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Abstract

Comprehensive housing stock information is crucial for informing the development of climate resilience strategies
aiming to reduce the adverse impacts of extreme climate hazards in high-risk regions like the Caribbean. In this study,
we propose an end-to-end workflow for rapidly generating critical baseline exposure data using very high-resolution
drone imagery and deep learning techniques. Specifically, our work leverages the segment anything model (SAM)
and convolutional neural networks (CNNs) to automate the generation of building footprints and roof classification
maps.We evaluate the cross-country generalizability of the CNNmodels to determine howwell models trained in one
geographical context can be adapted to another. Finally, we discuss our initiatives for training and upskilling
government staff, community mappers, and disaster responders in the use of geospatial technologies. Our work
emphasizes the importance of local capacity building in the adoption of AI and Earth Observation for climate
resilience in the Caribbean.

Impact Statement

AI and drone technologies have immense potential to enable data-driven decision-making in support of resilient
housing and infrastructure initiatives across climate-vulnerable regions like the Caribbean. In this work, we have
developed an end-to-end pipeline for automatically generating building footprints and roof classification maps
using computer vision and drone images in support of government-led climate resilience programs. By
leveraging innovative technologies and building local capacity, government agencies are better equipped to
not only respond to disasters but also anticipate risks and mitigate impacts, thereby increasing climate resilience
in the region.

1. Introduction

TheCaribbean is among the world’smost climate-vulnerable regions due to the prevalence and intensity of
extreme climatic hazards such as tropical cyclones, floods, and landslides. In recent years, Category
5 hurricanes like Dorian, Irma, and Maria have devastated many small island developing states (SIDSs),
leaving widespread trails of loss and destruction across the region. SIDS often bear the brunt of the
economic costs from climate-extreme events, with the highest degree of losses typically sustained in the
housing sector (Government of the Commonwealth of Dominica, 2023). Hurricane Maria, for example,
damaged over 28,000 homes—roughly 90% of Dominica’s housing stock—and accumulated costs over
200% of the nation’s GDP (Government of the Commonwealth of Dominica, 2023). Moreover, extensive
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damage to structural assets from natural hazards can bring about numerous challenges, such as precarious
housing conditions, building collapse, and loss of life. Postdisaster housing recovery, which involves
retrofitting damaged buildings, reconstructing public infrastructure, and relocating displaced populations,
can result in severe budget cuts and increased debt, further straining already fragile economies
(Government of the Commonwealth of Dominica, 2023). As global temperatures continue to rise, extreme
weather events will only grow in severity, putting many more vulnerable populations at risk.

The loss and devastation brought about by super typhoons have spurred ambitious climate resilience
programs by national government agencies aiming to reduce the adverse effects of extreme weather events
in the housing sector (Government of the Commonwealth of Dominica, 2023; World Bank, 2022).
For instance, the Disaster Vulnerability Reduction Project (DVRP) by the Government of Saint Lucia
(GoSL) seeks to measure and reduce vulnerability to climate change impacts through institutional
strengthening and retrofitting of structural assets (Government of Saint Lucia, 2023). Another example
is the Resilient Housing Scheme by the Government of the Commonwealth of Dominica (GoCD), which
strives to make 90% of Dominica’s housing stock resilient by 2030 through the construction of 5000 new
resilient homes for vulnerable citizens (Government of the Commonwealth of Dominica, 2023). For these
climate adaptation initiatives to be successful, local governments require accurate, complete, and
up-to-date housing stock information to inform pre- and postdisaster retrofitting, reconstruction, and
relocation strategies. However, the traditional house-to-house approach to identifying high-risk structures
is often cost-prohibitive for many developing countries, prompting the need for more timely and cost-
efficient alternatives.

In response to these challenges, researchers have turned to artificial intelligence (AI) and Earth
observation (EO) to quickly and efficiently distil meaningful information from large unstructured
geospatial data (World Bank, 2022; Triveno et al., 2019). Previous works demonstrate how deep learning
(DL) techniques can be used to extract building footprints and their corresponding characteristics from
high-resolution aerial images (Partovi et al., 2017; Castagno & Atkins, 2018; Solovyev, 2020; Buyukde-
mircioglu et al., 2021; Kim et al., 2021; Huang et al., 2022; Tingzon et al., 2023). More recent years have
seen a growing interest in applying DL to drone images and leveraging their very high spatial resolutions
to generate more accurate and granular building stock information (Triveno et al., 2019; Akbari et al.,
2021; Calantropio et al., 2021; Takhtkeshha et al., 2022; Fujita & Hatayama, 2023). Yet despite the
evident advantages of using AI and drone technologies to support climate resilience strategies, the
widespread adoption of these solutions is hindered by gaps in the local capacity to develop and maintain
systems for generating critical baseline exposure datasets.

