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Optimal transitional mechanisms are analysed for an incompressible shear layer
developing over a short, pressure gradient-induced laminar separation bubble (LSB) with
peak reversed flow of 2 %. Although the bubble remains globally stable, the shear layer
destabilises due to the amplification of external time- and spanwise-periodic disturbances.
Using linear resolvent analysis, we demonstrate that the pressure gradient modifies
boundary layer receptivity, shifting from Tollmien—Schlichting (T-S) waves and streaks
in a zero-pressure-gradient environment to Kelvin—Helmholtz (K-H) and centrifugal
instabilities in the presence of the LSB. To characterise the nonlinear evolution of
these disturbances, we employ the harmonic-balanced Navier—Stokes (N-S) framework,
solving the N-S equations in spectral space with a finite number of Fourier harmonics.
Additionally, adjoint optimisation is incorporated to identify forcing disturbances that
maximise the mean skin friction drag, conveniently chosen as the cost function for
the optimisation problem since it is commonly observed to increase in the transitional
stage. Compared with attached boundary layers, this transition scenario exhibits both
similarities and differences. While oblique T-S instability is replaced by oblique K-H
instability, both induce streamwise rotational forcing through the quadratic nonlinearity
of the N-S equations. However, in separated boundary layers, centrifugal instability first
generates strong streamwise vortices due to multiple centrifugal resolvent modes, which
then develop into streaks via lift-up. Finally, we show that the progressive distortion and
disintegration of K-H rollers, driven by streamwise vortices, lead to the breakdown of large
coherent structures.
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1. Introduction

Laminar separation bubbles (LSBs) appear in low-to-medium Reynolds number flows
(Re ~10°—10° based on the chord of a typical wing section) at both low-speed
incompressible and high-speed compressible flow regimes. Low-speed scenarios include
unmanned aerial vehicles, ground vehicles, gas turbines and turbofan engine compressors,
while high-speed examples are supersonic engine intakes and super/hypersonic vehicles
where the impingement of shock waves on aerodynamic surfaces may give rise to shock-
induced flow separation (Babinsky & Harvey 2011). Their presence has been associated
with important changes in the aerodynamic performance of engineering systems such
as drag and acoustic noise increase, structural vibrations and degradation of stability
characteristics. For such reasons of engineering interest, much research has focused on the
description of the LSB physics, including the mean bubble topology, the study of stability
of the shear layer, its breakdown to turbulence and ways to control the separation length
(see review by Jahanmiri (2011) and references therein). While the two-dimensional (2-D)
mean bubble characteristics, namely the separation and reattachment points, the dead-air
and core vortex regions in the fore and aft parts of separation, and the formation of a
laminar separated shear layer, are well established thanks to the seminal work of Gaster
(1963), Tani (1964), Horton (1968) and O’Meara & Mueller (1987), the three-dimensional
(3-D) spatiotemporal dynamics of this complex flow is not fully understood, especially
due to the nonlinear, multimodal and multiscale behaviour of the shear layer (Alam 1999;
Alam & Sandham 2000).

1.1. Linear stability studies

Several studies have focused on the receptivity of the shear layer to free stream
disturbances (Rist 2002; Rist & Maucher 2002; Marxen & Henningson 2011; Marxen,
Lang & Rist 2013; Simoni, Ubaldi & Zunino 2013; Simoni, Ubaldi & Zunino 2014;
Michelis, Yarusevych & Kotsonis 2017; Yarusevych & Kotsonis 2017; Michelis et al.
2018a,b; Hosseinverdi & Fasel 2019; Zhang et al. 2019; Karp & Hack 2020), since it
constitutes the main site where fluctuations are amplified, providing the noise-amplifier
behaviour of the flow. For this reason, the fundamental mechanisms underlying the
generation of unsteadiness in LSBs have been investigated by means of local linear
stability theory (LST) (Michelis et al. 2017; Yarusevych & Kotsonis 2017; Michelis
et al. 2018a,b); and global approaches accounting for both true and pseudoresonances
of the linearised Navier—Stokes (N-S) operator, the former by means of the generalised
eigenvalue problem (Duck et al. 2000; Gallaire, Marquillie & Ehrenstein 2007; Rodriguez
et al. 2013) and the latter through the resolvent operator (Zhang et al. 2019; Yeh et al. 2020;
Cura et al. 2024). This distinction stems from the continuous effort of the community to
explain the origins of unsteadiness in LSBs both in the presence of external disturbances
and at low levels of free stream turbulence where unsteadiness appears spontaneously.

In the literature, the classification of LSBs is commonly based on the maximum reversed
flow parameter u ¢y = |Umin| / Uso, Where u;, is the minimum (most negative) value of
streamwise velocity in the flow field and Uy, the free stream velocity. Duck et al. (2000)
have found that an intrinsic instability appears in LSBs without the presence of external
disturbances for magnitudes far less than 15 %-20 %, which was originally the threshold
found for the onset of self-sustained unsteadiness in the flow. Duck et al. (2000) have
shown that a faster route to transition involves the emergence of a primary unstable mode at
peak reversed flow as low as 7 %—8 %. Much effort was made to explain the physical origin
of this mode. Using the generalised eigenvalue problem approach for the detection of
global instability mechanisms, Gallaire et al. (2007), Rodriguez et al. (2013), Rodriguez &
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Gennaro (2015) and Rodriguez, Gennaro & Souza (2021) have found that the unstable
mode is stationary in time and 3-D with spanwise periodicity. More specifically, the
global mode displays spanwise-periodic patches of streamwise velocity fluctuations with
characteristic wavelength of approximately the mean bubble height. Zhang & Samtaney
(2016) also found a similar mode in the separation bubble developing on a low-Reynolds-
number NACAO0O12 aerofoil and observed a dependency on the reversed flow magnitude.
They concluded that this intrinsic mechanism arises from the presence of local flow
curvature, especially pronounced near the reattachment point, and ascribed it to a modal
centrifugal instability. Rodriguez et al. (2013) have found that this instability breaks the
two-dimensionality of the separation bubble by producing spanwise inflections that give
rise to a characteristic peak-valley undulation of the bubble. A similar mode featuring
low spanwise wavenumbers (corresponding to wavelengths of several separation bubble
lengths) and low frequencies in the Strouhal number range of 0.01 was discovered even
in turbulent separation bubbles (Cura ef al. 2024) and ascribed to the low-frequency
breathing dynamics of the bubble.

Conversely, globally stable LSBs (., < 7 %) do not display any self-excited instability
mechanism, and, therefore, their route to turbulence is determined by the amplification of
external disturbances through the receptivity process of the shear layer. In this convectively
unstable regime, both local (LST) and global (resolvent analysis (RA)) methods are viable
tools to describe the linear stage of the disturbance field dynamics.

Standard LST is based on the assumption of locally parallel flow, which is not
representative of the topology of the LSB flow due to strong mean-flow gradients arising
from the presence of separation. Nonetheless, a number of studies have successfully
applied the ‘local’ assumption (at each streamwise station the flow appears approximately
parallel) for the identification of selective frequencies at which external disturbances
are optimally amplified. For example, Yarusevych & Kotsonis (2017) found that the
LSB forming on a NACAO0O012 aerofoil at two degrees incidence excites high-frequency
disturbances in the range of the natural shear layer shedding frequency. Similar results
were obtained by Michelis et al. (2017), who captured the linear evolution of the most
unstable instability of the shear layer accurately with LST but observed its little success
in the aft part of the bubble, where nonlinear effects and 3-D structures are dominant.
Ziade et al. (2018) and Michelis et al. (2018a,b) recovered the frequency of the Kelvin—
Helmboltz (K-H) instability in the shear layer and found a clear conformity with the natural
shedding frequency, concluding that the main vortex shedding mechanism is driven by the
K-H mode. These results were also confirmed by experimental data from Simoni et al.
(2013) and Yarusevych & Kotsonis (2017).

