Figure 12.6 shows a spectrum for 24

12Mg taken
under these conditions, and the transverse form-factor squared for the
state at 15.0 MeV which dominates the spectrum; it is evidently a 6−.4

Such stretched particle–hole states have now been seen throughout the
periodic table, including states as high as 14− in 208

82Pb [Li79].

4 Note that even though 24
12Mg is not the closed 1d5/2-shell nucleus of the shell model

(that would be 28
14Si), the (6−, 1) particle–hole transition still shows up strongly in the

spectrum.
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