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Introduction and Statement of Results

The following theorem is the focal point of the present paper. It stipulates an
algebraic condition equivalent, in any finitely generated group, to the solubility of
the word problem.

THEOREM I. A necessary and sufficient condition that a finitely generated
group G have a soluble word problem is that there exist a simple group H, and a
finitely presented group K, such that G is a subgroup of H, and H is a subgroup
ofK.

We also show the following result in the last section of this article.3

THEOREM II. The exact analogue for semi-groups of Theorem I.

For some time we have been aware of a parallel between the inconsistency
or completeness, in the absolute sense, of a logical system on the one hand, and
the triviality or simplicity of a group given by generators and relations on the
other; however, even though, in logic, complete is often equivalent to decidable,

1. An abstract of this paper, as an address given to The Association for Symbolic Logic,
Bristol, August 1973, will appear in The Journal of Symbolic Logic. The authors are indebted
to J. L. Britton, D. J. Collins, P. M. Neumann and P. E. Schupp for various suggestions regarding
exposition.

i . Research of the first author currently or recently supported by the United Kingdom Sci-
ence Research Council, U.S. National Science Foundation and Air Force Office of Scientific
Research. He is also very grateful to the Mathematical Institute, and AH Souls' College, both of
Oxford, whose hospitality made this joint work possible.

3. We define {congruence) simple semi-group in this last section.
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42 W. W. Boone and G. Higman [2]

it remained to Richard Thompson to note, in his oral presentation of McKenzie-
Thompson [12]4 at the 1969 Irvine Conference, that a finitely presented simple
group has a soluble word problem. This fact, while obvious after a moment's
reflection, seems never to have been noted before, much less used. This idea was
our starting point for Theorem I.

In the proof of the necessity of Theorem I, the H and K are constructed from
G and A(G), any algorithm solving the word problem for G. The proof of the suf-
ficiency of the theorem furnishes us with an algorithm solving the word problem
for this G via the H and the K, without reference to A(G). It is now tempting to
argue that the proof of Theorem I thus shows the existence of a uniform algorithm
solving the word problem in all finitely generated groups having a soluble word
problem. But such an argument is illusory: for while the procedure given is con-
ceptually uniform, it does not constitute a uniform recursive method in the tech-
nical sense. Indeed, it is a result of Boone-Rogers [4] that such a uniform algorithm
cannot exist.

We do have the following result regarding uniform algorithms, Theorem III,
which was suggested to us by Peter Neumann as an improvement on Theorem III'.

THEOREM III.5 A necessary and sufficient condition that any recursively
enumerable class T of finitely presented groups have a uniformly soluble word
problem is that there exist a simple group H, and a finitely presented group
K, such that for each member G of T, G is a subgroup of H, and H is a sub-
group of K.

We show the sufficiency of Theorem III in the following constructive form.

THEOREM 111'. Let H,K be any fixed pair of groups such that H is simple,
K is finitely presented, and H is a subgroup of K. Then there exists a partial
recursive functional <J>, from finite presentations of groups to algorithms such
that if G is, in fact a subgroup of H, then the result of applying <J> to any finite
presentation of G is an algorithm solving the word problem for G.

Following the proofs of Theorems III and III', we discuss informally an
analogue of Theorem III' for groups which are not necessarily finitely presented.

Throughout this article we restrict considerations to groups and semi-groups

4. Numbers in square brackets [ ] refer to the references at the end of this paper.
5. By Theorem III and Boone-Rogers [3] just cited, there cannot exist some one simple group

containing every finitely generated group with soluble word problem and which is itself contained
in some finitely presented group.