Additional insight into the most unstable convective mechanism of the shear layer is
provided by the linear resolvent studies of Zhang et al. (2019) and Yeh et al. (2020). The
advantage of the global resolvent approach is that both modal and non-modal mechanisms
and non-parallel effects are accounted for. In the convectively unstable regime, it is
insightful to treat the fluid flow system as a transfer function that maps a given input to its
corresponding output according to the system dynamics and seek for optimal amplification
mechanisms. In other words, an input/output (I/O) relationship can be formulated between
the external disturbance (input) and response of flow (output) based on the linearised
N-S equations around an equilibrium (fixed-point) solution of the steady N-S equations
(Schmid & Henningson 2001). Zhang et al. (2019) have shown that the resolvent approach
is able to identify the optimal forcing-response mechanisms of forced LSBs. Forcing
must be optimally applied at the natural shedding frequency in order to trigger maximal
response of the flow in terms of its energy. The forcing location being upstream of
separation and the response peaking in the aft part of the LSB close to reattachment
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highlight the tendency of the shear layer to amplify external disturbances throughout the
separation region.

Linear analysis has also been applied to control the LSB dynamics and ultimately the
separation distance. Michelis et al. (2017) have studied the effects of impulsive forcing
on convectively unstable, short bubbles and have observed changes in their stability
properties, therefore presenting a viable option to control the flapping and bursting
mechanisms. Michelis et al. (2018a) have found that the natural shedding frequency
recovered by LST from the unforced baseline constitutes the optimal forcing frequency
at which the coherence of the spanwise rollers shed by the shear layer is enhanced. This
phenomenon resulted in the suppression of separation. With a similar goal, Karp & Hack
(2020) applied linear transient growth analysis to find an initial perturbation shape to
minimise the bubble length. Although different to the optimal nonlinear forcing, linear
analysis provided a good estimate to reduce separation.

1.2. Nonlinear dynamics and transition

While the evolution of the primary K-H mode over the fore part of the separation region
is substantially linear (Diwan & Ramesh 2009), nonlinear interactions and saturation
occur near the reattachment point, where disturbances reach finite amplitude and 3-D
structures appear. From the experimental investigations of Simoni et al. (2013, 2014)
and Yarusevych & Kotsonis (2017), the natural transition scenario of LSBs involves the
breakdown of the large-scale, spanwise-uniform vortices shed by the shear layer into
small scales. The process according to which coherent vortices break up is dominated
by nonlinearities requiring methods such as large-eddy simulationand direct numerical
simulation (DNS) to capture the transition.

Systematic DNS investigations were carried by Alam (1999), Alam & Sandham (2000)
and Rist & Maucher (2002). The fastest route to turbulence was obtained with the
interaction of a pair of oblique waves (£18, lw) generating longitudinal vortices in the
reattachment zone, results later confirmed by Rist (2002). The simulations of Marxen &
Henningson (2011) and Marxen et al. (2013) elucidated the mechanisms underlying
the spanwise deformation of coherent large-scale vortices. While the substantially
2-D shedding of vortices was attributed to the K-H instability, a new stationary mode
(28, Ow) was found to induce a spanwise modulation in the separation region due to its
strong action on the mean-flow at high amplitude. Transition was achieved by forcing the
LSB with (08, lw) and (£18, lw) waves, similar to the forcing scenario employed by
Michelis et al. (2018a) to explain the origins of vortex deformation along the spanwise
direction. In this case, they proposed a simple model based on the synergistic action
of planar and oblique waves to describe the amount of spanwise deformation of the
main vortex. More recently, Hosseinverdi & Fasel (2019, 2020) studied the transitional
scenarios of LSBs subject to various levels of free stream turbulence using DNS. In
the unforced case, they found that the natural transition of the shear layer involves the
breakdown of largely 2-D vortex filaments, in agreement with Marxen & Henningson
(2011). With increasing levels of perturbations they observed the appearance of Klebanoff
modes (Klebanoff, Tidstrom & Sargent 1962) on top of the 2-D/weakly oblique
K-H waves. These modes deteriorate the spanwise uniformity of the K-H rollers and
promote the development of more complex 3-D vortices which become unstable and
breakdown to turbulence. Further analysis via proper orthogonal decomposition revealed
the appearance of a largely steady (very low-frequency), streamwise-elongated mode in
the proper orthogonal decomposition spectrum with smaller energy content compared
with the two dominant modes representing the 2-D rollers. The authors found striking
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similarity between the steady proper orthogonal decomposition mode and the Klebanoff
mode appearing in the DNS calculations.

Overall, it is apparent that the transition process in LSBs essentially requires the breakup
of large spanwise uniform structures shed by the shear layer, meaning that primary
2-D disturbances must interact with secondary 3-D/oblique instabilities. While there
is consensus on the origins and physical description of the primary (K-H) shear layer
instability, there is still debate on the secondary mechanisms that initiate the disintegration
of the K-H rollers, which is ubiquitous in separated shear layers under low/medium
disturbance levels (Yang 2019). Recently, Mohamed Aniffa et al. (2023) argued that
transition to turbulence in detached shear layers is not due to streak instability/breakdown
as in attached boundary layers, but rather that the interaction of streaks with K-H
rollers leads to spanwise vortex distortion and formation of A-structures, which precede
breakdown into small-scale turbulence.

With the present research, we aim at unravelling the dominant instability mechanisms
that lead to turbulence in convectively unstable separated shear layers. Our analysis seeks
optimal mechanisms over the entire transition process, with the primary focus being the
explanation of the nonlinear interactions across the multitude of perturbation scales and
mechanisms at play. In this way, we address:

(i) the optimal spatial structure and selective frequency range of external disturbances
that lead to maximal amplification of instabilities within the shear layer, about which
we are not aware of existing studies in the literature;

(i1) secondary instabilities leading to the distortion of large-scale K-H rollers (Marxen
et al. 2013; Yang 2019; Kumar & Sarkar 2023);

(iii) the final stages of transition involving the breakdown of large structures shed by
the shear layer. Several numerical (large-eddy simulation/DNS) (Alam & Sandham
2000; Rist 2002; Rist & Maucher 2002; Jones, Sandberg & Sandham 2010; Marxen
et al. 2013; Ziade et al. 2018; Hosseinverdi & Fasel 2019, 2020; Kumar & Sarkar
2023) and experimental (particle image velocimetry) (Simoni et al. 2013, 2014;
Mohamed Aniffa et al. 2023; Dellacasagrande et al. 2024) studies have explored
the transitional/turbulent dynamical stages of the shear layer but with predetermined
forcing, which is not the case of our work since we optimise the forcing to discover
efficient pathways to turbulence.

Since linear stability methods can elucidate only the initial stages of amplification
of perturbations, we seek optimal routes of laminar—turbulent transition by means of
a gradient-based nonlinear optimisation framework. To achieve this, we follow the
framework introduced by Rigas, Sipp & Colonius (2021), applied to the nonlinear N-S
equations projected on a finite and tractable number of spanwise and frequency harmonics,
known as harmonic-balanced N-S (HBNS). By progressively increasing the amplitude of
perturbations, we track the evolution of the shear layer state progressively from linear to
weakly nonlinear to highly nonlinear dynamics. This approach enables the identification
of the optimal underlying instability mechanisms and the harmonics at play, using a self-
contained computational tool which makes optimisation on such a large-scale problem
tractable, while the range of spatiotemporal scales is progressively increased to facilitate
interpretation of the underlying mechanisms.

1.3. Structure of the paper

The manuscript is organised as follows. In §2, we outline the methodology and
provide the theory for the study of the linear and nonlinear evolution of disturbances.

