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1. Introduction. Consider the system of difference equations
x(t+n)+a, x(t+n—D+a,x(t+n-2)4 ... +a,x(t) =0, (1)

in which the unknown x(¢) is a complex m-vector, t is a real variable and a;, ..., a, are complex
mx m matrices whose elements are functions of ¢, x(¢), x(t+1), ..., x(t+nrn—1). A positive
definite hermitian form V(x,, x,, ..., x,), with constant coefficients, is called a strong autono-
mous quadratic Lyapunov function (written strong AQLF) of (1) if there exists a constant
k > 1 such that x*v(¢+1) < v(t) for all non-zero solutions x(z) of (1), where v(t) = V(x(1),
x(t+1), ..., x(t+n-1)). The existence of a strong AQLF is a sufficient condition for the
trivial solution x = 0 of (1) to be globally asymptotically stable. It is a necessary condition

only in the special case of an equation
x(t+n)+c, x(t+n—1)+c, x(t+n—-2)+... +¢,x(1) =0, )

in which the matrices ¢y, ..., ¢, are constant. The variable matrices a, ..., a, in (1) will be
assumed to satisfy

<6, (v=1,...,n), 3

la,—c.|

forall 1, x(t), ..., x(t+n—1), where §,, ..., §, are constants. Here | M| denotes the spectral
norm of the matrix M, which is defined to be the square root of the largest eigenvalue of
M*M, where M* is the conjugate transpose of M. When 44, ..., J, are small, (1) can be
regarded as a perturbation of (2). It is not difficult to show that, if (2) has a strong AQLF,
then (1) also has a strong AQLF, provided that §,, ..., 8, are sufficiently small. The main
object of this paper is to replace these words “* sufficiently small * by an explicitestimate which
is simple and in some cases best possible. To ensure that (2) has a strong AQLF, it will be
assumed that its characteristic polynomial p({) can be factorised in the form

PO =0+ e = (Cek)lo=kyey)...(Lek;), @
v=1

where e is the unit m x m matrix and k,, ..., k, are matrices having
[k <1 (=1...,n). (5)

This assumption reduces the generality of (2) when m > 1, because some matrix polynomials
cannot be factorised in the form (4). And even when (4) holds, (5) is only a sufficient condition
for (2) to have a strong AQLF. But there is no loss of generality in the case m = 1, because
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then k,, ..., k, are the roots of the scalar polynomial p({) and (5) is both necessary and
sufficient for (2) to have a strong AQLF. The following result is proved in section 2:

THEOREM 1. Assume that the characteristic polynomial of the system of difference equations
(2) can be factorised in the form (4) and that the constant matrices k,, ks, ..., k, in that fac-
torisation satisfy (5). If 8,, 8,, ..., 0, is any set of numbers which satisfy the condition

I_]l(1—|| k)>6,+6,+ ...+, ©)

then (1) has a strong AQLF for all a,, a,, ..., a, satisfying (3).

The proof gives a single hermitian form ¥V which serves as a strong AQLF for every
equation satisfying (3). The coefficients of V and its constant k depend only on k;, ..., k,,
0y, ..., 0, In the general scalar case it seems to be necessary to compute the roots ky, ..., k,
of p({) in order to evaluate the left-hand side of (6). But in special cases it may be possible to
prove by Sturm’s method that these roots are all real numbers between 0 and 1. Then the left-
hand side of (6) is equal to p(1), which can be evaluated without computing k, ..., k,. To
give some idea of the delicacy of (6) in the scalar case, the following result is proved in section 2:

THEOREM 2. Suppose that (8) is a scalar polynomial and that u is the minimum value of
|P()| on the circle | (| = 1. If&,+ ... +8, = p, then the trivial solution x = 0 is not asymptoti-
cally stable for some scalar equation (1) which satisfies (3).

Theorem 2 shows that, as a condition on §,, ..., &,, (6) is certainly best possible in scalar

cases when p = [] (1—|k,|). Thisis true when all the roots k,, ..., k, are positive multiples
v=1

of a single complex number. With the help of the Mobius transformation theory in [2]
Theorem 1 can be made to yield conditions for certain nth order differential equations to have
a quadratic Lyapunov function. This application is discussed in section 3. The spectral norm
used in Theorem 1 is difficult to compute in practice for matrices of high order. A slight
modification of Theorem 1 is discussed in section 4, which permits the use of Hblder norms
which are much easier to compute.

