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Abstract
Path loss prediction (PLP) is an important feature of wireless communications because it allows
a receiver to anticipate the signal strength that will be received from a transmitter at a given
distance. The PLP is done by using machine learning models that take into account numerous
aspects such as the frequency of the signal, the surroundings, and the type of antenna. Various
machine learning methods are used to anticipate path loss propagation but it is difficult to
predict path loss in unknown propagation conditions. In existing models rely on incomplete
or outdated data, which can affect the accuracy and reliability of predictions and they do not
take into account the effects of environmental factors, such as terrain, foliage, and weather
conditions, on path loss. Furthermore, existing models are not robust enough to handle the
real-world variability and uncertainty, leading to significant errors in predictions. To tackle
this issue, a novel ultrahigh frequency (UHF) PLP based on K-nearest neighbors (KNNs) is
developed for predicting andoptimizing the path loss forUHF. In this proposedmodel, aKNN-
based PLP has been used to predict the path loss in the UHF. This technique is used for high-
accuracy PLP through KNN forecast route loss by determining the K-nearest data points to a
particular test point based on a distance metric. Moreover, the existing models were not able
to optimize path loss due to complex and large-scale machine learning models. Therefore, the
stochastic gradient descent technique has been used tominimize the objective function, which
is often a measure of the difference between the model’s predictions and the actual output that
will fine-tune the parameters of the KNN model, by measuring the similarity between data
points. This model is implemented using Python to make it a lot more convenient.

Introduction

Mobile communication is regarded as one of our vital demands in the contemporary technolog-
ical era. Due to the tremendous increase in communication devices, this generation will need
services with a large amount of bandwidth and resources. The rapid evolution of communica-
tion technology from 2G toward 4G and 5G [1]. The goals of fifth-generation (5G) networks
are increased throughput, wide coverage, reduced radio latency, enhanced spectral efficiency,
and better connection density. Internet of things (IoT) applications will require wide coverage
areas and diverse terrains. Broad bandwidths will also be provided via new frequency bands,
like the millimeter-wave and sub-6 GHz bands. Several measurement sessions and drive tests
will be necessary to obtain attenuation data at the new frequencies. In network planning for 5G
mobile communication systems, appropriate models will need to be used in order to assess path
loss. Path loss prediction (PLP) models have traditionally been created using deterministic or
empirical methods [2].

The service providers are working hard to meet user expectations and deliver dependable
communication. By extending the long-term evolution (LTE) networks to offer greater band-
width, throughput, and improved service quality, it will be possible to implement these solutions
and meet the criteria of the 5G networks. In terms of services, infrastructure, reconfigura-
tion, and a wide range of operations, 5G networks will offer a greater mobile experience [3].
Machine learning makes use of big datasets and adaptable model architecture to provide pre-
dictions. Machine learning-based methods have been used recently in computer vision, data
mining, speech recognition, and self-driving automobiles, among other fields. For these tasks,
both supervised and unsupervised learning are applicable. Supervised learning with labelled
data seeks to learn a precise and wide function between inputs and outputs in order to address
problems related to regression and classification. On the other hand, unsupervised learning
algorithms using unlabeled data must characterize the hidden structure. The PLP problem and
decision tree are essentially resolved by supervised machine learning methods such as artificial
neural networks (ANNs) and support vector regression (SVR). It has been stated that models
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based onmachine learning aremore computationally efficient than
deterministic models and more accurate than empirical models
[4–6].

The neural network maps a set of input values to a set of out-
put values through a nonlinear process using layers of neurons.
To do this, the input values are added to the appropriate synaptic
weights for each layer, resulting in the correct output [7]. A func-
tion with several inputs and a single output is obtained to handle
the PLP problembetween two places. Information on the transmit-
ter and receiver’s locations, the frequency, and adjacent structures
are among the inputs [8]. Therefore, in order to provide the neces-
sary output with topological and morphological knowledge about
the environment value, the transformation of an input vector is
employed to explain the prediction of path loss [9]. Furthermore,
most of the research that has been published to date uses empiri-
cal models such as the log-distance and free-space models, which
are based on data collected under certain propagation conditions.
Statistical analysis is needed to build the mapping link between
path loss and variables like aircraft height and propagation dis-
tance. Using aerial photos, a territory can also be classified as a
forest or a village, for example, and the appropriate route loss
model can be used to forecast path loss for sites other than urban
areas [10].

Machine learning approaches are used to tackle supervised
regression problems, such as PLP. According to recent research,
machine learning-based route loss models predict path loss more
accurately than empirical models and are even more computation-
ally efficient than deterministic ones [11]. In order to analyze urban
cellular propagation (RX), the physical environment between a
transmitter (TX) and receiver must be classified as either line of
sight (LOS) or non-line of sight (NLOS). A generalized path loss
model is derived by modifying the free space path loss model
with a path loss exponent (PLE) that changes with the environ-
ment, despite the low likelihood of free space propagation. In
order to effectively predict PLP, NLOS environments are further
divided intomoderately and heavily obstructed environments.The
moderately obstructed conditions have small obstructions, such as
building edges or trees, that partially block the optical path between
the TX and RX, while the heavily obstructed conditions have
large obstructions that completely block the optical path [12, 13].
For PLP, additional machine learning techniques were also used,
including decision trees and K-nearest neighbors (KNNs).