This work aims to bridge these gaps by providing government agencies with an end-to-end workflow
for rapidly generating critical baseline housing information using very high resolution (VHR) drone
images. Specifically, we leverage computer vision (CV)models such as segment anything model (SAM)
andCNNs for building footprint delineation and rooftop classification, respectively.We also evaluate the
cross-country generalizability of roof classificationmodels across SIDS to determine the extent to which
models trained in one country can be adapted to another. Finally, we underscore the importance of
strengthening local capacity through ongoing efforts to promote the adoption of AI and EO-based
solutions among national and regional government agencies. This work is done under the Digital Earth
Project for Resilient Housing and Infrastructure, a World Bank project funded by the Global Facility for
Disaster Reduction and Recovery (GFDRR), in partnership with GoCD and GoSL, in support of
government-led initiatives to enhance the climate resilience of the housing and infrastructure sector in
Caribbean SIDS.

2. Data

In this section, we detail our process for generating our ground truth housing stock datasets using VHR
aerial images in the form of aircraft- and drone-derived optical imagery and building footprints for
Dominica and Saint Lucia, our primary regions of interest.
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2.1. VHR aerial images

We acquired the following VHR aerial images from various data sources, including partner government
agencies GoCD and GoSL, theWorld Bank Global Program for Resilient Housing (GPRH) (World Bank
Global Program for Resilient Housing (GPRH), 2023), and the open data platform OpenAerialMap
(OAM) (OpenAerialMap, 2023):

• Aircraft-derived nationwide orthophotos of Dominica (2018–2019) and Saint Lucia (2022)
• Pre- and postdisaster drone images of 10 villages in Dominica, namely Colihaut, Coulibistrie,
Delices, Dublanc, Kalinago, Laplaine, Marigot, Pichelin, Roseau, and Salisbury (2017–2018)

• Drone images of 3 districts in Saint Lucia, namely Dennery, Castries, and Gros Islet (2019)

The spatial resolutions of aircraft-derived images range from 10 to 20 cm/px, whereas the resolutions of
drone-derived images range from 2 to 5 cm/px. Table 1 further details the spatial resolution, coverage,
year of acquisition, and number of annotated buildings per aerial image used in this study.

2.2. Building footprints data

For the aircraft-derived orthophotos, we obtained nationwide building footprints in Dominica and Saint
Lucia in the form of vector polygons delineated from the corresponding aerial image, as provided by the
World Bank. For the drone images, we initially looked to alternative data sources such as OpenStreetMap
(OSM) (OpenStreetMap Buildings, 2023), Microsoft Building Footprints (Microsoft Building Foot-
prints, 2023), and Google Open Buildings (Google Open Buildings, 2023); however, we observed
significant misalignment between the publicly available building footprint polygons and the underlying
drone images, as illustrated in Figure 1. In response to this issue, we turned to SAM to delineate building
instances directly from drone images (Kirillov et al., 2023). Additional information on the SAM
configuration is detailed in Section 3.

Table 1. Aircraft- and drone-derived aerial images used in this study (World Bank Global Program for
Resilient Housing (GPRH), 2023; OpenAerialMap, 2023; Government of Saint Lucia, 2023;

Government of the Commonwealth of Dominica, 2023)

Coverage Resolution Year Source Data Provider Building Count

Dominica 20.0 cm/px 2018–2019 Aircraft GoCD 5936
Colihaut 2.7 cm/px 2017 Drone GoCD 373
Coulibistrie 2.3 cm/px 2017 Drone GoCD 158
Delices 4.3 cm/px 2018 Drone OAM 380
Dublanc 2.9 cm/px 2017 Drone GoCD 126
Kalinago 3.3 cm/px 2018 Drone OAM 102
Laplaine 4.9 cm/px 2018 Drone OAM 456
Marigot 3.4 cm/px 2018 Drone OAM 387
Pichelin 3.4 cm/px 2017 Drone GoCD 149
Roseau 2.6 cm/px 2017 Drone GoCD 348
Salisbury 3–5 cm/px 2018 Drone OAM 280
Saint Lucia 10.0 cm/px 2022 Aircraft GoSL 2485
Castries 4.5 cm/px 2019 Drone GPRH 1084
Dennery 4.2 cm/px 2019 Drone GPRH 742
Gros Islet 3.6 cm/px 2019 Drone GPRH 864
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2.3. Rooftop image tiles