2. Proof of theorems. Let R = [r;;] be a real nxn matrix and let Q = [g,;] be a block
matrix whose elements g;; are all m x m matrices.

LemMa 1. If ry; 2 | gy || for all i, j, then | R| 2 || |-
Proof. The matrix spectral norm || Q | is related to the euclidean vector norm by
ol =swwilex Il XD, <
taken overallvectors X # 0. Byexpressingthevectors X, QX inblock formas X = col(xy,...,X,)s
QX =col(zy, ..., z,), we can write z;= Y. q;;x;. Then |z, [|< ¥ r;|x;[|. This gives

j=1 j=1
Inl < | RE|, where & =col(| x|, ..., || x.[)s w =col(| z, ||, ..., | z.]). Since €] =] x|
and | n QX |, it follows that | QX || < | RE|| < | R[|.|| X||]. This and (7) give Lemma 1.
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Now consider a system of difference equations of the form
Y(+1) = QY(1), ®

in which Y()is a vector and Q is a matrix whose elements are functions of ¢, Y(¢). A positive
definite form V(Y) = Y*PY, with constant hermitian matrix P, is called a strong AQLF of
(8) if there exists a constant k > 1 such that k2¥(¥(t+1)) < V(Y(t)) for every non-zero
solution Y(¢) of (8); that is, if K2V (QY) < V(Y)for all 1, Y # 0.

LEMMA 2. Suppose that Q = [q,;] is a block matrix having | q;;|| S r;; for all i, j, t, Y,
where R = [r;;] is a constant matrix with spectral radius p(R) < 1. Then (8) has a strong AQLF
whose matrix P is a diagonal matrix which depends only on R.

Proof. We can assume that all the elements of R are positive. (If not, increase them all
slightly keeping p(R) < 1.) Then a theorem of Stoer and Witzgall [3] states that p(R) =
min || D™'RD ||, taken over all real positive definite diagonal matrices D. Let Do =
diag(d,, ..., d,) be the diagonal matrix for which this minimumisattained. Since | d; 'q;;d;| <
d; 'r;d;, Lemma 1 gives | D7'OD, || < | D5 'RD, | = p(R), where D, is the block matrix

ij“js

diag(d,e, ..., d,¢) and e is unit mx m matrix. If ¥(Y)=Y*D{?Y = | Dy'Y|? then
VQY)=|Dr'QY|* = | Dy'eD |*[| DY 'Y | £ p(R*V(Y) < kT2H(Y),
forall Y#0and 1 <« < p(R)™!. This shows that V(Y)is a strong AQLF of (8).

Proof of Theorem 1. We first express (1) as a system of the form (8), using a method
analogous to that of Skachkov [1]. From any vector function x(¢), we can obtain vector
functions y (1), ..., y,+.(¢) defined iteratively by y,(t) = x(¢) and

yv+1(t)=yv(t+1)_kvyv(t) (V= 13"'9”), (9)
where k|, ..., k, are the matrices in (4). If S is the shift operator defined by the property
Sx(t) = x(¢t+1), then (9) gives

Vost(t) = (Se—k,)(Se=k,-,)...(Se—k)x(1), (10)

forv=1,...,n In the case v =n, (10) and (4) give

Yorr(D) = p(S)x() = x(t+n)+ Y ¢, x(t+n—v).

v=1

Replace the left-hand side of this by (9) to get

yn(t+])—knyn(t)=x(t+n)+ Z cvx(t+n—v). (“)

v=1

Forr,s=1,2,...,n define G; =) k; k;,...k;, summed over all sets of r integers iy, ..., i,
which satisfy 1 £/, £, £... £i, £s. In this expression, the sum of all those terms which
have i, < s is G;_, and the sum of all those terms which have i, = s is G 'k,. Hence