The KNN method is introduced into ultrahigh frequency
(UHF) PLP for several reasons. KNN is a straightforward algo-
rithm based on the idea that similar things are close to each other.
In the context of UHF PLP, it’s intuitive to consider that similar dis-
tances, frequencies, or environmental factors might lead to similar
path loss. UHF PLP often involves complex relationships between
various factors such as distance, frequency, terrain, and obstacles.
It is a nonparametric method, meaning it doesn’t make strong
assumptions about the underlying data distribution. It can cap-
ture complex relationships and nonlinearities in the data without
imposing a specific functional form. In wireless communication
scenarios like UHF, the environment can change dynamically due
to factors like moving objects or changing weather conditions.
In addition, KNN, being an instance-based learning method, can
adapt to changes in the environment since it doesn’t explicitly cre-
ate a model; instead, it memorizes the training instances and uses
them for prediction [14].

Moreover, KNN can serve as an initial exploration into UHF
PLP. It can be used as a baseline model to understand the relation-
ships between different parameters and the target variable. It allows

for quick prototyping and understanding of the data before more
complex models are explored. Furthermore, KNN tends to per-
form well when there’s sufficient data available, especially in cases
where the decision boundary is irregular or complex. In UHF
PLP, where multiple variables might influence the outcome, KNN’s
ability to consider multiple features simultaneously can be advan-
tageous [15]. However, UHF signals experience various propa-
gation challenges due to their higher frequency range, including
greater susceptibility to obstacles, reflections, and environmental
factors. Accurate prediction of path loss is crucial for optimizing
communication systems in these conditions. Overall, the intro-
duction of KNN into UHF PLP provides a starting point that
allows for exploring data relationships, providing intuitive insights,
and potentially yielding reasonably accurate predictions.Themain
contribution of this paper is as follows:

• To enhance and identify the path loss in the UHF wireless net-
work in a complex environment, the UHF PLP based on KNNs
is used.

• To predict the propagation path loss for unknown propaga-
tion situations for UHF the proposed model uses K-nearest
neighbor-based path loss prediction (KNN-PLP).

• For wireless network optimization in the proposed model,
an optimization algorithm named stochastic gradient descent
(SGD) is used to optimize the UHF wireless network.

The content of the paper is structured as follows: literature sur-
vey, following that the technique and the novel solution, and results
and discussion; finally concludes the paper.

Literature survey

Thrane et al. [8] proposed a model to evaluate mobile commu-
nication system performance and optimize coverage for existing
deployments. Accurate radio performance estimation faces new
issues due to the different 5G transmission frequencies. Traditional
channel models are replaced by a channel model created using
deep learning (DL) methods with the help of satellite pictures
and a straightforward path loss model. Predictive performance has
increased using model-aided DL.The proposed DLmodel is capa-
ble of increasing PLP at unseen places for 811 MHz with 1 dB
and 4.7 dB for 2630 MHz. The model-aided approach delivers an
improvement of 1 dB. However, it is difficult to obtain enough
data to train a model that accurately predicts path loss in different
environments.

Wen et al. [16] proposed a PLP model for an MD-82 aircraft
cabin.The PLPmodel is constructed using machine learning tech-
niques such as back-propagation neural network (BPNN), SVR,
random forest, and AdaBoost. Based on knowledge already acces-
sible at known frequencies, further study is conducted to anticipate
route loss at a new frequency. Additionally, provide a PLP scheme
combining empirical models and machine learning-based mod-
els to address the issue of data limitation at the new frequency.
To increase the training set, this method leverages estimated val-
ues produced by the empirical model by earlier data. The training
set for the route loss prediction at 5.8 GHz is composed of sam-
ples obtained from the empirical model and observed samples at
2.4 GHz and 3.52 GHz, respectively. If data availability is limited,
it is difficult to obtain enough data to train a model to accurately
predict path loss in different aircraft cabin environments.

Zyner et al. [17] presented amultimodal, probabilistic approach
for driver intention and path prediction. Recurrent neural
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networks are used in conjunction with a mixture density net-
work output function to accomplish this. A clustering technique
is applied to this data, yielding a ranked list of unknown potential
pathways. To corroborate the findings, a naturalistic dataset from
real-world scenarios was collected, which included over 23,000
automobiles passing around five distinct roundabouts. This is the
largest publicly available dataset of its kind, as far as the author is
aware. A total of 5952 real-world trajectories were used to evaluate
the method, and it performed better than all baselines. However,
this method is computationally expensive, which could be a prob-
lem for real-time applications in which low latency predictions are
required.