Note that, in view of the Tietze Transformation Theorem, the existence of an algorithm
uniformly solving the word problem for any collection of finitely presented groups is an algebraic
invariant, in the following sense: given such an algorithm relative to any recursively enumera-
ble collection of the corresponding finite presentations, we can find another such uniform al-
gorithm relative to any other such collection presenting the same collection of abstract groups.
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[3] Groups with soluble word problem 43

which are countable, but not necessarily finitely generated. We admit group
presentations, and semi-group presentations, consisting of an infinite number of
generators and a completely arbitrary set of defining relations; but, without
explicitly saying so, we always require the (symbols for the) generators to form a
recursive set. (Indeed, in principle we could always take the positive integers as
the generators.) If a group — or semi-group — G is not finitely generated, then the
solubility of the word problem for G is not an algebraic invariant, but the solubility
of the word problem for any particular presentation is still well defined. Any
group, or semi-group, does have at least one presentation, —that given by its
Cayley table. We leave it to the interested reader to see that a proof of Theorem
IV. 1 is given, with only minor changes of wording, by our proof of the necessity
of Theorem I, and at the end of that proof, we make the few comments needed
to further obtain Theorem IV.2.

THEOREM IV. Let G be any group and Tl(G) any presentation of G. Then
(IV.1) there exists a simple group H with presentation U(H), such that G is a
subgroup of H and the word problems for IT(G) and TL(H) are Turing equivalent.
Further, (IV.2) if IT(G) has soluble word problem, then there exists a group K
with finite presentation Tl(K) such that H is a subgroup of K and H(K) has
soluble word problem (as well as H(G) and Tl(H)).

Let 5 be any set of positive integers. Then the group presentation with gen-
erators <?i,02> "• a n d defining relations gt = 1 if and only if i e S has word problem
Turing equivalent to the decision problem for S. Thus we have the following
result.

COROLLARY TO THEOREM IV. For any Turing degree of insolubility D,
not necessarily recursively enumerable, there exists a presentation H(H) of
a simple group H such that the word problem for Tl(H) has degree D.

Except for Theorem IV.2, each of our results about groups has an exact
analogue for semi-groups whose proof should be clear to the reader from the
proof of the original group result plus the proof of Theorem II. Except in our
comments about Theorem IV.2, we do not discuss the matter further. In giving
the proof of Theorem II in our last section, beyond a certain point, we do not
give all details when these should be clear by analogy with the proof of Theorem I.
Our original proof of Theorem II was a modification of the well-known cons-
truction of Markov [13,14] showing that certain properties of finitely presented
semi-groups cannot be recursively recognized. The present proof contains a
modification suggested to us by Dana Scott.

Various natural questions suggest themselves. Is every finitely generated
group G with soluble word problem embeddable in some finitely presented simple
group? (By Theorem 6, page 428, Clapham [7], 'No' would imply 'No, even for
finitely presented G.*)Can one algebraically characterize finitely generated groups
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with soluble conjugacy (i.e., transformation) problem? What about algebraically
characterizing classes of groups with soluble isomorphism problem? 6

Preliminaries

At this point the reader must have section 2 of Britton [5] and section 2 of
Boone [3] before him, — but no other portions of these papers are required.
(Instead of Boone [3], one could refer to Clapham [6], or, presumably, Fridman
[8] just as well.) We note that Lemmas 3 and 4 of Britton [5] ("Britton's Lemma")
hold for our group presentations consisting of a recursive set of generators and an
arbitrary set of defining relations. For even if one assumes these lemmas only
for extensions having a finite number of stable letters over a given basis, the
lemmas then follow, by a trivial compactness argument, for extensions having an
infinite number of stable letters. This is clear since any consequence is a conse-
quence of a finite subset of the defining relations. Lemma 1 of Boone [3] also
holds for presentations in our sense, — if, where /„ is the isomorphism from
A(v) to B(v), the decision problem P3 is interpreted as the problem to determine
of an arbitrarily given pair U,v,U a word of E, ve V, whether or not UeA(v)
(alternatively, B(v)) and, when the answer be 'yes' to determine JJJJ) (alter-
natively,/„"'([/)). The proof as originally given remains valid. Indeed, it is a
demonstration of the existence of a recursive functional which, when it is applied
to an algorithm solving WP(E), i.e., the word problem for E, and P3 as newly
interpreted, yields an algorithm solving WP(E*). Or, as we shall say, WP(E*) is
uniformly soluble in WP(E) and P3.

