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Abstract. We show that a tree is stable if and only if its automorphism group contains a
transposition. The method is constructive and so enables a stabilising sequence to be found.

1. Introduction

Throughout all graps are finite, undirected, and without loops or multiple
edges. All of the basic graph concepts can be found in [1] and all group concepts
and notation can be found in [5] except that, as in [1], we use G + H for the sum
of two permutation groups G, H, and G[H] for the composition (wreath product)
of G around H.

A graph ¢ on a vertex set V is said to be semi-stable (at v) if there exists a
vertex v such that I'(%,) = I'(9), (see [4]) where I'(¥) is the automorphism group
of 4. Further ¥ is stable if when | V| = n there exists a sequence vy, v,,*,0, of
the vertices of ¢ (a stabilising sequence) such that I'(%,,,. ,.) = I'(9)y,s,..0. fOr
k=1,2,---,n.

The concept of stability was introduced in [3] and in [4] it was shown that
if a graph is stable then it is necessary that its automorphism group contain a
transposition. We show here that if 7 is a tree, then for 7 to be stable the posses-
sion of a transposition by I'(Z7) is also sufficient.

2. Bunches

If in a tree  there are r vertices of degree one (end vertices), r = 2, adjacent
to a common vertex v, then 7 is said to have a bunch of size r (an r-bunch) at v.
In such a case 4 can be considered as 7. ", ,([1,p.23]) where ' is the sub-
tree of .7~ with the vertices of the r-bunch removed.

Lemma 1. If| V| > 2 and I'(J") contains a transposition then I has a bunch.

PROOF. If | V| = 3 the result is true since J = X", , which has a 2-bunch
and if | V| =4 then 7 = 2", ; and this has a 3-bunch.
Let| V| > 4,let (u,v,) € [(J), and let u,u,, v,v, be edges in 7. Then u,u"*"
476
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= v,u,, and v,0$""Y =u,v,, so v, and u, are adjacent in J~ as are u, and v,.
Hence u, = v, since otherwise 7 contains the cycle u,, v,, vy, u,.

Similarly if u,u; and v,v; are further edges of J then u; = v;. But this
means that u,, us, vy, v3is a cycle in J and so u, = u;.

Hence if (u,v,) e I'(J"), u, and v, must have degree one and be adjacent to a
common vertex of 7, and so they are part of a bunch of 7.

The main result of the paper is clearly true for | V| =2 and for | V| > 2 it is
enough to prove that any tree with a bunch is stable. We do this in stages first
noting that Heffernan [2] has shown that all rooted trees are semi-stable at an
end vertex. It follows immediately therefore that all rooted trees are stable,
regardless of their automorphism group.

Before continuing we note three lemmas. A proof of Lemma 3 can be found
in [3].

LEMMA 2. For graphs 4 and # with v a vertex of 4 and ¥ # # and
G, # H then

(¢ V), = [[(9) + I(H)], = T(¥9), + I ()

LEMMA 3. For v a vertex of some copy of ¥ in the graph n%
I[(n®), = SI(9)], = S,-1[T(#)] + I(¥),

LEMMA 4. For the tree I if v is fixed by I'(9") then I'(7) = I(J) where J_
is the tree J rooted at v.

If %, are the branches of & at v then Lemma 4 enables us to treat I'(J") as
I'(V4#;) where 4, denotes &, rooted at v. We can now dispose of the trees with
only one bunch.

THEOREM 1. A tree with only one bunch is stable.

Proof. If 7 possesses a single bunch attached to v then v is fixed by I'(9).
In view of Lemma 4 it follows thatif 7 = 9. ", then I(9)=T(J ") + T'(A", ).
But we know that 7’ is stable so the vertices of the stabilising sequence of 7’ can
be removed in order until the situation of Figure 1(a) is reached. The vertices
removed will form part of the stabilising sequence of 7~
Us—2 X

(a) (b)

Figure 1
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because I'g.,) = I(J')+I(X,,)
= ("), + (X, as.Z’issemi-stable at w
(7)., by Lemma 2.

The graph of Figure 1(a) is semi-stable at u,_; but not at u,_, so in the
stabilising sequence for  we next remove u,_, and then u,_,. J is now reduced
to o¢;,, and this is stable by [3] with » and then the vertices of degree one as a
stabilising sequence. Hence 7 is stable.