We generated our dataset for roof classification by selecting 80 randomly sampled 500 m x 500 m tiles
across Dominica and Saint Lucia and removing tiles with no building footprints using the datasets
described in the previous section. We further augmented these tiles with the villages, cities, and districts
where drone images were available (Tingzon et al., 2023). For each building footprint within the selected
tiles and regions, we extracted the minimal bounding rectangle of the building polygon from the
corresponding aerial image, scaled by a factor of 1.5 and zero-padded to a square. We then proceeded

(a) Microsoft Building Footprints (b) Google Open Buildings

(c) OpenStreetMap Buildings (d) SAM

Figure 1. Building footprint polygons from (a) Microsoft Building Footprints, (b) Google Open
Buildings, (c) OpenStreetMap Buildings, and (d) SAM superimposed on an OAM drone image taken in
Salisbury, Dominica (OpenAerialMap, 2023).

Table 2. Class distributions for roof type and roof material labels across Dominica and Saint Lucia

Attributes

Dominica Saint Lucia Total

Train (80%) Test (20%) Total Train (80%) Test (20%) Total

Roof
Type

Gable 2669 653 3322 2347 585 2932 6254
Hip 1579 393 1972 1089 271 1360 3332
Flat 1894 475 2369 456 106 562 2931
No Roof 1190 297 1487 269 52 321 1808

Roof
Material

Healthy metal 1934 482 2416 2396 598 2994 5410
Irregular metal 1733 432 2165 1113 276 1389 3554
Concrete/
cement

1240 312 1552 328 75 403 1955

Blue tarpaulin 1094 260 1354 0 0 0 1354
Incomplete 1331 332 1663 324 65 389 2052

Image Aircraft-
derived

5936 0 5936 2485 0 2485 8421

Drone-derived 1396 1818 3214 1676 1014 2690 5904
Total 7332 1818 9150 4161 1014 5175 14,325
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to annotate 9150 buildings in Dominica and 5175 buildings in Saint Lucia via visual interpretation of the
aerial images for a total of 14,325 labeled building footprints across the two countries. We classified the
buildings based on two attributes: (1) roof type, which includes hipped, gabled, flat, and no roof, and
(2) roof material, which includes healthy metal, irregular metal, blue tarpaulin, concrete or cement, and
incomplete rooftops. The class distributions for each roof attribute are presented in Table 2. Examples of
drone image tiles for each roof type and roof material category are illustrated in Figure 2.

3. Methods

This section outlines our workflow for generating critical housing stock information in the Caribbean
using drone images, as summarized in Figure 3.

3.1. Building footprint delineation

To extract building footprints from drone images, we leveraged the Segment-Geospatial Python package
for segmenting raster images based on SAM (Wu & Osco, 2023; Osco, 2023; Osco, 2023; Kirillov et al.,
2023). We also used Language SAM (LangSAM) (Medeiros, 2023) Python package to combine instance
segmentation with text prompts to generate masks of specific objects in the drone images. In our study, we
set our text prompt to “house,” the box threshold, that is the threshold value used for object detection in the
image, to 0.30, and the text threshold, that is the threshold value used to associate the detected objects with
the provided text prompt, to 0.30. In practice, these parameters can be tweaked as necessary to achieve the
best results. As a postprocessing step, we applied the Douglas–Peucker algorithm to simplify the
generated building polygons, as implemented in GeoPandas (Douglas & Peucker, 1973).

(a) Healthy Metal (b) Irregular Metal (c) Blue Tarpaulin (d) Concrete/cement (e) Incomplete

(a) Hip (b) Gable (c) Flat (d) No roof

Figure 2. Examples of VHR drone-derived roof image tiles for each of the roof material categories (top
row) and roof type categories (bottom row).

Figure 3. Proposed workflow for the automatic generation of housing stock information from drone
images using DL models.
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3.2. Roof classification

Given the VHR aerial images and corresponding building footprint polygons, we proceeded with
developing our roof classification models. We began by fine-tuning CNN models pretrained on the
ImageNet dataset (Deng et al., 2009) with architectures ResNet50 (He et al., 2016), VGG16 (Simonyan&
Zisserman, 2015), Inceptionv3 (Szegedy et al., 2016), and EfficientNet-B0 (Tan & Le, 2019) using cross-
entropy loss for both roof type and roof material classification tasks. The input rooftop image tiles are
zero-padded to a square and resized to 224 x 224 px for ResNet50, EfficientNet-B0, and VGG16 and
299 x 299 px for InceptionV3. We set the batch size to 32 and the maximum number of epochs to 60, and
we use an Adam optimizer with an initial learning rate of 1e�5, which decays by a factor of 0.1 after every
7 epochs with no improvement. For data augmentation, we implemented horizontal and vertical image
flips with a probability of 0.50 and random rotations ranging from �90 ° to 90 ° . Given that our data is
imbalanced (see Table 2), we also implemented random oversampling for the minority classes. To prevent
overconfident predictions, we applied label smoothing as a regularization technique, with smoothing set
to 0.1 (Müller et al., 2019).