1016 A43-5


https://doi.org/10.1017/jfm.2025.10444

https://doi.org/10.1017/jfm.2025.10444 Published online by Cambridge University Press

F. Savarino, D. Sipp and G. Rigas

The computational set-up follows in §3. In §4, we present the laminar base-flow
calculation for variable adverse pressure gradient (APG) magnitude and briefly outline the
global stability of the LSB. In § 5, we present the optimal linear receptivity mechanisms
of APG boundary layers with and without separation. In § 6, we show results from the
nonlinear analysis and explain the various instability mechanisms responsible for the
transition of the shear layer. Finally, conclusions are drawn in § 7.

2. Methodology

In this section we provide an overview of the theory underlying the study of the evolution
of both linear and nonlinear perturbations in the LSB flow. We first introduce the governing
equations followed by formulations for linear I/O (resolvent) and nonlinear I/O analyses.

2.1. Governing equations

For the study of stability and transition of an incompressible APG boundary layer forced
by external disturbances, we consider the N-S equations,

du+u-Vu+Vp—vVou=Af'(x,1), V-u=0, 2.1)

where u = [u, v, w]" is the velocity vector with components in the streamwise (x), wall-
normal (y) and spanwise (z) directions, p is the pressure, v is the kinematic viscosity of
the fluid and ' =[f,, f}, f! 1T is the external volumetric forcing vector of amplitude A
(the ’ denotes the fluctuation around the zero mean).

Equations (2.1) are solved on a rectangular domain where we impose a laminar Blasius
velocity profile at inlet, zero-stress boundary condition at the outlet, no-slip at the plate
wall and a zero-net mass-flux suction—blowing velocity profile at the top boundary (more
details provided in § 3).

Introducing the velocity-pressure state vector w = [u, p]', treating x and y as discrete
spatial directions, while the z spatial direction and time ¢ as continuous, we arrive at the
semidiscrete N-S equations,

Mo, w + Lw + N(w, w)/2=AMPf'(z, 1), 2.2)
/
where M= ,Ig g is the mass matrix accounting for the spatial discretisation,
V2 . .
L= ( Vg V ()() VO()> is the linear Stokes operator, N= (ul Vi _(')_ “2 Vu1> is the

symmetrised nonlinear convection operator and P is the prolongation operator mapping
the velocity state [u, v, w]T to the full velocity-pressure state [u, v, w, p]T by adding a
zero component on the pressure. This stems from the fact that forcing acts only on the
three momentum equations but not on the continuity equation. Since the flow response is
constituted by four states (velocities u, v and w and pressure p), the prolongation operator
becomes necessary to match the size of the left- and right-hand sides of (2.2).

The amplitude of the external volumetric forcing A is used as a discriminant between
linear and nonlinear analyses described in the next sections:

(i) if A <1, which implies that the forced system behaves linearly, and provided the
operator of the linearised system dynamics is stable, we can derive an I/O relationship
between the perturbations and the external forcing to find selective frequencies over
which the energy of the perturbations is maximised — RA § 2.2;
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(1) if A ~ O(1), the system behaves nonlinearly and we need to solve the N-S equations
to account for nonlinear interactions at perturbation level and also between the
perturbations and the mean-flow — HBNS § 2.3.

2.2. Linear resolvent analysis

The linear dynamics in presence of a small amplitude forcing A < 1 can be studied by
linearising the N-S equations (2.2) around a fixed (or equilibrium) point of the system,
which, in the context of flow stability, we call base-flow. We therefore decompose the
state as

w(z, 1) = wo0 + Aw'(z, 1) + O(A?), (2.3)

where the subscripts of w,, , are referred to the spanwise wavenumber mf and to the
angular frequency nw to denote a specific scale (or harmonic) of the flow and will be used
throughout the manuscript. Because the base-flow is steady and 2-D m = n = 0. If we now
inject (2.3) in (2.2), we derive the steady N-S equations for the laminar base-flow at AY,

Lowo.o + N (wo 0, wo,0)/2 =0, (2.4)

where L,, is extracted for the harmonic m = 0 and N,Zf (W, 0y s Wiy, ny) is calculated here
on the base-flow such that m| =my =0.
We can analyse the system’s linear response to the applied forcing according to

Mo, w' + Lw' + No(wo 0, w') = AMPf'(z, 1), (2.5)

which are the linearised N-S equations with the zero-mean forcing term appearing on
the right-hand side. Again, assuming modal behaviour for both the forcing and the
response,

fl@n=fB.o)expliBz+on], w( =B o)expliBz+wn], (26)

where in this case w is a real scalar denoting the angular frequency, and assuming the
amplitude of the response A is of the same order of A, we can inject (2.6) into (2.5) and
obtain

W(B, w) = H(B, o)MPF (B, »), (2.7)

where the transfer function between the forcing disturbance (input) and the response
(output), H(B, w) = [ioM — Aiﬁ(woyo)]_l, is the resolvent operator.

Through the I/O formulation of the resolvent, we can study the receptivity of the
boundary layer to infinitesimal external disturbances. That means, we can identify
selective frequencies and spanwise wavenumbers where the external forcing produces
maximal energy of the response. This is particularly insightful in globally stable noise-
amplifier flows, which can transition and sustain turbulence only if external disturbances
are supplied to the flow.

The optimal forcing shape f that leads to maximal energy of the response at a given
frequency w and spanwise wavenumber f is found through an optimisation procedure that
employs the (squared) energy gain

S)

] (f). B(f))e
max g2(f; ﬂ’ a)) A A
f (f, Ne

) (2.8)
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as the cost function to be maximised. The energy norms of the forcing and response modes
are defined as

(FoPre;=1"0pF @, g, =" Qi (29)

where Q.) are the mass matrices associated with the inner products and are chosen such
that the forcing modes are unit norm, i.e. {f, f) Q; = 1, and the response modes have

norm (W, W), = G?. The regions of the flow where the response and forcing modes
live are indicated by £2(.). In the case of the response, this corresponds to the entire flow
domain, while forcing modes can be restricted spatially to mimic any particular scenario
if required. The symbol H denotes the Hermitian operation.

It can be shown that (2.8) leads to a generalised eigenvalue problem,

PRMHY Q, HMPf = G*Q ; f, (2.10)

where Q'iz = A; are the set of eigenvalues and f ; are the set of orthonormal eigenvectors

ranked in descending order of Ql.z (i=1,2,3,...). The leading eigenvector is therefore
the optimal forcing mode at a given frequency and spanwise wavenumber pair, followed
by eigenvectors associated with smaller eigenvalues which are referred to as suboptimal
forcing modes.

The framework described is global, in the sense that it is valid for non-parallel flows such
as APG boundary layers and separated boundary layers. It is also capable of analysing
non-modal/transient instability mechanisms, which the generalised eigenvalue problem
cannot. Finally, the optimal forcing can be quite general since no initial assumption is
made neither on its shape nor on its spatial region of action. The limitation of linear RA is
that the response of the system can only be calculated at the same frequency and spanwise
wavenumber as the external forcing. This is because a linear framework cannot capture the
interaction between different frequencies in the response, which is a feature of nonlinearity.
In § 2.3 we retain the nonlinear terms of the governing N-S equations since we relax the
assumption of infinitesimal disturbances.

2.3. Nonlinear I/0 analysis with HBNS

For finite amplitude A ~ O (1) forcing disturbances, we have to consider the nonlinear N-S
equations (2.2). In this case we consider the forcing and the velocity-pressure state to be
the sum of several Fourier modes,

M,N

f@n=Foo+ D Fanlx.yimpno)explimpz+nwnl.  (211)
m=—M,n=—N,
(m,n)#(0,0)

with a similar expansion for w(z, t), and where the symbol (:) denotes the complex Fourier
modes (or coefficients), M and N indicate the maximum order of spanwise and frequency
harmonics, respectively, and B and @ are the fundamental spanwise wavenumber and
frequency appearing in the wave term exp[i(mBz 4 nwt)]. By construction of this
expansion, an arbitrary number of multiples of the fundamental harmonic w,,—; ,=; can
be considered. The higher the number, the higher is the order of the nonlinear system. The
zeroth harmonic Wy is the time- and spanwise-averaged velocity-pressure state, which
we will be sometimes referred to as the mean-flow for brevity. While this is non-zero
in the response, it is zero in the forcing expansion because we only apply forcing at the
perturbation level, as initially expressed in the governing equations (2.1). Furthermore,
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because the system’s state, w, is real, the symmetry condition W_,, —, = ﬁ)fn’n, holds for
all (m, n), which therefore implies that wq ¢ is real. The symbol * denotes the complex
conjugate. The same symmetry applies to the forcing.