The situation of the type shown in Figure 1(b) does not arise since (b) would
have been derived from (c), and the rooted tree obtained from (c) by removing
the vertices of the bunch is not semi-stable at x. Further at no stage in the removal
of ' could another bunch occur as this would lead to the introduction of an
automorphism not present in the previous stage and the semi-stability would have
been violated.

3. A stability algorithm

A treeJ is said to have been pruned if its stabilising sequence is {v,, v,,-,v,}
and if the vertices vy, v,,--+,0,, with p < n, have been removed in order. We now
show that a tree with any number of bunches can be pruned to a tree with one
bunch so that Theorem 1 can be applied.

Now every tree has a centre consisting of one or two vertices. We deal with
the central and bicentral cases separately, noting that the concept of lightest
branch at a vertex will be of use throughout. A lightest branch is one with smallest
diameter and a minimum number of vertices.

It is assumed throughout that .5~ has more than one bunch —the algorithm
stops as soon as J is pruned to one bunch.

A. Central Case. (i) Let ¢ be the centre of J and let ¢ have degree greater
than2. Let &,, i=1,2,-:-,s, be the lightest branches at ¢ which have no bunches,
and €;, j =1,2,--, ¢, the lightest branches at ¢ which have bunches. Let .7’ be
the sub-tree of 7~ with no vertices in common with the %, or the % except c. Then
as c is fixed by I'(9") we have

ron=r(( 2)+r(U ) +re@.

In view of Lemmas 2 and 3 if &, is semi-stable at v then so is 7 and as &, is a
rooted tree (rooted at c) then it is semi-stable at an end vertex. But

ry=ri@+r(U 2) +r(J «) + 1

and since (4,), is semi-stable then so is . Hence #, can be pruned down to ¢,
and this is also a pruning of . No extra automorphism can occur in the relevant

https://doi.org/10.1017/51446788700028834 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028834

[4] Stable trees 479

subgroups of I'(9) as (#,), and its sub-branches are too light to map into any
other branches, and any extra automorphisms occurring mapping these lighter
sub-branches into themselves would defy the semi-stability.

The remaining &, can now be pruned in a similar fashion until either ¢ has
degree 2 or all the #; have been pruned. Next the %, are pruned in the same manner
till ¢ has degree 2, or all the €, have been pruned, or only one bunch remains on
the tree,

If in our pruned tree at this stage ¢ has degree greater than 2 and it has more
than one bunch we return to the start of A(i). We can eventually then prune .7 to
a tree with one bunch (in which case we are finished) or a tree in which ¢ has
degree 2.

" By alternating our pruning with no bunch branches followed by bunch
branches we ensure that ¢ is the centre of every tree pruned from 7 to date. This
is essential to ensure that c¢ is always fixed by every automorphism group con-
sidered, and so no extra automorphism arises to upset the semi-stability at any
stage.

(ii) But what if ¢ has degree 2 in 7 ? In such a case either ¢ has a branch
without any bunches or both branches have bunches.

(a) In the former case move along the branch which has bunches, away
from ¢, until a vertex ¢’ of degree greater than 2 is reached. Since ¢’ is unique on
this branch it is a fixed point of I'(J") and we can treat I'(9) as the group of
certain trees rooted at ¢’. We now return to A(i) and proceed with ¢ replaced by ¢’.
Pruning is stopped when the degree of ¢’ is 2 (assuming more than one bunch is
left on the tree at this stage). At this stage ¢’ has one branch with bunches and one
without because the algorithm at A(i) prunes lightest branches first and the
“heaviest’> branch must go unpruned. This branch is the one containing ¢ and
has no bunches.

When ¢’ has degree 2 then we move to the next vertex away from ¢ with
degree greater than 2 and return to A(ii) (a) of the algorithm. In this way J is
pruned eventually to a tree with only one bunch.

(b) If now ¢ has bunches on both branches then either the branches are
identical or they are not. Assume both branches are & and let Z be semi-stable at v.
Then I'(J) = S,[I(#)] and J is also semi-stable at v as a result of Lemmas 2, 3
and 5.

LEMMA 5. Let ¢ be the centre of J with degree 2, and let ¢ possess two
equal branches. Then the removal of an endvertex of J leaves c fixed unless
I =2, (n odd).