Faruk et al. [18] proposed a PLP model within urban envi-
ronments. Effective planning and implementation of radio access
networks in urban contexts require a thorough understanding of
how radio waves behave in a real wireless channel. Although popu-
lar due to their simplicity, empirical propagation models are prone
to significant prediction errors. The evaluation and analysis of sig-
nal fading forecasts in the very high frequency and UHF bands in
typical metropolitan situations. Based on ANN, adaptive neuro-
fuzzy inference system, and Kriging techniques, path loss models
are created using the gathered data. The outcomes of the created
models’ predictions are contrasted with those of a few empirical
models and field measurements. Other than Egli and ECC-33, all
other models’ root mean square errors (RMSEs) under investiga-
tion are considered acceptable. However, it is difficult to predict
accurately in complex environments, such as urban areas with
many buildings and other structures that cause signal reflections
and absorption. This leads to large variations in signal strength,
making it difficult to predict path loss accurately.

Abolade et al. [19] propose a new support vector machine
(SVM)-based radio propagation model for path loss (PL) forecasts
in urban settings. Field measurement campaigns are carried out
in metropolitan settings to collect data on route loss and mobile
network characteristics of radio signals broadcast at frequencies
of 900, 1800, and 2100 MHz. In order to forecast path loss in an
urban propagation context, an SVM model is trained using field
measurement data. The mean absolute error (MAE), mean square
error (MSE), RMSE, and standard error deviation (SED) are used
to assess the performance of the SVM model. Additionally, the
complexity of the proposed model makes it difficult to interpret
and understand the model’s predictions, which could make it hard
to identify and address any issues that arise during the prediction
process.

Ahmadien et al.’s [10] any wireless communication system’s net-
work planning is utterly dependent on PLP. For cellular networks,
it is often accomplished through in-depth assessments of the tar-
get area’s received signal power. Ray tracing simulations are used
when a 3D model of the area is available; however, a significant
disadvantage of this strategy is the high computing complexity of
the simulations. In this study, a deep convolutional neural network
(CNN)-based method for predicting the path loss distribution
directly from 2D satellite pictures. The inference is performed in
real-time, whereas the training procedure takes time and must be
done offline. The 3D representation of the area is not required for
inference using the suggestedmethod because the network just uti-
lizes an image captured by an aerial vehicle or satellite as its input.
However, it requires satellite images to predict the path loss dis-
tribution, and 2D images are not sufficient to characterize the 3D
structure in some cases. This is more critical for urban regions,
especially when the transmitter altitude is low and the frequency
is high.

Moraitis et al. [20] used a machine learning approach, to
develop prediction path loss models for cellular networks in an
urban context. A path loss dataset produced by simulated out-
comes taking into account an LTE network using a digital ter-
rain model is used to carry out the training and testing process.
When simulating both LOS and NLOS propagation conditions,
an urban environment is taken into account. The findings show
that all of the methods under consideration forecast route loss
with impressive accuracy, with RMSEs of 2.1–2.2 dB for LOS loca-
tions and 3.4–4.1 dB for NLOS locations, respectively. The KNN
exhibits the best performance among the algorithms under consid-
eration, making it a desirable alternative for PLP in metropolitan
environments.

Ojo et al.’s [21] PLP models play an important role in wireless
signal propagation due to the ongoing need to provide dependable
and high-quality service to subscribers. Deterministic models are
more accurate, but they are more difficult to develop, take more
time, and have no adaptable characteristics. To that end, this paper
proposes to address the issues with existing models by applying
machine learning algorithms to PLPs.Thedatawere collected in six
base transceiver stations via drive test in multitransmitter scenar-
ios, and the path loss of the received signal level was calculated and
analyzed. The measured data was then used to create two machine
learning-based PLPmodels. However, RBF neural networks can be
computationally intensive and require a large amount of process-
ing power, making them less suited for real-time implementation
in resource-constrained environments.

Sotiroudis et al.’s [22] PLPs in metropolitan settings have been
carried out using tabular data and photos as two distinct sorts of
inputs from machine learning models. On these various sources
of input information, many sorts of models are applied. The cur-
rent work attempts to combine both types of input data into a
single prediction model. Each feature of the tabular data vector
is divided into several pixels according to its estimated relevance.
The resulting synthetic images are then combined with pictures
of particular parts of the local map. A CNN is then utilized as an
input for compound pseudo images, which have channels of both
map-based and tabular data-based images, to forecast the path loss
value at a given distance.This approach could be applied for PLP in
urban environments for several state-of-art wireless networks like
5G and the IoT. The presented framework is general and incor-
porates changes and/or additions within the tabular data or the
images that constitute its channels.

Lee et al. [23] proposed a new algorithm for predicting the PLE
of outdoor millimeter-wave band channels through a DL method.
Thewireless channel data was generated using a three-dimensional
radio ray tracing tool to train the PLE on the neural network. The
neural network’s performance in making predictions for the test
data set was assessed after it had been trained using channel data
collected from diverse contexts. It is possible to determine the ideal
hyper parameter for predicting the PLE. Regarding the number of
structures in the area or their typical distance from the transmit-
ter, the forecast performance does not demonstrate any appreciable
variation. However, the prediction is not accurate in all environ-
ments. Millimeter-wave channels are affected by various factors
such as atmospheric absorption, vegetation, and buildings which
vary greatly between different environments.