G=G_+G %k, (r,s=1,...,n). (12)
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To make this true when r = 1 or s = 1, we must define G}, =0, G = eforallv>1. We now
prove by induction that

r+1

x(t+r) =3 G 7y (1), (13)
s=1

forr=20,1,...,n If this is true for some r < n, then (9) gives

r+1

X(t+1+r)= Y GH1 7oy (t+1)
s=1

r+1
= Z G;+ ! -S{Y.s+ l(t)+ks .VS(t)}
s=1

Since Gy, = 0, G = e, the right-hand side can be rewritten as

r+1

X414 = a0+ 3, (GE 4G k(1)

s=1
r+2

= Y G270,
s=1

by (12). Hence (13) remains true when r is replaced by r + 1. Since (13) is trivial for r = 0,
itis true for r = 1,..., n by induction. From (11) we get

x(t+m)+ Y a,x(t+n—v) = p(t+ D=k, y,(D+ Y. (a,—c,)x(t+n—v).
v=1 v=1
On the right-hand side, replace x(z+n—v) by (13) to get

x(t+n)+ i avx(t+n_v) = yn(t+1)-knyn(t)— Z Fsys(t):

v=1 s=1
ntl—s
where F,= Y (c,—a,)G2*!'7*7". This identity shows that x(r) is a solution of (1) if and
v=1

only if
ya(t+1) =k, y(0+ Y, Foyi(t).
s=1
This equation and (9) show that (1) is equivalent to a system of the form (8) in which ¥ =
col(y,,...,y,) and

k, e 0 0

0 k, e 0 0
Q=] oo

0 0 0 kn_; e

F, F, F F,., k,+F,
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It is understood here that Q is expressed as a function of ¢, ¥ by replacing each variable
x(¢t+r)in F, by (13). Now replace p({) throughout the above argument by the scalar poly-

nomial

PO = [Ta-lkh=c+ T a0 (14)
and replace (1) by the scalar difference equation

x(t+n)+ il(@v——év)x(t-*-n—v):O. (15)
Then the matrix G’ is replaced by the ;calar I which is defined as [ k;, || ... | &, || summed

over 1 £i,£...2i, <5 Clearly | G;|| ST, The above argument shows that (15) is

equivalent to an nx n system Y(z+1) = RY(¢) having

A 1 0o 0 0
P Il Y O 0.
0 0 0 S 1
o, o, o, o,_, [ &a || +,
n+1-s
where &, = Y §,I7"!7""% This R is constant, and (3) gives
v=1

0,23 [e,-a, [T 2 B (e, —a)G 0 2 | B

forall 1, Y, s; thatis, r;; 2 || g;;|| for all 1, Y, i, j, where [r;;] = R, [¢;;] = Q. This establishes
one condition of Lemma 2, and the other condition p(R) < 1 will now be verified.
Since the system Y(z+1) = RY(r) is equivalent to (15), the eigenvalues of R are the

characteristic roots of (15). These are the roots of the equation p({)—d({) =0, where

d({)= Y 6,{"". For all complex { with |{| = 1, (14) and (6) give

v=1
6012 TTa- kD> T 8,210

Since the roots ||k, [|, ..., ||k, | of p({) = 0 all lie inside the circle |{ | = 1, the same is true of
the roots of p({)—d({) = 0, by Rouché’s theorem. Hence p(R) < 1.

Lemma 2 now gives a diagonal form V(Y) which is a strong AQLF of (8). When we re-
place each variable y, in V(Y) by the corresponding expression (10) we obtain a hermitian
form in the variables x, Sx, S?x, ..., S"”'x which is a strong AQLF of (1). This completes the
proof of Theorem 1.

Proof of Theorem 2. By definition, u = | p(w) | for some complex w with |w| = 1. Ifvis
defined by p(w) = v(3, + ... +9,), then |v| = p/(,+ ... +5,) S 1. Nowputa, =c,—w' "3,
in (1). Then (3) holds and (1) has the solution x(¢) = Aw, where A is an arbitrary constant.
Since | x(t)| = | 4| for all 1, the trivial solution of (1) cannot be asymptotically stable. This
proves Theorem 2.
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3. Application to differential equations. Any Mobius transformation { = u(z) =
{az+ f)/(yz+ ) can be used to associate with (1) a system of differential equations as follows.