We now inject the expansion (2.11) into (2.2) to derive the nonlinear HBNS system,

R(®) = AMPf, (2.12)

where R(@) contains all linear and nonlinear terms. This system is obtained by balancing
the harmonics in each equation, meaning the first equation describes the evolution of
the mean-flow as it departs from the base-flow due to the modification imparted by the
nonlinear interactions between the perturbations and the mean-flow, the second equation
satisfies the evolution of the (0, 1) harmonic, the third equation the (0, 2) harmonic
and so on until the (M, N) harmonic. Because the system must have finite size to be
solved computationally, higher-order harmonics not included in the expansion constitute a
truncation error that affects the accuracy of the discrete system.

The present framework, introduced by Rigas et al. (2021) for incompressible zero-
pressure-gradient (ZPG) boundary layers, is a nonlinear extension of the linear I/O
(resolvent) analysis, since it allows the calculation of the multiharmonic response of the
system to any given finite amplitude forcing disturbance. For this reason, it is suitable for
optimisation similarly to RA, except that the multiharmonic response solution makes it
possible to formulate more complex cost functions than the perturbation energy.

The optimal forcing shape f is calculated by augmenting the HBNS framework with
a constrained optimisation procedure. In this regard, we define a positive, real-valued,
scalar cost functional J (@) to be maximised subject to the constraint that the response, W,
resulting from the applied forcing, must be a solution of the HBNS system (2.12).

In the context of transition to turbulence, we choose the cost functional to be the squared
shear strain of the mean-flow modification integrated over the flat plate length,

J () = J (Wo,0) = (W00 — wo,0) ' C" Cio.0 — wo.0), (2.13)

where C(Wo,0 — wo,0) = [ (3(Wo,0 — wo,0)/3y) y=o dx. It follows that the cost functional
is related to the change in the overall skin friction drag on the plate as

pJo3

= 2.14
1/2U2L, @19

ACp
where v, Uy, and L, are the kinematic viscosity, free stream velocity and plate length,
respectively. This quantity is known to increase during transition due to the increased wall
shear of the turbulent boundary layer, hence its physical relevance in our optimisation
strategy. Refer to Rigas et al. (2021) for more details.

3. Configuration, numerical discretisation and algorithms

The set-up for the 2-D base-flow calculation is shown in figure 1. Velocities are non-
dimensionalised by the free stream velocity Uy, and lengths by L,.r = v/ U, yielding
the non-dimensional spatial coordinates (x, y, z) — (Reyx, Rey, Re;). The computational
domain is rectangular where inlet and outlet boundaries are positioned at x;, = 0.3 x 10°
and x,,; = 1.8 x 10° with respect to the flat plate leading-edge. The top boundary is at
H =024 x 10° away from the plate wall. Overall, the domain is 177§;, x 283;;,, where
8in = 848 is the 0.99U, boundary layer thickness at inlet. The Reynolds number based
on the displacement thickness, Res+, is 298 at the inlet and 730 at the outlet. In order
to calculate APG boundary layers, we impose a zero-net mass-flux suction—blowing
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Figure 1. Configuration for the calculation of the LSB. Here xg = separation point; xg = reattachment point;
Ly = xg — x5 is the bubble length. Boundary layer thickness, §, and shear layer are qualitatively drawn in green
and blue, respectively. Figure not to scale.

velocity profile at the top boundary, qualitatively shown in figure 1. This is a well-
established boundary condition to generate model LSBs numerically (Na & Moin 1998;
Hosseinverdi & Fasel 2019; Zhang et al. 2019) which essentially mimics experimental
wind tunnel set-ups using displacement bodies or zero-net mass-flux actuators that impose
an APG on the plate underneath (Diwan & Ramesh 2009; Griffin et al. 2013; Michelis
et al. 2017; Yarusevych & Kotsonis 2017; Borgmann et al. 2025). The suction-blowing
function adopted in our configuration reads

_ 1 —x2
Vsp (x, y=H)=—voX exp 3 , (3.1

whose formulation is identical to Karp & Hack (2020), where vg is the amplitude and
X = ((x — x5p)/(Axsp exp(—1/2))) is a non-dimensional parameter containing the
coordinate location, xs, = (x2 +x1/2), and the width, Axg,, of the suction-blowing
profile. Here, x; and x; are chosen to match the configuration of Karp & Hack (2020)
for base-flow validation purposes (see Appendix A), such that xg = 1.06 x 10°. This
coordinate effectively fixes the streamwise location of the bubble along the plate.

A 2-D finite element discretisation of (2.4) is performed in FreeFem++ (Hecht 2012),
where P1-bubble and P1 triangular elements are chosen for velocity and pressure states,
respectively. A wall-normal stretching profile with 0.03 % stretching factor and 1/206;,
first cell height is employed in the near-wall region (0 < y < 4000), yielding 66 grid
points of which approximately 20 inside the boundary layer to resolve the gradients. The
remaining part of the domain (4000 < y < H) is coarsely discretised with an unstructured
mesh, since disturbances are unlikely in this region. Due to the strongly non-parallel nature
of the LSB flow, large streamwise gradients are expected in the APG region, hence, a
non-uniform streamwise discretisation is employed here. Elements of aspect ratio 10: 1
(length 1/28;;,) are used upstream and downstream of the APG and a sine function is
centred at x = 1.2 x 10° to progressively refine the streamwise grid spacing towards this
coordinate, previously identified as the approximate location of the LSB vortex core. The
finer element in this region of the mesh has aspect ratio 3: 1 (length 3/206;,). Overall,
415 points are used in the streamwise direction. A summary of the mesh parameters is
provided in table 1.

We employ a root-finding Newton algorithm to compute the base-flow. The base
velocity-pressure state is initialised with the Blasius boundary layer. By progressively
increasing the pressure gradient through the boundary condition (3.1), we obtain several
solutions with and without separation.
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First element  Stretching Max Min Ny N, #ofelements
Thickness Factor Aspectratio  Aspect ratio

Near-wall Overall
1/208;, 0.03 % 10:1 3:1 415 66 53820 68 694

Table 1. Mesh parameters for the base-flow and stability calculations.

For linear RA, we first construct the Jacobian and mass matrices for a given frequency-
spanwise wavenumber pair (B, w) and then invert the large sparse matrix [iwM—
Aig(wo,0)] to obtain the resolvent by calling the MUMPS (multifrontal massively parallel
sparse direct solver). We perform a parametric study based on w and 8 to identify optimal
linear 3-D forcing—response mechanisms over a range of wavenumbers. We allow 3-D
disturbances to manifest everywhere in the domain but also impose the no-slip and inlet
zero-perturbation boundary conditions and zero wall-normal perturbation at the far-field
boundary.

For nonlinear I/O analysis we implement the iterative Newton algorithm on (2.12) to
solve for the system’s nonlinear response. This requires the calculation of the Jacobian
A=0R/3W obtained by linearising the operator R(w) around the time- and spanwise-
averaged flow solution wg o ; at the ith iteration. The Jacobian is diagonally dominant
if the forcing amplitude A is small since the leading diagonal blocks contain the linear
terms, which are dominant at low amplitude, while the off-diagonal blocks contain the
nonlinear convective term. The diagonal dominance of A decreases as the nonlinear term
becomes progressively stronger at higher forcing amplitudes. Inversion of the Jacobian is
performed using the block-Jacobi preconditioned GMRES (generalised minimal residual)
algorithm from the PETSc (portable, extensible toolkit for scientific computation) library
(Balay et al. 1998). For computational efficiency, the large HBNS system is handled by
multiple cores using an MPI (message passing interface) architecture, each core dealing
with one harmonic.