From the analysis, it is clear that paper [8] provides errors in
predicting different environments, for paper [16] data availability
is limited in aircraft cabin environments. In paper [17] is computa-
tionally expensive, for paper [18] it is difficult to predict in a com-
plex environment. In paper [19] it is hard to identify and address
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issues during the prediction process. Paper [10] is more critical for
the urban region. In paper [20] using KNN produces better pre-
diction results. It takes a large amount of computation power and
makes them not suitable for a complex environment [21]. Paper
[22] incorporate changes within the tabular data. Millimeter-wave
channels are affected by various factors [23]. Hence to fill this
research gaps a novelty must be developed.

UHF PLP based on KNNs

PLP is important for UHF bands because it helps to understand
the propagation of radio waves in a given environment.This infor-
mation is crucial for the design, deployment, and optimization
of wireless communication systems operating in the UHF band.
There are variousmachine algorithms are used to predict the prop-
agation of path loss and it is difficult to achieve for unknown
propagation situations, which is not an ideal outcome. To tackle
this issue, a novel UHF PLP based on KNNs has been developed
to identify path loss in UHF with high frequency in any envi-
ronment. For predicting the path loss, the KNN-PLP is utilized
in the proposed model which makes KNN-PLP in the UHF net-
work by identifying the K-nearest data points to a given test point
based on a distance metric and forecast route loss to ensure high-
accuracy prediction even in the complex environment. Moreover,
using the KNN model results in overfitting when the model is too
complex and starts to fit the noise or random fluctuations in the

training data, rather than the underlying patterns. To overcome
this difficulty, an SGD optimization has been used to reduce the
overfitting problem and reduce the objective function, a measure
of the discrepancy between the model’s output forecasts and real-
ity that is frequently used to optimize the UHF wireless network.
Hence, the proposed model is used to predict and optimize the
UHF network with high accuracy.

Figure 1 illustrates the process flow of the proposed model
UHF-based PLP based on KNNs. The process begins with the
collection of data in a 455 MHz UHF network, the various param-
eters such as distance, signal strength, and other relevant factors
which affect path loss are collected. The data is then prepro-
cessed, which includes feature extraction and scaling, to ensure
that the data is in the appropriate format for the proposed model.
Once the data is preprocessed, the proposed model uses KNN
applied to determine the KNNs for each data point. The algo-
rithm then uses the KNNs to predict the path loss for each data
point by forecasting route loss. This process is repeated for all data
points, and the final prediction is made based on the average of
all the predictions. However, other factors affect the path loss in
a wireless network so the proposed model uses an optimization
algorithm to reduce path loss in the proposed model. The SGD
optimization algorithm is used in the proposed model to reduce
the overfitting problem. The proposed PLP model allows an accu-
rate prediction and optimization even in complex wireless network
environments.

Figure 1. Process flow of the proposed model.
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K-nearest neighbor-based path loss prediction

To predict path loss in the wireless network, the proposed model
UHF PLP based on KNNs has been presented to identify the path
loss by using KNN. The ability to make predictions based on the
information gathered from the nearest neighboring data points,
especially in the UHF band, KNN is a type of instance-based learn-
ing algorithm, which means that it uses the data points closest to a
newdata point tomake a prediction.Thekey idea behind theKNN-
PLPmodel is to predict path loss at certain locations and efficiently
predict path loss in unknown locations.

The proposed model initially collects a large amount of data on
a 455 MHz UHF wireless network based on the factors that affect
path loss. Preprocessing is applied to the collected data before it
is used in the proposed model. The process of data preprocessing
includes data cleaning, which involves removing and correcting
any inaccurate data. Once the data is cleaned, it needs to be scaled
to ensure that all the features are on the same scale. This is an
important process in the proposed model because it works based
on distance measures, and if the features are on different scales,
the distance calculated is pointless. The min-max scaling is used
in which all input features and path loss values are changed in
the range from −1 to 1 or from 0 to 1. In a PLP model, fea-
ture extraction is identifying and extracting relevant information
from the collected data that can be used to make predictions. This
information is typically in the form of numerical or categorical
variables, also known as features. These features are used as inputs
to the prediction model. In the proposed PLP model for UHF, the
data collection process involves measuring the signal strength at
different locations and under different conditions. The extracted
features include the distance between the transmitter and receiver,
the transmitter and receiver’s height, the environment type, and
obstacles such as buildings and trees. The distance-based feature
extraction, such as Euclidian distance, is used in the proposed
model and from feature-extracted datasets.The data is divided into
a training set and a test set.The training set is used to train theKNN
model, while the test set is used to evaluate its performance. In path
loss models, KNN is used for prediction. KNN employs a weighted
average of the KNNs, with the weight determined by the inverse
of their distance. The KNN predicts the values of new data points
based on feature similarity. This means that a value is assigned to
the new point based on how closely it resembles the points in the
training set.