We now assume some fixed recursive procedure to recursively enumerate all
the words of an arbitrarily given presentation of a group or semi-group. We call
this enumeration the canonical ordering. From now on, we use the same letter
for a group and its presentation, but we often say 'the group G' or 'the presenta-
tion G' when what is meant might not otherwise be clear. Except in the final sec-
tion on semi-groups, 'presentation' means group presentation.

Theorem I: Proof of Necessity; Theorem IV 2.

We show the necessity of Theorem I in the following strengthened form
which we require for application later.

THEOREM I'. Suppose G is any presentation such that WP {presentation G)
is soluble. Then one can construct a presentation of a simple group H, and a
finite presentation of a group K, such that G is a subgroup of H, and H is a sub-
group of K.

6. It is trivial that Theorem I is false in the variety of abelian groups.
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[5] Groups with soluble word problem 45

Where G is any presentation and Wt is the ith word in the canonical ordering
of the words of G, G* is to be the presentation whose generators consist of the
generators of G plus the generators t,Uj,viti = 1,2, •••; and whose defining rela-
tions consist of the defining relations of G plus

(1) urltut = tWt, i = l , 2 , - ;

(2) vjHvj = rlW]xtWj, j = 1,2,- and Wj # 1 in G.

Again where G is any presentation and W any word of G, Gw is the presenta-
tion obtained from G by adding W = 1 as an additional defining relation. Clearly,
the group G is simple if and only if for each word W of G such that W # 1 in G,
the group Gw is trivial.

LEMMA 0. Let G be any presentation and W a word of G such that W # 1 in
G. Then for all words Y of G, Y = 1 in GtFK.

From W= 1 and the relations (2), i = 1 in G*w. Hence Y = 1 in Gtw by
the relations (1).

LEMMA 1. For any presentation G, the group G is embedded in the group G^
via the identity map.

Clearly G is embedded in G * <f>> the free product of G and <f>, the infinite
cyclic group on t. We wish to complete the argument by showing that the presenta-
tion Gf is the kind of extension of presentation G*<<> considered in Higman-
Neumann-Neumann [11], i.e., apply Lemma 3 of Britton [5]. To do this, it is
only necessary to verify what Britton calls the isomorphism condition, for cer-
tainly the generators and relations of presentation G* are of the appropriate form.
But to check this condition we need only observe, as follows from the normal
form theorem for free products, that each of the following subgroups of G* <f>
is infinite cyclic on the displayed generator: <<> itself; for each i, i = 1,2,---,
<lPFj>, the subgroup generated by tWt; for each j,j = 1,2, •••, such that Wj ^ 1
in G<[f,JF,]>, the subgroup generated by tJlWfltWj.

LEMMA 2. For any presentation G, WP {presentation G1) is uniformly
soluble in WP (presentation G).

The lemma will follow at once from Lemma 3 of Boone [3] — recall our
remark at the end of Preliminaries — , if we can show that each of the following
decision problems is uniformly reducible to WP (presentation G). Here, generaliz-
ing the notation of the proof of Lemma 1, <[r, W^y is the trivial subgroup if
Wj = 1 in G. Where W is an arbitrarily given word of the presentation G*<*> and
j is an arbitrarily given positive integer, to determine whether or not
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46 W. W. Bonne and G. Higman [6]

(2.1)

(2.2)

(2.3)

We show 2.3 is uniformly soluble in WP (presentation G), — the other
problems are handled similarly. Suppose given W, i; bear in mind constantly that
we have an algorithm solving WP (presentation G) and the normal form theorem
for free products. If Wt = 1 in G, then W e <[(, Wf]> if and only if W = 1 in G.
Suppose Wj # 1 in G. Then freely reduce W, — to say W'. If W' is 1 then
W e <[f, JF;]>. If W" is not 1 but r-free, then w £ <[f, W;]>. If W" is not 1 and not
(-free suppose W is

0' ^ l 1 ' ^ n

where the em = + 1 and the Pm are f-free. Then W e <[f, W(]> if and only if n is
even, et = — 1, and em+1 = -£ m , m = 1,2, •••« — 1, and either (A) Po = 1 in G,
and for m ^ 0, Pm = Ŵ™ in G; or (B) Pn = 1 in G, and for m # n, Pm = Wf£m.