A Lagrange functional problem is formulated for the maximisation of the cost function
in (2.13), which naturally yields the linear system AT =dJ/di to be solved for
the adjoint state, w. This is used to evaluate the alignment of the adjoint state with
the computed forcing vector f which represents the convergence criterion (to a local
maximum) of the optimisation problem. Convergence is met when the updated forcing
is parallel to the adjoint, i.e. the angle between the two vectors satisfies cosd — 1.
A modified steepest ascent method is implemented to update the forcing at each iteration.
More details provided in Rigas et al. (2021).

4. Base-flow
4.1. Numerical base-flow solutions for different APG magnitudes

Figure 2 shows the computed laminar base-flow solutions for a range of suction—blowing
amplitudes. As the amplitude vy is gradually increased, the boundary layer becomes more
prone to separation. At vg =0.125 we reach incipient separation and at vp =0.15 we
obtain the first LSB solution with u,., = 1.06 % (see figure 2b). Figure 2(a) displays four
boundary layers whose linear disturbances will be studied in §5. Case A is the ZPG
boundary layer reference, cases B and C are boundary layers under APG and case D
shows a separated shear layer hosting a LSB with peak reversed flow u,., =2 %. The
boundary layer displacement thickness, §*, and the streamlines show the influence of the
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Figure 2. (a) Contours of streamwise velocity and streamlines from four base-flows computed at vo =0
(A, ZPG boundary layer), vp =0.05 (B, low APG boundary layer), vo =0.1 (C, medium APG boundary
layer) and vg =0.16 (D, LSB with peak reversed flow u,., =2 %). Displacement thickness from base-flow
solution (black-dashed) and from Blasius solution (black-solid) superimposed. The LSB dividing streamline
(yellow-solid) is also shown in D. (b) Change of u,., with varying vg.

APG starting at x ~ 0.6 x 10°, where the boundary layer deviates from the ZPG reference.
Additional analysis, including validation and comparisons with the broader LSB literature,
in Appendix A indicates that our model LSB is representative of a ‘short’ bubble whose
transition is typically driven by convective disturbances.

4.2. Global stability

From our GSA calculations (see Appendix B), we observe that the LSB becomes globally
unstable due to the emergence of an unstable 3-D, stationary (zero frequency) eigenmode
for peak recirculation values beyond 6.60 %, in agreement with the existing literature
reporting values in the range 7 %—8 % (Duck et al. 2000; Rodriguez et al. 2013, 2021). We
add an indicative neutral stability margin in figure 2 at 7 % to mark the threshold between
the stable and unstable regimes. Further investigation on this mode (see Appendix B)
reveals the features of a modal centrifugal mechanism, occurring at much lower u,,, than
absolutely unstable 2-D K-H waves, which were detected only above 15 % in flat plate
(Rodriguez et al. 2013) and bump (Ehrenstein & Gallaire 2008) geometries. For any LSB
base-flow computed within the vg range considered, we have not observed any globally
unstable 2-D K-H waves. This is in accordance with literature since we have generated
bubbles up to uep ~ 12 %.

In § 5 we study the optimal linear instability mechanisms of the four base-flows (A to D)
using the resolvent approach in § 2.2. Note that all of the four cases investigated further
are globally stable, noise-amplifier-type flows.

5. Effect of APG and separation on linear convective instabilities

In order to understand the origin of the different instability mechanisms of separated
boundary layers hosting separation bubbles (case D in our study), we also analyse attached
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Figure 3. Contours of G>(8, w). Square (0J) and diamond (¢)) markers refer to the most and second most
amplified (B8, w) pair, respectively.

boundary layers subject to increasing APG magnitude (cases B and C). We reference the
results to the well-known ZPG boundary layer benchmark (case A).

5.1. Parametric study in the (8, o) domain

We perform a parametric study with RA by scanning a combination of frequencies
o =10, 50] x 107> and spanwise wavenumbers S = [0, 250] x 10~3 on cases A to D.
In other words, we solve the optimisation problem (2.8) to extract the optimal linear
forcing/response mode at each (f, w) pair to unravel frequencies of high receptivity of the
boundary layer to external disturbances and the physics of the mechanisms involved. Maps
of the linear gain are shown in figure 3 for cases A to D in the parametric space (8, w).
Two main classes of disturbances are identified at selective frequencies and spanwise
wavenumbers:

(1) 3-D (B # 0) travelling-wave modes at frequency w (diamond markers in cases A and
B and square markers in cases C and D);

(i) 3-D (B #0) steady (w = 0) modes (squares in cases A and B and diamonds in cases
Cand D),

which are listed in table 2. We examine the physics of these disturbances in the remainder
of this section.

5.2. From Tollmien—Schlichting to K-H-dominated boundary layer instability

Depending on the magnitude of the APG, the receptivity of the boundary layer to
external disturbances changes both quantitatively and qualitatively, meaning that the
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O (x1073) O (x1079)
Case Separation Urey (P0) B w Mode B w Mode
A: ZPG No 0 100 0 Streaks 30 10 T-S
B: low APG No 0 100 0 Streaks 50 17.5 T-S
C: medium APG No 0 30 22.5 K-H 100 0 Streaks
D: LSB Yes 2 20 25 K-H 150 0 Streaks

Table 2. Summary of linear amplification mechanisms for cases A to D. The symbols have the same meaning
as in figure 3.
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Figure 4. Square root of the kinetic energy associated with the linear response modes marked in figure 3.
(a) Unsteady (w # 0) and (b) steady (w = 0) modes. For case D, grey-solid lineis separation; grey-dashed line
is reattachment; shaded grey area is the separation region. Case D, panel (a), is down-scaled by one order of
magnitude for clearer visualisation. The inset shows a close-up of cases A and B.

pressure gradient affects both the energy/amplification and the characteristic physics of
the underlying mechanisms. For the former, we refer to the gain in figure 3 and for the
latter we plot either the streamwise evolution of the square root of the perturbation kinetic
energy, +/ E(x), in figure 4, where E is

E() =/ (12 + 1512 + [&1)dy 5.0)
0

and a planar view of the spatial forcing/response modes in figure 5.

From the linear gain in figure 3, we observe that ZPG (A) and low APG (B)
attached boundary layers amplify Tollmien—Schlichting (T-S) waves according to the
Orr mechanism (Schmid & Henningson 1992, 2001; Rigas et al. 2021), which is more
energetic for oblique rather than planar waves. We find (8, ) = (30, 10) x 103 for ZPG
and (B, w) = (50, 17.5) x 10~ for low APG (marked with diamonds in figure 3a,b) to
be the frequency-spanwise wavenumber pairs where this mechanism achieves maximal
amplification. While the gain of the oblique T-S wave mechanism is not affected
dramatically by the APG, the shape of the spatial growth rate is, as shown in figure 4(a).
The inset indicates that in the ZPG boundary layer the energy of T-S waves increases
monotonically with increasing x (= Re, in our non-dimensionalisation), while in the
presence of low APG there is a peak of energy around Re, &~ 1.2—1.3 x 10°. In figure 5
(a 1,b 1) we show that the optimal forcing waves located in the first part of the pressure
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Figure 5. Optimal unsteady resolvent modes showing the change of instability from T-S dominated to
K-H dominated with increasing APG. Contours of (a) Re{ f;} and (b) Re{u}. Black-dashed line, displacement
thickness; grey-solid lines, base-flow streamwise velocity profiles. Red-solid line, inflection line; red shaded
area, critical layer.

gradient region and within the critical layer excite T-S waves downstream. The spatial
arrangement of the response, in agreement with the energy distribution in figure 4(a),
indicates that the amplification of T-S waves correlates with the pressure gradient
distribution. This is because the pressure gradient enhances the viscous shear in the
boundary layer, which is ultimately responsible for the Orr mechanism (Schmid &
Henningson 2001). Despite all the effects of the pressure gradient on T-S waves discussed
thus far, the low APG boundary layer is still reminiscent of the same convective instability
mechanisms of the ZPG boundary layer.