Algorithm 1. Process flow of K-nearest neighbor-based path loss
prediction (KNN-PLP)

Step 1: Data Collection and Preprocessing
# Assume you have a dataset with features (distances, signal strengths) and
path loss values
# Data cleaning, normalization, and splitting into training and testing sets
Step 2: Choose K and Distance Metric
K = 5 # Set the number of neighbors
distance_metric = ‘euclidean’ # Choose distance metric (e.g., Euclidean dis-
tance)
Step 3: Training Phase
# In KNN, training involves storing the dataset (no explicit training step)
training_data = load_training_data() # Load the training dataset with path
loss values
Step 4: Prediction Phase
def predict_path_loss(test_point):

distances = []
for data_point in training_data:
# Calculate distance between test point and each training data point
dist = calculate_distance(test_point, data_point, distance_metric)

distances.append((data_point, dist))
# Sort distances and select K nearest neighbors
distances.sort(key=lambda x: x[1])
nearest_neighbors = distances[:K]
# Calculate predicted path loss based on the average of K
nearest neighbors’ path loss values
predicted_path_loss = sum(neighbor[0].path_loss for neighbor in
nearest_neighbors)/K
return predicted_path_loss

Step 5: Evaluation
testing_data = load_testing_data() # Load the testing dataset
predictions = []
actual_values = []
for test_sample in testing_data:

predicted = predict_path_loss(test_sample)
actual = test_sample.path_loss
predictions.append(predicted)
actual_values.append(actual)

# Calculate evaluation metrics (e.g., RMSE, MSE, R-squared)
evaluation_metrics = calculate_metrics(predictions, actual_values)
Step 6: Model Refinement and Optimization
# Tune hyperparameters (K, distance metrics), feature engineering, cross-
validation, etc.
Step 7: Deployment and Usage
# Use the trained model for path loss prediction in real-world scenarios

Algorithm 1 shows the process flow of KNN-PLP in the pre-
diction of PLP. The extracted features data are used to ensure the
data is in the appropriate format for KNN. The KNN algorithm
is applied to the data to determine the KNNs for each data point.
Then the KNN predicts the path loss in the network. The KNN
model works by finding the KNNs of a new point based on its
features. The path loss value at the new point is then predicted as
the average of the path loss values of its KNNs. Nearest-neighbor
methods in input space x to form C the KNN for C are given in
equation (1):

C (x) = 1
k ∑

xi

∈ Nk (x)Ci (1)

where Nk (x) is the neighbor of x defined by the k closest point
xi in the model and the Euclidean distance is assumed to find
the k observation with xi closest to x in input space and aver-
age responses. The Euclidian distance E is calculated as the square
root of the sum of the squared differences between points given in
equation (2):

E =
√√√
⎷

k

∑
i=1

(xi − yi)
2. (2)

When the values of x and y are the same, the distance D to be
equal to 0, otherwise D = 1. The closest k data points are selected
based on the distance. The number of neighbors assigns a value to
any new observation, and the average of these data points is the
final prediction for the new one. The Euclidean distance is used
in model training to determine the distance between each training
point and the new point. Based on the determined distance, the
closest k data points are chosen, and the number of nearest neigh-
bors gives any new observation a value. The outcome frequently
varies depending on the k value.The error calculation for the train
and validation sets was used to optimize k. The training sample’s
error rate at k = 1 is always zero.The training data point is closest
to itself. As a result, when k = 1, the prediction is always correct.
If the validation error curve resembles another, k = 1 is selected.
The validation error curve with different values of k is mentioned
in equation (2). It is overfitting the limits at k = 1. As a result, the

https://doi.org/10.1017/S1759078724000370 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078724000370


International Journal of Microwave and Wireless Technologies 995

error rate initially declines and drops to a very low level. After the
lowest point, it grows as it is raised.The training and validation are
separated from the initial dataset to obtain the ideal value. After
that, plot the validation error curve to get the optimal value. This
value should be used for all predictions. The optimization algo-
rithms, such as SGD are used in the proposedmodel as a first-order
optimization algorithm that updates the model parameters itera-
tively by following the negative gradient of the loss function to the
parameters.

Stochastic gradient descent

To optimize the UHF wireless network, the proposed model uses
the SGD algorithm for finding the minimum of an objective func-
tion, which is a scalar function of one or more variables, by
iteratively moving in the direction of the negative gradient of the
function. SGD is considered the best optimization algorithm for
the KNN-PLP model because of its ability to optimize non-convex
functions, which is the case for PLP.The process flow of the SGD is
shown in algorithm. Initially, the values of the weights and biased
of the proposed model are arranged in random order for each iter-
ation and evaluate the difference between the predicted and actual
values for the PLP. Howwell themodel fits the training data is indi-
cated by the loss function, which is also known as the cost function.
The cost function should be viewed with caution to improvemodel
fit. The random point in the function is represented by the row
vector 𝜐:

𝜐 = [a0, a1, … , an] . (3)

The cost function is evaluated by the difference between the pre-
dicted and actual values for the path loss in the training set given
in equation (4):

Q (𝜐) = 1
n

n

∑
i=1

Qi (𝜐) . (4)

From equations (2–4), theQi (𝜐) is the value of the loss function
at the ith data point and finding the minimized loss function.