Now for any presentation G, let G<0> be G, and G(n+1) be G(n)t. Further, let
G(co) be the presentation having as generators and defining relations, the generators
and defining relations of all the GM,n = 0,1, •••. We now write Win for the ith
term of the canonical ordering of words of G(n); and tn+1,uin+1, vijl+l, respectively,
for the t, uhvtof G(n)t . The rank of a word Wof G(co) is the maximum last subscript
on any u, v, or t occurring in W, but 0 if W is a word of G(o).

LEMMA 3. For any presentation G, where m,n = 0 , 1 , •••,m ^ n, the group

G(m) is embedded in the group GM via the identity map.

By induction o n n - m using Lemma 1.

LEMMA 4. For any presentation G, suppose W = 1 in G(cc). Then W = 1
in G(JV) where W is of rank N.

For W = 1 in G(co) as a consequence of only a finite number of defining rela-
tions of G(co) involving only a finite number of generators, say all falling within
G(m) so that W = 1 in G(m). But N ^ m and W = 1 in Gm by Lemma 3.

LEMMA 5. Where n — 0,1, •••, f/ie group G(n) is embedded in the group G(co)

uia f/ie identity map.

Immediate, by Lemmas 3 and 4.

LEMMA 6. For any presentation G, the group G(oo) is simple.

Suppose W and Y are words of G(co), W ^ 1 in G(oc); let N be the maximum
of their ranks. By Lemma 5, W ¥= 1 in G(N). By Lemma 0, Y = 1 in G(JV+1)*\
Since each generator and relation of G(N+1)W is among those of G(x)W, Y = 1 in
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LEMMA 7. For any presentation G, WP {presentation G(oo)) is uniformly
soluble in WP {presentation G).

For any word W of G(co), W = 1 in G(co) if and only if W = 1 in G(N) where
FF has rank N, as follows by Lemmas 4 and 5. To obtain an algorithm solving
WP(Gm) make an N-fold application of the recursive functional of Lemma 2 to
the algorithm solving WP(G).

It is now an easy matter to complete the proof of the necessity of Theorem I.
Let G be an arbitrary finitely generated group with soluble word problem. Then
by Lemmas 5 and 6, the group G(co) is the desired simple group H in which G is
embedded. But further, the group G(oo) has a presentation in terms of a recursive
set of generators, tn,uin,vin,i,n = 1,2, ••-, and a certain recursive set of defining
relations, viz., W = 1 for each word W of G(oo) such that, in fact, W = 1 in G(co).
By Lemma 7 this is a recursive set. Penultimately, then, by a result of Higman-
Neumann-Neumann [11], G(oc) can be embedded in a group N having a presenta-
tion consisting of two generators and a recursively enumerable set of defining
relations. Finally, by the central result of Higman [10], N can be embedded in a
finitely presented group K.1

Remark regarding Theorem IV.,2: To see this result holds, (A) check that
the two generator embedding of Higman-Neumann-Neumann [11] preserves the
Turing degree; (B) refer to Theorem 6, p. 428, Clapham [7] which asserts that
the embedding result of Higman [10] that we have just cited can also be carried
out so as to preserve the Turing degree. There is a known semi-group analogue of
the embedding result of Higman [10], viz., that given by Murskii [16], cited
below in the final section on semi-groups. But, since no one has yet shown the
semi-group analogue of the Clapham result just noted, the present paper does not
give in principle a proof of the semi-group analogue of Theorem IV.2.8

Theorem I: Proof of Sufficiency

We first remark that ( + ) there exists a recursive functional Q, which, when
applied to a finite presentation Vofa group, yields Q(F) a recursive enumeration
of all the consequent relations of V.