From the characteristic polynomial f(z) = z"+ i a,z""" of (1) we get a new polynomial
g(0) defined by !

g(&) = (a8 = By) ™™ *a—0)f (™' (D)), (16)
where z = u~'({) = (6{ - B)/(a—7{) is the inverse of { = u(z). This can be expanded in the

form g({) = Z h, (""", where the matrices Ay, ..., h, are linear combinations of ¢, a,, ..., a,

v=0
with scalar coefficients. Since a,, ..., a, in (1) are functions of ¢, x(¢), ..., x(t+n—1), the
same is true of Ay, ..., h, These are now made into functions of ¢, x, Dx, ..., D"~ 'x by

replacing x(t+v) by D'xforv =1, ..., n—1. If the matrix A, is invertible, then g 1g({) is the
characteristic polynomial of the system of differential equations

D"x+b, D" 'x+b,D" %x+ ... +b,x =0, (17

in which D denotes d/dt and b, = hg 'h,. Conversely, if we are given any system of the form
(17), we can recover the corresponding system (1) as follows. Replace { by u(z) in (16) to get

(a0 —By)"*f (2) = (yz+0)"g(u(2))
= ho(az+B)"+ ¥, hob(az+ )" "(yz+0)".
v=1
Equate the coefficients of like powers of z on both sides to obtain

ho = (@5 —Byy"*(a"e+ ¥ a"y"b) ",
v=1

a,=(e+ Y, " p"b,) " (A2e+ Y A}b,), (18)
v=1

where A} is the coefficient of 2"~ in the expansion of (az+ )" *(yz+6)". That is, any system
of differential equations of the form (17) is associated with a system of difference equations of the
Jorm (1), whose coefficients a,, . .., a, are given by (18), provided that the inverse matrix in (18)
exists.

By a strong AQLF of (17) is meant a positive definite hermitian form ¥(x, Dx, ..., D" 'x)
with constant coefficients such that dV/dt < —«V for some constant k¥ > 0 and every non-zero
solution x(¢) of (17). The existence of a strong AQLF is a sufficient condition for the global
asymptotic stability of the trivial solution x = 0 of (17). It has been proved elsewhere that if
the coefficients «, f8, v, & of u(z) are independent of ¢ and, if { = u(z) maps the disc |z[ < 1 into
the half plane Re{ < 0, then the existence of a strong AQLF of (1) implies the existence of a
strong AQLF of (17) (see [2], Theorem 7). This enables us to deduce conditions for (17) to
have a strong AQLF from the conditions given in Theorem 1 for (1) to have a strong AQLF.
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The requirement that { = u(z) map |z| < 1 into Re{ < 0 is certainly satisfied if a, B, y, 6 are
real and 0 < —u(0) < 00,0 £ —u(1) £ 0,0 < —u(~1) £ o0; thatis, if
-B —@+h) a—p
7+4

— < < < < oo.
0< 3 < o0, 0= 0, 0‘6-—7"00 (19)

A simple example satisfying these conditions is u(z) = (z+1)/(z—1). We have now shown
that, if a, B, y, 6 are any real constants satisfying od # By and (19) and if the matrices a,, . .., a,
defined by (18) satisfy the conditions of Theorem 1, then the system (17) has a strong AQLF.
Because of the simplicity of Theorem 1, this stability condition for differential equations could
be useful in practice. The computation of the spectral norms in (3) and of the inverse matrix
in (18) present no difficulties in the scalar case m = 1.

4. On Hilder norms. The Holder norms of any vector X = col (xy, ..., x,) are | X ||, =
r 1/o
Y va|") for 1 £6 < o0 and " X”oo = max([x1 |, cee, |x, [). The corresponding matrix

v=1
norms || Q |, | @ || are defined by (7). The spectral norm used in Theorem 1 is the special
case o0 = 2. It is well known that

el = maxléiér(_zl | eiil)’ fe].= maxléigr(_zllf?u |>,
i= j=

where [0;;] = Q is an r x r matrix. These two norms are particularly useful for practical com-
putation. The theorem of Stoer and Witzgall used in the proof of Lemma 2 is valid for any
Hélder norm with 1 £ 6 £ 0. If we take the norm throughout section 2 to be a Hélder norm,
then all remains valid except that Lemma 2 yields a Lyapunov function V(Y) = | Dy'Y |2
which is not a quadratic form when ¢ 3 2. It follows that, if we take the norm in the state-
ment of Theorem 1 to be a Holder norm with ¢ # 2, then, instead of a quadratic Lyapunov
function, the proof yields a Lyapunov function of the form “ MX "2, where M is a constant
invertible matrix and X = col (x(¢), x(t+1), ..., x(t+n—1)). From the existence of this
Lyapunov function we can deduce as before that the trivial solution of (1) is globally asympto-
tically stable. But the application to differential equations discussed in section 3 appears to
be valid only when the spectral norm is used, because the M6bius transformation theory in
[2] was only proved for quadratic Lyapunov functions.
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