Q (𝜐) =
n

∑
i=1

(xi − yi)
2 (5)

Q (𝜐) =
n

∑
i=1

(a1 + a2xi − yi)
2 (6)

In equation (6), the Q (𝜐) is minimized objective function.
The gradient is only evaluated at a random point. Whenever the
gradient is being evaluated, it is necessary to pay for expensive eval-
uations of the gradients from all loss functions. When there are
no simple formulas and the training set is very large, it becomes
exceedingly expensive to evaluate the sums of gradients because
doing so requires evaluating the gradients of all the loss functions.
This is very effective in the case of large-scale machine learning
problems. The parameters are updated using the gradient com-
puted in the previous step and a learning rate, which determines
the step size of the path loss optimization, and this process is
repeated until the cost function converges or a maximum number
of iterations is reached.

The SGD algorithm performs much better in large-scale
datasets. The idea behind the algorithm is to find an efficient way
of reaching the minimum value of a function. The SGD algorithm
used in the proposed model is given below.

Algorithm 2. Stochastic gradient descent algorithm

SGD
inputs: G = (x, y), number of towers h
output: k-dimensional layout O with n vertices
P ← MaxMinRandomSP(G, h)
d{p,i} ← SparseShortestPath(G, P)
w′

{ij} ← 0
for each {p, i: p ∉ N (i)} ∈ (P × V):

s ← |{j ∈ R(p): dpj ≤ dpi/2}|
w′

ip← s Wip
for each {i, j}∈ E:

w′
ij ← w′

ji ← wij
O ← RandomMatrix(n, k)
for η in annealing schedule:

for each {i, j} ∈ E ∪ (V × P) in random order:
𝜇i ← Min (w′

ij𝜂, 1)
𝜇j← Min (w′

ji𝜂, 1)

r ←
Xi−Xj−dij

2

Xi−Xj
Xi−Xj

X i ← X i − 𝜇ir
X j ← X j − 𝜇jr

Algorithm 2 is to find the model parameters that correspond to
the best fit between the predicted and actual path in the wireless
network. The algorithm generates a set of points P which repre-
sent the initial positions of the towers. To calculate the distance
between each point in P and every other vertex in the network.The
function SparseShortestPath (G, P), calculates the shortest path
between each point in P and every other vertex in the network.The
algorithm sets the weight of each edge in the network to zero. The
weight of an edge between two vertices represents the cost of trans-
mitting a signal between those two vertices. The weight of each
edge between a tower and a vertex.This is done by iterating through
each point in P and each vertex in the network and calculating the
number of verticeswithin a certain distance of the point.This num-
ber is used to calculate theweight of the edge between the point and
the vertex. The final step is to generate a random k-dimensional
layout of the network using the function RandomMatrix (n, k).
This layout is then optimized using a stochastic genetic algo-
rithm that uses an annealing schedule to improve the layout.
The algorithm iterates through each edge and vertex in the net-
work in random order and updates the position of the vertices
based on the distance between them and the weight of the edges
between them.

Overall, the proposed UHF PLP based on KNNs provides an
effective PLP and optimization in the UHF wireless network. The
data is collected and preprocessed to remove the noise in the
data. The feature extraction process is used to obtain the feature-
extracted dataset used in the KNN model. The KNN is used to
predict the path loss by finding the KNNs in the network by fore-
casting the route loss. To optimize the network by reducing path
loss the proposed model uses the SGD optimization algorithm to
model’s parameters in order to minimize the loss function. The
proposed model for PLP and optimization model shows accu-
rate prediction even in a complex environment. The result of the
proposed system is explained in the next section.

Result and discussion

This section includes a thorough analysis of the performance of the
proposed UHF PLP based on KNNs. The implementation results
are simulated in the Python platform, and a comparison section
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is to make sure the proposed model successfully predicts and
optimizes the path loss in the UHF wireless network.

Experimental setup

This work has been implemented in the working platform of
Python with the following system specification and the simulation
results are discussed below.

Platform Python

OS Windows 10 (64-bit)

Processor Intel i3

RAM 8GB RAM

Data collection

Data collection for PLP in the UHF band typically involves mea-
suring the strength of the signal at various locations and under
different conditions. For each measurement, record the follow-
ing parameters: distance between the transmitter and receiver,
received signal strength indicator, terrain blockage factor, fre-
quency, antenna gain Tx, antenna gain Rx, Tx power, Tx height,
and Rx height. The collected data is stored in the database and
repeated in a different location.

Performancemetrics of proposed UHF PLP based on KNNs

The performance of the proposed UHF PLP based on KNNs for
predicting and optimizing path loss in UHF wireless networks and
the achieved outcome are explained in detail in this section.