3.3. Model evaluation

We split each country-level dataset into training (80%) and test (20%) sets using stratified random
sampling to preserve the percentage of samples per class, as shown in Table 2. Due to the high costs
associated with acquiring nationwide aircraft-derived orthophotos, we recommend government partners
leverage drone technologies to collect VHR aerial images; thus, for our experiments, the test sets for
Dominica and Saint Lucia comprise entirely of drone images. Additionally, to test whether geographically
diverse training data improves the prediction, we combine the training sets across Dominica and Saint
Lucia (henceforth referred to as the “combined” dataset).

We report the F1 score, precision, recall, and accuracy using standard definitions as follows:

Precision¼ TP

TPþFP
(3.1)

Recall¼ TP

TPþFN
(3.2)

F1score¼ 2 �Precision �Recall
PrecisionþRecall

(3.3)

Accuracy¼ TPþTN

TPþTNþFPþFN
(3.4)

where TP is the number of true positives, TN is the number of true negatives, FP is the number of false
positives, and FN is the number of false negatives. The precision, recall, and F1 score metrics are
computed as the unweighted mean of the metrics (that is macro-averaged) calculated per class.

4. Results and Discussion

For roof type classification, we achieve the highest F1-score of 87.1% for Dominica using an
EfficientNet-B0 model and 89.5% for Saint Lucia using a ResNet50 model. Likewise, for roof material
classification, we achieve our best score of 89.5% for Dominica using a ResNet50 model and 91.7% for
Saint Lucia using an EfficientNet-B0 model. Among the models trained on the combined datasets from
Dominica and Saint Lucia, our highest scores of 90.0% and 90.4% were achieved using an EfficientNet-
B0 model for roof type classification and an Inceptionv3 model for roof material classification, respect-
ively. Note that the latter models were evaluated using the combined test sets ofDominica and Saint Lucia.
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Table 3 details the complete F1-scores, precision, recall, and accuracy scores, and Figure 4 illustrates
samplemodel outputs in the form of roofmaterial classificationmaps using drone images taken before and
after Hurricane Maria in Coulibistrie, Dominica.

Lastly, we investigate the cross-country generalizability of the best models by evaluating their
performance on the designated test sets of each country. As shown in Table 4, our results indicate that
for roof type classification, the best model trained on the combined data from Dominica and Saint Lucia
(that is the “combined model”) performs marginally better than models trained using only local data (that
is data from the same country); however, for roof material classification, we find that locally trained
models consistently outperform the combined model. These results also indicate that local models trained
on the Dominica subset are more robust to geographical shifts than local models trained on the Saint Lucia

Table 3. Test set model performance scores (%) in terms of F1-score (F1), precision (P), recall (R),
and accuracy (Acc) of CNN architectures for roof type and roof material classification trained using
(a) only Dominica data, (b) only Saint Lucia data, and (c) using the combined datasets of Dominica

and Saint Lucia

Model

Dominica Saint Lucia Combined

F1 P R Acc F1 P R Acc F1 P R Acc

Roof Type VGG16 86.2 86.9 85.8 85.4 88.0 91.3 85.4 93.1 88.7 88.7 88.7 89.0
ResNet50 86.2 85.8 86.7 85.7 89.5 94.1 86.0 94.3 88.7 88.6 88.9 89.2
Inceptionv3 86.5 86.9 86.4 85.7 87.5 94.3 83.0 93.5 89.4 89.3 89.6 89.6
EfficientNet-

B0
87.1 87.1 87.4 86.4 88.1 94.8 83.5 93.3 90.0 90.1 90.3 90.5

Roof
Material

VGG16 89.2 90.1 88.7 88.9 88.3 92.4 85.4 91.5 90.2 92.1 88.7 90.7
ResNet50 89.5 90.5 88.8 89.4 91.6 93.0 90.3 93.2 89.8 91.8 88.4 90.8
Inceptionv3 88.2 89.7 87.4 88.2 91.4 93.3 89.9 93.6 90.4 92.0 89.1 90.8
EfficientNet-

B0
89.0 90.2 88.2 88.9 91.7 93.8 90.0 93.8 90.1 92.4 88.5 91.1

(a) Drone image from GoCD (2017) (b) Roof material map (2017)