ProOOF.In 7 cis of degree 2. In 7, cis not fixed so a distance argument shows
that 7, is bicentral with ¢ and ¢’ the centres.
Ifin 7, cis of degree 1 then so is ¢’ and I = 2.
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Ifin 7, ¢ is of degree 2 then so is ¢’. As a result for ¢, adjacentto ¢, ¢, is of
degree 2 in & . We continue inductively to show that all vertices in J, must be
of degree 2 except the vertex adjacent to v, and the vertex corresponding to v on
the branch of J not including ». Hence J = &, and n must be odd because ¢ has
two equal branches.

So we now find that .7 can be pruned at v because the only tree where this is
not possible contains no bunches.

Having removed v, 7 is now pruned to a tree with ¢ as centre and ¢ has either
a branch without a bunch — in which case 7, has only one bunch, or two unequal
branches with bunches. It is enough to con51der the last case to complete the
algorithm at stage (b).

We here move out from c to the first vertex on the lightest branch of degree
greater than 2, and use the methods of A(ii) (a). It may be that after pruning all
bunches from the lightest branch at ¢ we may still have a number of bunches
left on the tree. If this is so we consider the pruned tree to determine whether it is
central or bicentral and proceed accordingly.

B. Bicentral Case. If the centres are ¢; and ¢, either the branches at ¢, are
identical with those at ¢, or they are not. In the former case we need the follow-
ing Lemma.

LEMMA 6. Let J be bicentral with an identical set of branches at each
centre. Then the removal of an end vertex v from J leaves the centre closest to v
fixed in T(F,) unless I = P, (n even).

PrROOF. Let ¢, and ¢, (the centres of J7) be of degree d in 7 and let the
distance between ¢, and v be smaller than that between ¢, and v. Further let h be
an automorphism of 7, sending ¢, into ¢, a vertex adjacent to ¢,. Then ¢, has
degree d in J ,. (Unless ¢, is adjacent to v in J.) Now in .7, ¢,, maps into a
vertex ¢, adjacent to ¢, via g say, and so ¢, is of degree d. Eventual]y by switching
from J, to 4, and using h and g only, we obtain a chain of adjacent vertices of
degree d. Either this chain goes on idefinitely or reaches c,; the vertex adjacent to
v=2C¢,,;1110 T . (cy; may be ¢,.) In I, ¢,; has degree d — 1. Hence there exists a
¢y,;+1 Of degree d — 1 adjacent to ¢;;. But in J g sends cy,;,,; into v. Hence
d—1=1ord=2. So all vertices of 4 are of degree 2 except the end vertices
and so J =2,.

Finally n is even since there are 2 vertices in its centre and an equal number
of vertices in the branches at the centre vertices.

(i) Let #, (#,) be the branches attached to ¢; (¢,) which do not include
¢; (cy). Assume #, = #,. Then I'(7) = S,[I(#,)] where &, is #, rooted at ¢;.
If 4, is semi-stable at v then so is 7, since ¢, is fixed in I'(J,) (Lemma 6 as £,
has no bunches) and Lemma 3 can be invoked.
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In.7, C, is fixed and either ¢, is the sole centre or it is not. We move to A in
the former case and B(ii) in the latter case.

(ii) Here the branches at ¢, and ¢, are distinct. Let ¢, have the lightest branch
(or equally light branch). If ¢, has degree greater than 2 then we prune branches
as in A(i). If not move along the branch at ¢, which does not include ¢, to the
first vertex of degree greater than 2, and apply the pruning of A(i),and then
continue as in A(ii) (b). The process will stop when only one bunch remains.

COROLLARY 1. A forest is stable if and only if each of its trees contains
a bunch.

COROLLARY 2. Every homeomorphically irreducible tree is stable.

4. Enumeration

Because every stable tree has a bunch we can construct stable trees with n
vertices by adding a 2-bunch to the root of any rooted tree on n — 2 vertices. If
S(n) is the number of stable trees with n vertices and R(n) the number of rooted
trees with n vertices we can see that S(n) < R(n — 2). From the evidence of Table
1, the difference between R(n — 2) and S(n) seems to increase as n increases.

Table 1
n 3 4 5 6 7 8 9 10
S(n) 1 1 2 4 8 17 37 85
R(n) 1 1 2 4 9 20 48 115

It would be of interest to enumerate stable trees. We suspect a cycle approach
could be fruitful.
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