Assume now the algebraic condition of Theorem I. If H is trivial so also is G
and thus has a soluble word problem. Suppose H non-trivial. Let P o be a word of

7. Or, for a recent proof by Aanderaa of Higman's result, see Aanderaa [1 ] or the last chapter
of Rotman [17].

8. The two-generator embedding result of Hall [9] cited below in the semi-group section
does have a Turing degree preserving form, i.e., Equivalence Theorem 2, page 562 of Boone [2],
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H such that Po ^ 1 in H. The word Po is to remain fixed throughout our dis-
cussion. Let </> be the map embedding G in H and \j/ the one embedding H in K.
The map, consisting of 4> followed by \p, embedding G in K is recursive, since its
behaviour is determined by its behaviour on the finitely many generators of G.
Using {U}x for the normal closure of the element U in the group X, we have that
for any P of H, P # 1 in H,

This is so by the assumed embeddings and since H is simple. Thus, for any element
W of G, if W # 1 in G, then <j>(W) # 1 in if and i^(P0) 6 {H4>{W))}K, i.e., \p(P0)
= 1 in the presentation K*^™^. Conversely, if, where W is any element of G,
(K-Po) = 1 in the presentation K*<«'("'», then W / 1 in G.

Now suppose W is an arbitrarily given word of G for which we wish to deter-
mine 'Is W = 1 in G?' First, compute \]/((t>(W)). Second, apply the fi of remark +
to both K and K*r(*>(H')). Thirdly, check simultaneously through the recursive
enumerations £2(K) and n(X*(*(wr))) until either <K<K»0) = 1 is located in the
first or iKP0) = 1 m t n e second. And the answer is, accordingly as the first or
second alternative, 'Yes' or 'No'.

Proof of Theorem III

Suppose F has a uniformly soluble word problem. Then, by the normal form
theorem for free products, Gr, the obvious presentation of the free product of the
members of F, has a soluble word problem and contains each member of F as a
subgroup. Applying Theorem I ' to Gr gives the necessity of Theorem III.

To show the sufficiency of Theorem III, i.e., Theorem III', let presentation
G be arbitrarily given with the group G embedded in H and hence in K. We now
use a technique of Miller [15], page 43. Since presentation G has only a finite
number of defining relations there is a recursive enumeration, say aua2> •". of all
homomorphisms of G into K. If H is trivial so is G; so let Po be some fixed element
of H, Po # 1 in H, and \p the map embedding H in K. Then for any word W of
presentation G, w # 1 in G if and only if Q(K°i(W)) for some i,i = 1,2, •••, con-
tains the consequence tKP0) = * • ^ n e a r8u nient is exactly like our proof of neces-
sity of Theorem I and Q has the meaning given there. By checking along the finite
diagonals of a recursive enumeration of recursive enumerations

to locate the consequence iKP0) = *> **» m ^a c t ^ ^ 1 in G we shall determine
that such is the case. I.e., the set of words # 1 in G is recursively enumerable.
Since the set of words = 1 in G is also, we have an algorithm solving WP{G).
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A Variation of Theorem HI'

Let the groups H and K be as in Theorem III, and, to avoid a triviality, say
H is non-trivial. Let \j/ be the map embedding H in K. Suppose that we somehow
know that a certain finitely generated group G is embedded in H.

Suppose that, in addition to presentation K, we are given the following items
of mathematical notation: (1) Where gu #2> "• 0JV> represent a set of generators of
G, and k is the map embedding G in K,

as N words of the presentation K; (2) Where Po is an element of H, Po # 1 in H,

as a word of presentation K. Then, on the basis of these items of information
alone, we have an algorithm solving WP(G). Given a word W of G, i.e., a word on
the gf.'s, for which we wish to determine 'Is W = 1 in G?', compute l(W). Then,
much as in the proofs of Theorems I ' and III , W = 1 in G if and only if £1(K)
contains X(W) = 1; and W # 1 in G if and only if Q(K*(wr)) contains the con-
sequence \I/(PO) = 1-

Semi-groups

Now 'presentation' is always to mean semi-group presentation. We extend
the notation WP and the term 'uniformly soluble' given at the end of Preliminaries
for groups, to semi-groups. Lest it be misunderstood, the term 'simple semi-group'
is defined in a moment. As with groups, we tolerate a notational confusion be-
tween a semi-group and its presentation. Any semi-group is to have a unity, 1.