(c) Drone image from OAM (2018) (d) Roof material map (2018)

Figure 4. Drone images (left) and roof material classification maps (right) of Coulibistrie, Dominica
taken before (top) and after (bottom) Hurricane Maria in 2017. Roof categories include healthy metal
(green), irregular metal (red), concrete/cement (yellow), blue tarpaulin (blue), and incomplete (purple).
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subset, as local models for Saint Lucia appear to generalize poorly in the Dominica context. We posit that
this is likely due to differences in class distributions between Dominica and Saint Lucia. Specifically, the
training data for Dominica is derived primarily from postdisaster aerial images taken in the aftermath of
Category 5 Hurricane Maria, meaning approximately 15% of the training data are comprised of blue
tarpaulins typically used to cover severely damaged rooftops. Meanwhile, the aerial images for Saint
Lucia were taken in nondisaster contexts, and thus, the Saint Lucia dataset is completely devoid of blue
tarpaulins (see Table 2). More generally, the high levels of variability in local model performance for out-
of-distribution countries indicate the importance of collecting highly localized and contextualized
training data. Further research on domain adaptation is needed to reduce performance degradation in
the face of geographic distribution shifts.

4.1. Building local capacity in Caribbean SIDS

The overarching goal of the Digital Earth for a Resilient Caribbean Project is to strengthen local capacity
in Caribbean SIDS to harness AI and EO technologies in support of resilient housing operations. The
project has three main components:

1. Capacity building. This project supports the training and upskilling of government staff, aca-
demics, and other key stakeholders in the use of EO data, tools, and services.

2. Operational support. Our team aims to support the generation, integration, and use of critical
baseline exposure datasets using AI and EO-based technologies.

3. Knowledge sharing. Through knowledge exchange and dissemination, we strive to promote our
methods and tools to encourage wider adoption across the Caribbean region.

To this end, our team is assisting government agencies in establishing geographic information systems
(GISs) units capable of generating, managing, and maintaining large-scale disaster risk datasets. In
partnership with technical experts and local stakeholders, we are designing training programs on
geospatial data analytics, community mapping, drone operations, pilot coordination, image processing,
machine learning, and large-scale geospatial data management (Humanitarian OpenStreetMap Team
(HOT), 2023). Additionally, we have developed educational resources to enable the rapid generation of
baseline exposure datasets aimed at local government staff, community mappers, and disaster responders.
This includes executable Google Colaboratory notebook tutorials1,2 demonstrating how to run the SAM

Table 4. Cross-country generalizability in terms of F1-score (F1), precision (P), recall (R), and
accuracy (Acc) of the best roof type and roof material classification models as shown in Table 3

Training Data Test Data

Roof Type Roof Material

F1% P R Acc F1 P R Acc

Dominica Dominica 87.1 87.1 87.4 86.4 89.5 90.5 88.8 89.4
Saint Lucia 88.4 88.4 87.9 93.0 90.8 92.0 89.9 92.9

Saint Lucia Dominica 82.6 84.7 81.4 82.3 64.2 63.1 67.3 73.0
Saint Lucia 89.5 94.1 86.0 94.3 91.7 93.8 90.0 93.8

Combined Dominica 88.0 88.5 88.0 87.4 88.2 89.7 87.2 87.8
Saint Lucia 91.9 93.6 90.4 95.7 90.4 93.1 88.6 93.6

1 https://colab.research.google.com/github/GFDRR/caribbean-rooftop-classification/blob/master/tutorials/01_building_
delineation.ipynb

2 https://colab.research.google.com/github/GFDRR/caribbean-rooftop-classification/blob/master/tutorials/02_building_
classification.ipynb
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and CNN models to quickly extract building footprints and create roof classification maps from locally
collected drone images.

5. Conclusion

This work proposes an end-to-end workflow for filling critical baseline exposure data gaps using VHR
aerial images and DL techniques in support of government-led climate resilience initiatives in the
Caribbean. Specifically, we demonstrate how CV and drone images can be used to rapidly generate
housing stock information, including building footprints and roof type and roof material classification
maps, for disaster risk reduction and recovery. Based on our evaluation of the cross-country generaliz-
ability of DL models, we urge caution in applying locally trained models off the shelf to new geographic
regions and emphasize the significance of collecting local, highly contextualized training data. We also
highlight the importance of local capacity building, skills development, and cocreation of geospatial
datasets in deploying sustainable AI-for-climate solutions, especially in Global South contexts. Through
this work, we hope to empower government agencies to strengthen the local capabilities needed to
sustainably generate AI andEO-derived housing stock data to better inform climate resilience programs in
the Caribbean.
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