Stronger APG levels (case C) lead to (i) boundary layer thickening and (ii) inflectional
velocity profiles. The latter is determinant for important changes in the dominant
instability mechanism of the boundary layer. The energy of the most amplified mode
found at (8, w) = (30, 22.5) x 107> (square marker in figure 3¢, case C) increases by one
order of magnitude with respect to the T-S mode of case B but its distribution in x is
qualitatively similar — see figure 4(a). To detect any differences between these modes we
compare their spatial structures in figure 5. Figure 5(a ii,b ii) show that the optimal forcing
waves cluster in a narrower region of the domain more upstream compared with the classic
T-S forcing mode and decay upstream of the boundary layer thickening, moreover, the
response mode exhibits roller-type structures downstream of boundary layer thickening
closely aligned with the inflection line. We ascribe these features to the inviscid K-H
instability mechanism, which emerges when the inflection point becomes unstable for
sufficiently large APG (Sandham 2008; Diwan & Ramesh 2009; Marxen & Henningson
2011; Zhang et al. 2019).

When the APG leads to flow separation (case D), the gain of the most amplified K-H
mode at (8, ) = (20, 25) x 107> increases by two additional orders of magnitude due
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to the formation of a separated shear layer which is known to be more unstable than
the attached counterpart (Yang 2019). The optimal forcing waves live upstream of the
separation bubble and feed the response amplification occurring in the aft part of the
separated shear layer (figure 5a iii,b iii), which is a critical site of shear layer instability
(Sandham 2008; Jones et al. 2010; Simoni et al. 2014). The peak response energy is
reached shortly downstream of the reattachment point (figure 4a), where both velocity
and pressure gradients are still significant. In case D it is even more evident than case C
that the K-H rollers form two streets, one aligned with the inflection line and the other
being very close to the wall. This is not observed in the shape of the T-S waves (case B).
Because the most amplified K-H mode is 3-D, even though 2-D K-H waves exist in the
gain spectrum of figure 3(d) (case D), the angle of the waves relative to the spanwise
direction can be computed as tan~! (B/ay), where a is the streamwise wavenumber. We
find that it is approximately 8°, meaning that these waves are nearly 2-D. These topological
features agree with the broad literature on K-H instability of separated shear layers (Rist &
Maucher 2002; Diwan & Ramesh 2009; Simoni et al. 2013, 2014; Michelis et al. 2018a,b;
Zhang et al. 2019; Hosseinverdi & Fasel 2019, 2020).

In summary, the APG, upon modification of the boundary layer velocity profile,
enhances the spatial growth of convective disturbances and, if sufficiently strong, activates
the K-H mechanism to the point the shear layer evolution is driven by this instability
instead of classic T-S waves typical of ZPG and low APG cases. We refer the reader to
Appendix C for further discussion.

5.3. Effect of separation on the classic lift-up mechanism

Another class of convective-type instabilities of boundary layers is steady (w =0) and
3-D (B #0). In ZPG (case A) and low APG (case B) boundary layers, there is a region in
the gain spectrum extending over a large B range where the classic lift-up mechanism
stands out as the most amplified mode (figure 3a,b; cases A and B). This non-modal
mechanism is well-documented in the literature (Andersson et al. 2001; Jacobs & Durbin
2001; Schmid & Henningson 2001; Symon et al. 2018; Rigas et al. 2021) and involves
the transient growth of streamwise-oriented u’ streaks optimally forced by near-wall
streamwise vortices (see figures 28 and 29 in Appendix D). The physical process is
characterised by the exchange of mean streamwise momentum across the boundary layer
thickness due to the action of streamwise vorticity which pumps high-momentum fluid
particles living in the outer shear layer deep into the boundary layer and, conversely,
lifts low-momentum particles from the near-wall up to the outer layer. Notably, all the
perturbation kinetic energy of the streaky mode plotted in figure 4(b) comes from the u’
component, since v’ and w’ are typically nil — refer to figure 29. The maximum gain of
the lift-up mode occurs at 8 =100 x 10~ and drops more steeply for lower 8 than for
higher g, indicating this instability is strongly 3-D.

The impact of the pressure gradient on the classic lift-up mechanism is now discussed.
As long as the boundary layer remains attached, the process is continuous, meaning
streamwise vorticity continually forces the u’ response whose spatial growth is almost
monotonic — and is perfectly monotonic in ZPG boundary layer (figures 28 and 29).
The local changes in spatial growth of cases B and C are due to the influence of the
APG (figure 4b). Interestingly, when the separation bubble forms (case D), the spatially
continuous action of the streamwise vortices is ‘broken’ into two parts, one upstream of
separation that creates local u’ disturbances over the bubble, and the other in the reattached
shear layer downstream of the bubble leading to elongated streaks (see figure 6). The u’
structures in the separation zone imply a local production of perturbation kinetic energy,
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Figure 6. ‘Double’ lift-up mechanism at 8 = 150 x 1073 (diamond marker in figure 3, D). (a) Amplitudes of
the streamwise component of the curl of forcing (V x f/), (black-solid line with x) and of the streamwise
velocity of the response u’ (blue-solid line with +). (b) Isosurfaces of (V x f’), (coloured with yellow/black
for positive/negative) and u’ (coloured with red/blue for positive/negative). The LSB is shown by the u =0
grey-coloured isosurface.

as seen in figure 4(b), where we introduce the terminology ‘double’ lift-up to indicate the
two-stage action of this process due to the presence of the bubble. We notice qualitative
similarity to Casacuberta et al. (2022, 2024) as concerns the phase shift of the streaks over
and after the separation, which the authors observed before and after the forward-facing
step. The mechanism described therein and termed ‘reverse lift-up’ is different, though,
since it involves the stabilisation of the streaks not present in our LSB set-up.

In brief, separation affects the spatial organisation of the structures typical of lift-up but
the physical mechanism remains the same as the ZPG boundary layer’s.

5.4. Modal centrifugal instability mechanism in LSB

A mechanism that is absent in attached boundary layers is the modal centrifugal
instability related to the separation bubble. As reported in §4.2 from the calculations
presented in Appendix B, this mechanism becomes globally unstable for sufficiently strong
recirculating flow inside the bubble (u,., & 7—8 %), which is ultimately dictated by the
magnitude of the APG. As shown in figure 7(a), the temporal amplification factor of
the least stable eigenvalue (which is stationary, Im{1} = 0) computed over a range of
B for five LSB base-flows with 2 % < u,., < 6.60 % is always negative, confirming that
there is indeed no globally unstable mode in bubbles with u,., < 7—8 %. However, for
values one to two orders of magnitude lower than those typical of streaks, the least stable
eigenvalue is less damped. The RA corroborates the GSA data. The gain in figure 7(b)
shows two regions of amplification, one with a peak at 8 = 10 x 107 that is very sensitive
to the size of the bubble, and another at 8 = 150 x 107 related to lift-up which has been
already discussed in § 5.3. Remarkably, GSA fails to capture the lift-up mode because
it is non-modal, while the agreement between RA and GSA on the presence of a modal
mechanism for low § is examined further in figure 7(d) for the u,,, =2 % bubble (case D).
The similarity between the optimal response from RA and the eigenmode from GSA in
figure 7(d) is striking. Either modes display the typical shape of the streamwise vorticity
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Figure 7. (a) Temporal amplification of the least stable eigenmode from GSA and (b) squared gain from RA
at w =0 for several 8 values and for five bubbles with increasing u,.,. (¢) Componentwise amplitudes of curl
of forcing computed from RA and (d) response vorticity computed from both RA and GSA at 8 = 10 x 1073,
marked on panels (a) and (b) with red-dashed line, and u ., = 2 % (case D). The eigenmode is scaled such that
its total energy | E(x) dx matches the resolvent response mode’s.

component (/) of the centrifugal instability over the separation zone, which is especially
intense at the separation and reattachment points of the shear layer.