Figure 2 depicts the emitted power of the proposed model.
The amount of power radiated through the antenna as it keeps
increasing as the distance between the antenna increases.The emit-
ted power of the proposed model ranges between −50 dBm to
−58 dBm, with the distance between the transmitter and receiver
ranging from 1 km to 5 km, respectively. Hence, the proposed
model has low power emitted from the antenna because the pro-
posed model uses KNN-PLP. The number of KNNs (K) in the
proposed method for emitted power prediction directly impacts
the prediction accuracy and smoothness of the model’s output.
A smaller K might lead to overly sensitive predictions, potentially
causing erratic variations in emitted power estimation due to noise
or outliers in the data.

Figure 3 shows the base station (BS) antenna gain of the pro-
posed model. The BS antenna gain of the proposed model is in
the ranges between −15 dBi to −10 dBi with the distance ranging
from 1 km to 5 km.The proposed model has BS high antenna gain
because the SGD optimization algorithm increases the overall effi-
ciency.Moreover, when thewavelength is high, the BS antenna gain
is also maximum. The number of KNNs in the proposed method
for BS antenna gain significantly impacts prediction accuracy.With
a smallerK value, such asK = 1, predictions are highly sensitive to
noise or outliers, potentially leading to erratic estimations. An opti-
mal K value balances bias and variance, capturing the underlying
complexities of antenna gain while avoiding overfitting or under
fitting, crucial for accurate BS antenna gain estimations.

Figure 4 shows the receiver antenna gain of the proposedmodel.
The receiver antenna gains of the proposed model range between

Figure 2. Emitted power of the proposed model.

Figure 3. BS antenna gain of the proposed model.

Figure 4. Receiver antenna gain of the proposed model.

−50 dBi and −60 dBi with the distance of the receiver ranging from
1 km to 5 km. The proposed model has a high receiver antenna
gain because it uses KNN to find the nearest path. The choice
of the number of nearest neighbors (K) in the KNN algorithm
directly influences receiver antenna gain prediction. A smaller K
value leads to increased noise sensitivity and overfitting, result-
ing in erratic gain estimations. Conversely, larger K values often
smooth predictions, potentially averaging out important local vari-
ations and leading to a loss of fine-grained details in the gain
estimation. Optimal K selection is crucial, balancing between cap-
turing nuanced variations in gain while avoiding excessive noise
or oversimplification in the predictions, ultimately impacting the
accuracy and precision of receiver antenna gain estimations.
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Figure 5. Comparison of MAE of the proposed model with existing models.

Figure 6. Comparison of RMSE of the proposed model with existing models.

Comparison results of the proposed UHF PLP based on KNNs

This section highlights the proposed UHF PLP based on KNNs
and the achieved outcome was explained in detail in this section
by comparing it to the outcomes of existing approaches such as
AdaBoost, random forest, SVM, and BPNN [2].

Figure 5 shows the comparison of the MAE of the proposed
model. The proposed model attains the minimum MAE error of
3.0 dB whereas, the existing techniques such as AdaBoost, ran-
dom forest, SVM, and BPNN attain the MAE error of 6.3 dB,
6.0 dB, 4.0 dB, and 3.3 dB respectively. The MAE of the proposed
model achieves a low value when compared with other existing
techniques.

Figure 6 shows the comparison of the RMSE comparison of the
proposed model. The RMSE of the proposed model achieves a low
value of 3.5 dBwhile comparedwith other existing techniques such
as AdaBoost, random forest, SVM, and BPNN attaining the RMSE
of 6.7 dB, 6.5 dB, 5.0 dB, and 3.9 dB respectively.

Figure 7 shows the comparison of themean absolute percentage
error (MAPE) comparison of the proposed model. The proposed
model attains the minimum MAPE of 4% whereas, the existing
techniques such as AdaBoost, random forest, SVM, and BPNN
attain the MAPE of 11%, 10%, 6.3%, and 5.1% respectively. The
MAPE for the proposed model attains low when compared with
other existing techniques. Hence, the proposed model performs
well.

Figure 8 shows the path loss comparison of the proposedmodel
with the existing model. The proposed model attains the mini-
mum path loss of 44 dB whereas, the existing techniques such as
AdaBoost, random forest, SVM, and BPNN attain the MAPE path
loss of 72 dB, 70 dB, 67 dB, and 50 dB respectively. When the
proposed system is compared with other existing techniques the

Figure 7. MAPE comparison of the proposed model with the existing models.

Figure 8. Path loss comparison of the proposed model with the existing models.

Table 1. Overall table for the comparison of the previous model and the
proposed model

Methods MAE (dB) RMSE (dB) MAPE (%) Path loss (dB)

AdaBoost 6.3 6.7 11 72

Random forest 6.0 6.5 10 70

SVM 4.0 5.0 6.3 67

BPNN 3.3 3.9 5.1 50

Proposed 3.0 3.5 4 44

proposed model has less path loss. As a result, the proposed model
is more efficient than the existing model.