The necessity of Theorem II is shown in the following strengthened form.

THEOREM II' Suppose S is any presentation such that WP (presentation S)
is soluble. Then one can construct a presentation of a simple semi-group H, and
a finite presentation (i.e., Thue system) presenting a semi-group K, such that S
is a sub-semi-group of H, and H is a sub-semi-group of K.

Where S is any presentation, and H; is the ith word in the canonical ordering
of the words of S, Sf is the presentation whose generators are those of S plus

b,c,,di, i = 1,2, •••

and whose relations are those of S plus the following. Here i = 1,2, • • • throughout.

cfidi = 1 for each word G of S such that G ¥= Ht in S;

bW = b,Wb = b, for each word W of Sf.
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Again where S is any presentation and U, V any words of S, Sv'v is the presenta-
tion whose generators are those of S and whose defining relations are those of S
plus U = V. Essentially the definition of (congruence) simplicity for semi-groups
is this: the semi-group S is called simple if, for any words U, V of S such that
U # V in S, the semi-group Sv'y is trivial.

LEMMA A. Suppose U, V are any words of S such that U ^ V in S. Then
for any word W of S\W = \ in Stl7>v. I.e., S^lV is trivial.

Where V is Hh 1 = ql/dj and cydx = b are defining relations in S1', hence
hold in Stu'v. Thus, since U = V in Stt/>F, l = biaSt°-v. Consequently for any
word W ofS\ W = Wb, = b, = 1 in SfV'v. This is so since Wb = b is a defining
relation of Sf and thus holds in Sw'v.

We now 9 use U = 0 V in ST to mean that 17 = F in St without application
of the defining relations 1 -+ ctGdt where G j= Ht in S, i.e., without replacement
of 1 by cfidi. Further, Ht is a variable for words of S which are # Ht in S; fc,
for words of St having form CjGd; where G = if; in S, for some i, or b itself.

LEMMA B. Suppose W and U are words of S^ neither containing as subword
any b or cflidjor any i, i = 1,2, •••. Then W = U in Sf implies W = 0 U in tf.

The idea of the argumentgoes back to Markov [13,14]. No step of a proof
from W to U in St contains a b. If the proof uses n applications of the rule that
1 can be replaced by cfid^ G =£ Ht in S, consider, if n > 0, the last such applica-
tion. It must be followed by a replacement of cfi'd^ by 1, where G = G' and
G' ^ iff in S, since [/ contains no subword of form Ciff;di. Following Markov, the
lemma now is seen to hold by induction on n.

LEMMA C. For any words W and U of S, W = U in S if and only ifW = U
in St. I.e., the semi-group S is embedded in the semi-group Sf by the identity
map.

Suppose W = U in Sf. Then by Lemma B, since W and 17 are words of S,
W = 0 U in Sf. But this last proof from W to U in Sf is free of b, ch and dt for
each i, and thus valid in S.

LEMMA D. For any presentation S, WP {presentation Sf) is uniformly
soluble in WP (presentation S).

For any word X of St, let c[XJbe the result of removing from X all subwords
of the form c^d; in some canonical way, so that, since WP(S) is soluble, c[X] is
recursively computable. Obviously, since Cî rfj = 1 is a defining relation of Sf,

' . One should read P = Q in presentation T as meaning there exists a proof from P to Q in
T, i.e., a finite sequence of 'steps' passing from P to Q, with each step resulting from the preceding
step by use of a defining relation of T.
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c[X\ = X in Sf for any word X of S f . Where Uo, Uu •••, l/m, F o , Vu — Vn are

words of S and where i ^ , u 2 , ••• um, vu v2, ••• vn are each one of the ct or dj of S*,

Cond*(UoUlU2 ... Um^unUm, Vot.V, - V^v.VJ

means (i) m = n; (ii) Uj is vj,j = 1,2, ••• n; (iii) £/,- = F,- in S,j = 0,2, ••• n.
Then the following table determines recursively of two arbitrarily given

words W, U of S1" whether or not W = U in Sf.