We highlight the important differences between the structure of the centrifugal and lift-
up modes, since these may not be obvious. As far the forcing mode shape is concerned,
we refer to figure 7(c) and figure 28(g,h), and note that:

(i) in the centrifugal mechanism both (V x f'); and (V x f'), are present, while for
lift-up it is only (V x f')y;

(ii) the optimal forcing of the centrifugal mode is particularly strong near the separation
point, which is not observed in lift-up.

In terms of the response mode shape (figures 7d and 29g,h):

(i) the wall-normal vorticity disturbance (a)’y) is weak in the centrifugal instability, which
is not the case of the lift-up, where a)/y ~wl;

(ii) most importantly, w/, is virtually negligible in the lift-up mode, but is an essential

feature of the centrifugal instability.

Overall, the centrifugal instability originates from the bubble, while lift-up does not.
Centrifugal forcing optimally acts on the separation point and the corresponding response
is maximal at reattachment. Therefore, this mechanism essentially occurs over one bubble
length, as opposed to lift-up which manifests throughout the boundary layer development.

In summary, linear analysis via both GSA and RA revealed that under APG conditions
the K-H instability dominates over T-S waves and, when separation occurs, a new
instability of centrifugal nature appears at low B. The lift-up mechanism leading to
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streaks is present for any pressure gradient magnitude. We now examine in § 6 the
nonlinear, multimodal interactions of the above disturbances to understand the sequence
of mechanisms leading to turbulence.

6. Optimal nonlinear disturbances

In this section we present the nonlinear mechanisms responsible for laminar—turbulent
transition of the separated shear layer developing over the separation bubble with u,,, =
2 % (case D).

Given that the oblique K-H instability is the most amplified linear mechanism in the
shear layer (refer to figure 3), we force the nonlinear HBNS system at the same frequency
and spanwise wavenumber found from RA (w =25 x 10~ and B =20 x 107°). We
expect this mechanism to emerge strongly in the region of flow where the dynamics
of the perturbations is still substantially linear, i.e. at incipient separation of the shear
layer. Clearly, the nonlinearities of the flow will also lead to new disturbance mechanisms
which we are able to analyse with HBNS. The capability of the method to account
for multiharmonic forcing environments in the optimisation allows us to consider also
planar waves (08, =1w) and steady disturbances (£18, Ow) at fundamental frequency
and spanwise wavenumber, similarly to Rigas et al. (2021).

6.1. Quasilinear-in-w and HBNS-in-B systems

We explore HBNS systems of variable architecture by varying the number of harmonics
in the Fourier expansion (2.11) in order to identify and converge the leading modes that
carry most of the energy of the disturbance field. To assess convergence of the solution,
we track the behaviour of the total drag increase on the plate, ACp in (2.14), resulting
from the mean-flow modification.

In figure 8 we show the ACp parameter obtained in the range of forcing amplitudes
A=1[0.01, 10] x 1077, In figure 8(a) we compare systems with one (N =1) against
two (N =2) time harmonics. We also vary the number of spanwise harmonics from a
minimum of two (M =2) to a maximum of six (M = 6). While the number of spanwise
harmonics visibly affects the drag, systems with N =2 harmonics do not show significant
difference to N = 1. This implies that the contribution of harmonics with frequency
2w (and, consequently, also higher-order harmonics 3w, 4w, Sw, ...) to the mean-flow
modification is negligible.

The overall effect of varying M (at constant N = 1) on ACp is seen in figure 8(b), where
M ranges from 2 to 10. We define these systems as quasilinear-in-w and HBNS-in-g since
they contain harmonics with at most 1w and a finite number of m . Notably, convergence
of ACp is observed if M = 8§ at least, meaning we resolve the most energetic disturbances
and underlying nonlinear interactions within this range. We therefore show that the
cascade of energy from low-order (large-scale) to high-order (small-scale) disturbances
is dominant in space (8-modes) rather than in time (w-modes). For this reason we perform
our analysis on quasilinear-in-w (N = 1) systems for the remainder of the manuscript.

6.2. Nonlinear mechanisms at the early stages of transition

We analyse the onset of nonlinearity in the shear layer dynamics at weakly nonlinear
forcing amplitude A =1 x 10~/ where the base-flow modification is small but non-zero.
This specific study is relevant to the early stages of transition, where the dynamics of the
system can no longer be approximated as linear but, at the same time, only few harmonics
(or scales) of the flow are active. The HBNS; | system is suitable for this purpose since,
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Figure 8. (@) Comparison of ACp for systems with N =1 and N =2; (b) ACp of quasilinear-in-w and
HBNS-in- systems.

by construction, it can calculate the first nonlinear triadic interaction where (£18, +1w)
waves produce the 3-D steady (£28, Ow) mode. Actually, the fundamental oblique mode
may also produce planar (08, £2w) and oblique (£28, +2w) superharmonics but these
are shown to have little impact on ACp in figure 8(a). Furthermore, a low-order system
such as HBNS; 1 is sufficiently accurate at this forcing amplitude since all systems
converge to the same ACp. Imposing symmetry about z =0 (i.e. W_;;., = [, 0, —W]n.n
and f —mn =1 fx, fy, — fz]m,n), the number of coupled equations in this system amounts
to (M + 1) x (N + 1) =6, including the equation for the modification of the mean-flow
by the disturbances.

The optimal nonlinear forcing/response solution in figure 9 shows that the shear layer
initially amplifies the K-H mechanism over the separation region which then leads to the
(£28, 0w) mode through nonlinearity. We now explain this scenario in more detail.

Forcing optimally originates only from oblique waves (with planar wave and steady
disturbance forcing harmonics being virtually zero, therefore not displayed) with a strong
(V x f"), component located upstream of the separation point — see figure 9(a,b).
Their spatial structure, plotted in figure 10(a), is characterised by rollers of finite span
tilted against the mean shear. The structure of the optimised forcing is visually similar
to the linear resolvent forcing mode of figure S(a iii). This result indicates that the
3-D K-H instability is the key to trigger mean-flow modification, which is in the cost
functional (2.13), therefore justifying the observed similarity. This result also confirms
the effectiveness of oblique waves in generating efficient mechanisms for transition to
turbulence of both attached and separated shear flows (Schmid & Henningson 1992;
Marxen et al. 2013; Rigas et al. 2021; Dwivedi, Sidharth & Jovanovi¢ 2022). The K-H
response grows in the separated shear layer with a spatial amplification rate that is well
approximated by an exponential curve — see figure 9(c,d), indicating the dynamics of the
flow is essentially governed by a linear mechanism over the entire front portion of the
separation bubble up to the location of the bubble’s apex, in agreement with Diwan &
Ramesh (2009). Because these waves are spanwise-periodic, they form a chequerboard
pattern of rollers with finite spanwise length, as shown in figure 10(a).