Table 1 depicts the comparison of various parameters with var-
ious methodologies. To evaluate the effectiveness of the proposed
model, existing techniques such asAdaBoost, random forest, SVM,
and BPNN are compared with the proposed model. The value of
MAE for AdaBoost is 6.3 dB, random forest attains 6.0 dB, SVM
attains 4.0 dB, BPNN attains 3.3 dB, and proposed attains 3.0 dB.
The value of RMSE attained by AdaBoost is 6.7 dB, random for-
est at 6.5 dB, SVM at 5.0 dB, BPNN at 3.9 dB, and the proposed
method at 3.5 dB.The value ofMAPE attained byAdaBoost at 11%,
random forest at 10%, SVM at 6.3%, BPNN at 5.1%, and the pro-
posed method at 4%. The value of path loss obtained by AdaBoost
at 72 dB, random forest at 70 dB, SVMat 67 dB, BPNNat 50 dB, and
the proposedmodel at 44 dB.Hence, the proposedmodel performs
well when compared with other existing techniques.

Figure 9 shows the comparison of standard deviation for pro-
posed model with existing works. The proposed model attains
minimum standard deviation of 8.07 dB. Here the proposedmodel
is compared with existing models such as Alpha-Beta-Gamma
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Figure 9. Comparison of standard deviation of the proposed model with existing
works.

Figure 10. Comparison of ESD of the proposed model with existing models.

(ABG) model, Close-In (CI) model and DL. While comparing
thesemodels with proposedmethod, the existingworkABGmodel
obtains 13.84 dB, CI model obtains 13.97 dB, and the DL model
obtains the standard deviation value of 9.13 dB. Hence the pro-
posed method achieves the better standard deviation when com-
pared to other existing models.

Figure 10 compares the Error standard deviation (ESD) of the
proposed model with the existing works such as AdaBoost, SVR,
BPNN and log distance. While comparing the proposed work with
the existingmodels, the proposedmethod achieves 6.57 ESD. Here
the existing work AdaBoost attains the ESD value of 4.15 dB,
SVR attains 5.34 dB, BPNN attains the value of 5.68 dB and the
log distance model achieves the ESD of 6.32 dB. Hence the pro-
posed model achieves better value of ESD when compared with
the existing models.

Figure 11 depicts the comparison of maxPE for proposed
method with the existing works such as AdaBoost, SVR, BPNN,
and log distance.When comparing the proposedmodel with exist-
ing works, the proposed model achieves the maxPE of 23.78 dB.
The existing model AdaBoost attains the maxPE of 13.08 dB,
SVR attains 13.28 dB, BPNN attains 14.83 dB, and log distance
attains 21.63 dB. Here the proposed model attains the high value
of maxPE.

Figure 12 shows the comparison for running time of the pro-
posed method. Here the proposed method is compared with the
existing models such as SVR, Decision tree (DT), Random for-
est (RF) and ANN. When comparing with the existing models,

Figure 11. Comparison of maxPE of the proposed method with existing works.

Figure 12. Comparison of running time of the proposed method with existing
models.

proposed method attains the running time of 0.078 s, while the
existing model SVR obtains 3.86 s, DT obtains 0.14 s, RF obtains
11.247 s, and ANN achieves the running time of 59.14 s. Hence
the proposed model achieves low running time while the existing
ANN is maximum.

Overall, the proposed model shows that it is more efficient to
predict path loss when compared to other existing techniques such
as AdaBoost, random forest, SVM, and BNPP. The proposed UHF
PLP based on KNNs has a low path loss of 45 dB, low MAPE of
4%, low RMSE of 3.5 dB, low MAE of 3.0 dB, standard devia-
tion of 8.07 dB, ESD of 6.57 dB, maxPE of 23.78 dB, and running
time of 0.078 s. The overall performance of the proposed model
outperforms all existing models.

Conclusion

To predict and optimize the path loss in UHF wireless networks,
a novel UHF PLP based on KNNs has been proposed to enhance
and identify the path loss in UHF. The proposed model utilizes
the KNN model to predict the path loss in the wireless network
by determining the K-nearest data points to a particular test point
based on a distance metric. The data is gathered from the UHF
wireless networkwhich uses the 455MHzband and then the data is
pre-processed to remove the noise in the data.Themin-max scaling
is used to fit the data in a specific range and distance-based feature
extraction is used to extract the feature in the dataset. The KNN
is used to predict the path loss by determining the KNNs for each
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data point. Therefore, the KNN predicts the path loss in the net-
work. To minimize the error between the predicted values and the
actual values for the optimization of the wireless network, an opti-
mization algorithm named the SGD technique is used. To optimize
the parameters of the KNN model and the results obtained by the
proposed model are more accurate and efficient when compared
to the various existing PLP models. The proposed model attains a
low value in MAE of 3.0 dB, low RMSE of 3.5 dB, low MAPE of
4 dB, low path loss of 45 dB, standard deviation of 8.07 dB, ESD of
6.57 dB, maxPE of 23.78 dB, and running time of 0.078 s when
compared to existing models such as AdaBoost, random forest,
SVM, and BNPP which is 30% lower than the existing technique.
Thus, the proposed model is used for the prediction and opti-
mization of path loss in UHF wireless networks to improve the
communication link and enhance the overall system performance.
Overall, the UHF PLP based on KNNs is a promising approach for
PLP in UHF wireless networks.
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