Does c\W~\ contain
some b as a subword?

Yes

Yes

No

No

Doesc[(7]
some b as a

Yes

No

Yes

No

contain
subword?

Is W

W =

Cond,,

= C/ in Sf?

Yes

No

No

1/in S1 if and
only if
.(c[*F],c[£/])

That the table specifies an algorithm is trivial. In view of the first paragraph
of the proof of this lemma and Lemma B we have that W = 17 in S t if and only
if c[W~\ = o c[C/] in Sf. From this last fact, it is easy to see, moreover, that this
algorithm furnishes the correct answer.10

The last part of the statement of the lemma follows from the uniformity of
our construction.

For any presentation S, let S(o) be S, and S("+1} be S{n)t, n = 0,1, • • •. Further
let S(oc) be the presentation having as generators and defining relations the gen-
erators and defining relations of all the S(n).

The remainder of the argument for Theorem II ' is the exact analogue of that
for Theorem I', with S(oo) playing the role of G(co), and we leave details to the
reader. Analogous to Lemma 5, 6, and 7, one has that the semi-group S is
embedded in the semi-group S(oo) via the identity map, that the semi-group S(cc)

is simple, and that WP (presentation S(co)) is uniformly soluble in WP (presentation

io. The last line of the table is seen to hold by induction on the number of steps of a proof
verifying c[tV]=oc[U] in S* . Such a proof is valid in the system obtained from S by adding
Cj and dt as additional generators; it thus consists of independent vertical strips lying between the
'free' ct and dt and each of which is a valid proof in S. Cf. Lemma 31 of Boone [2], but the present
situation is much simpler.
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S). Finally, to embed S(oo) in a semi-group K, one first uses Hall [9] to embed

S(co) in a semi-group N having a presentation consisting of two generators and a

recursively enumerable set of defining relations; and then uses Murskii [16], to

embed N in a finitely presented semi-group K. This shows Theorem II'.

For the proof of the sufficiency of Theorem II, we use {T} for the collection of

equations which are consequences of the semi-group presentation T. Suppose,

then, that <j> embeds the finitely generated semi-group S in the simple semi-group

H, and that ip embeds H in the finitely presented semi-group K. We wish to solve

WP(S). If H is trivial so is S. Assuming H non-trivial, let Uo, Vo be some fixed

pair of words of H, such that Uo # Vo in H, which remains fixed throughout the

discussion. Then for any pair of words, U, V, of H such that U / V in H,

Here, ij/{Hv'v} is the collection of consequences of K of form \j/{P) = \]/(Q) where

P = Qe {Hv'v}. The reader should now be able to complete the argument because

of a strong analogy with the proof of sufficiency of Theorem 1.11

n . Added in proof, July 1974: Since the submission of this article, we have learned of its
relation to the work of Kuznecov on the one hand and that of B. H. Neumann, Simmons and
Maclntyre on the other. In his note, Uspehi Mat. Nauk, (1958), page 240, A. V. Kuznecov
announced.without proof, that the class Q of finitely generated groups with soluble word problem
is characterized by embeddability in a simple algebra which is finitely presented in a suitable
variety. It would thus seem that it was Kuznecov who here first noted that a finitely presented
simple group always has a soluble word problem. Still another algebraic characterization of S ,
viz., embeddability in every non-trivial algebraically closed group, is, in effect, given by the
following: Neumann, 'The isomorphism problem for algebraically closed groups', pp. 553-562
of Word problems: Decision problems and the Burnside problem in group theory, publication
daja in reference [1]; H. Simmons, 'The word problem for absolute presentations', / . London
Math. Soc. (2), 6 (1973), 275-280; A. Maclntyre, 'Ommitting quantifier-free types in generic
structures', Jour. Symbolic Logic, 37 (1972) 512-520. That this is so follows from their results
as formally stated (see page 512 of Maclntyre's paper) and the total triviality that any finitely
generated group with soluble word problem has a recursive presentation. See Boone, 'Between
logic and group theory', Second Intern. Congress for Group Theory at Canberra, Springer-Verlag
(1974).
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