Near the mean reattachment location the K-H waves reach finite amplitude and
saturation effects occur. Concurrently, the nonlinear interaction of these waves governed
by the N(w, w) operator in (2.2) produces an internal forcing term (equivalent to internal
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Figure 9. Optimal nonlinear mechanisms computed from the HBNS; | system by forcing at (B, w)=
(20,25) x 1073 and A=1x 107". Componentwise amplitudes of (a) external forcing (£18, £1w) and
(b) curl, (c) velocity and (d) vorticity of the K-H response (£18, £1w), (e) forcing and (f) curl of forcing from
nonlinear triadic interaction (£18, —lw) + (£18, +1w) = (28, Ow), (g) velocity and (h) vorticity of the
centrifugal/lift-up response (£2, Ow). Time- and spanwise-averaged separation (grey-solid) and reattachment
(grey-dashed) locations superimposed. Lines of best fit, a exp (bx), for |u'| (a =3.58 x 1071, p=2.01 x
104, R? =0.9999) and || (a = 8.85 x 10713, b = 1.82 x 1074, R? =0.9977) are plotted in red-solid.

stresses) with a strong (V x f”), component reaching its peak energy shortly downstream
of reattachment — figure 9(e,f). This term is computed in the equation for the (28, Ow)
harmonic (m = 2, n = 0) from the HBNS; ; system,

[Ly + Ny (.o, )]tb2,0 + N (i1 —1, ®1.1) =0, (6.1)

where N% (Wy,—1, wq,1) governs the nonlinear interaction of (18, —lw) with (18, lw)
waves through the convective term of the N-S. From now onwards, f KH=
[fK_H,x, fK_H,y, fK_H,Z]T = —PTN{(ﬁ)l,_l, wq,1) will be referred to as ‘K-H forcing’
because it originates from the nonlinear interaction of two K-H waves (for the explicit
derivation see Appendix F). P' is the restriction operator mapping the full velocity-
pressure state [u, v, w, p]T to the velocity state [u, v, w]’.

The (£28, Ow) response in figure 9(g,h) displays two characteristic regions. By
comparison with the linear centrifugal and lift-up modes in figures 7(d) to 29(g,h),
we notice that region I displays the features of centrifugal instability, which are that o/,
peaks near the reattachment point and that it is of the same order of magnitude of /],
and region II is the site of lift-up where both | and «/ are amplified but the w;
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Figure 10. The 3-D structure of the modes in figure 9. Isosurfaces of (a) (V x f’), (yellow/black
for positive/negative) and a); (red/blue for positive/negative) from the K-H mechanism, (b) (V x f').
(magenta/cyan for positive/negative) from the nonlinear internal forcing and (¢) o/ (magenta/cyan for
positive/negative) and u’ (red/blue for positive/negative) from the centrifugal/lift-up mechanisms. The
instantaneous separation bubble is plotted with the u = 0 isosurface.

response is weak. The structures of )/, in figure 10(c) further highlight the presence of
two mechanisms in the (+28, Ow) mode. The first set of streamwise vortices localised
around the mean reattachment point is related to the centrifugal mode pertaining to
the separation zone (Sansica, Sandham & Hu 2016; Hildebrand et al. 2018; Mauriello,
Larchevéque & Dupont 2022). At reattachment, the flow is strongly curved due to the
displacement effect of the bubble, which makes it a susceptive site for the development
of centrifugal instabilities of Gortler type (Gortler 1941; Saric 1994; Li & Malik 1995).
A detailed study evaluating sufficient conditions for centrifugal instability is provided in
Appendix E, where we essentially demonstrate that streamline curvature at separation and
reattachment supports a locally unstable centrifugal mode. On the other hand, the second
set of streamwise-elongated vortices and u” streaks are ascribed to lift-up (Jacobs & Durbin
2001; Balamurugan & Mandal 2017; Rigas et al. 2021) taking place in the redeveloping
boundary layer.

In summary:

(i) oblique wave-like disturbances optimally located upstream of separation excite the
inviscid, inflectional K-H instability at (18, lw) through a linear mechanism that
takes advantage of the shear present in the separated shear layer;

(i1) at saturation amplitude, the K-H waves interact nonlinearly to produce a source of
internal forcing at (28, Ow) that features mainly streamwise vortices;
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(iii) streamwise vorticity manifests in the (28, Ow) response near the reattachment point,
indicating the presence of a centrifugal instability;

(iv) the presence of w/. due to the centrifugal response translates into streamwise vortices
that trigger lift-up and, therefore, streaks in the redeveloping boundary layer.

While there are commonalities with the oblique wave-to-streaks mechanism found by
Schmid & Henningson (1992) and Rigas et al. (2021) for attached boundary layers, the
presence of separation makes this scenario more complex due to the centrifugal instability.

Finally, it is important to note that the K-H induced forcing is different to the optimal
forcing of either the centrifugal mode in figure 7(c) and lift-up in figure 28(g,h). In the
former, we have observed a strong streamwise vorticity footprint at the separation point,
while in the latter a continuous action of streamwise vorticity in the streamwise direction.
Despite these differences, the K-H forcing must have some projection on the optimal
forcing mode responsible for the centrifugal instability such that this mechanism can be
excited. This will be examined in detail in § 6.3.

6.3. Resolvent-based reconstruction of the weakly nonlinear centrifugal instability
mechanism

Broadly following the approach of Dwivedi et al. (2022) who derived the nonlinear
(£28, Ow) forcing from weakly nonlinear analysis, we investigate the capability of the
resolvent basis to approximate the nonlinear forcing/response mechanism at (28, Ow) for
low amplitude forcing and low reversed flow. In doing so, we aim to answer the following
questions: ‘Is this mechanism low-rank’ and ‘how similar/different is the K-H forcing
to the optimal forcing of the (+28, Ow) mode’? Our procedure, although sharing many
commonalities with Dwivedi et al. (2022), employs the mean-flow (not the laminar base-
flow) to extract the resolvent operator. This is to account for any changes in the base-flow
topology which are readily calculated by HBNS.

Following the linear resolvent framework from (2.7) to (2.10), the (28, Ow) response
may be written as

w20 =H 2B, 0w) MPf,, 6.2)

where H(28, Ow) = [—Az(ﬁzo,o)]*1 is the resolvent operator extracted from the time-
and spanwise-averaged flow at amplitude A =1 x 10~ and f‘ 20= f ku 1s the K-H
forcing acting on the (28, Ow) harmonic. Considering the set of orthonormal forcing
[fl, fz, e fn] and response [#@1, @y, . . ., it,] modes, where @; contains only the three
components of velocity, and the associated energy gains (o1, 02, ..., 0,) (analogous to
G), and further letting

(fi, jK—H).Qf

\ (f s fK-Hmj;

be the scalar projection coefficient of the ith forcing vector on the K-H forcing, the
nonlinear (28, Ow) response can be written as

(6.3)

o =

n—od
bo0= Y @ioici\/(fem, fxnle; (6.4)
i=1
and, similarly, the K-H forcing as

1016 A43-23


https://doi.org/10.1017/jfm.2025.10444

https://doi.org/10.1017/jfm.2025.10444 Published online by Cambridge University Press

F. Savarino, D. Sipp and G. Rigas
n—>oo
Fxn= Y fiar/{fxn frne;- (6.5)

i=1

Approximations of the nonlinear K-H forcing f K.y and response w> ¢ can be reconstructed
with a finite set of modes (n = N,, < 00).
A suitable metric to assess the accuracy of the approximation is the relative error,

\/(fK-H — Frw Fru— iK-H)QJ;
= , (6.6)

/ \ (Fas fK-Hmf

\/(ﬁ)z,o — W0, W20 — ﬁlz,o)%
ep = , 6.7)
(2,0, W2,0),

&

for the K-H forcing, and

for the nonlinear (28, Ow) response. It can also be shown (see Appendix G for the

derivation) that the relative error of the response approximation is upper bounded
according to

&5 &3
T e 6.8)
O Ny, 1 —¢&4 1 —e&%
\/ £ \/ £
where
Nm 2 2
2 Z,’:] o; lov; | (6.9)

M fen?
is the weighted average of the o; distribution in the range [1, N,,] and oy, 41 is the gain of
the first truncated mode sitting outside of the prescribed range. The ratio oy, +1/0 N, <1
indicates the distance of the first truncated mode from the weighted average and its
value decreases with N,,. Effectively, the smaller the ratio, the more energy of the
forcing/response mechanism is captured by the resolvent basis expansion.

The domain of the linear forcing is capped at y =4 x 10° to avoid spurious structures
appearing in the far field. We also consider two cases, one where the forcing is not
restricted in x and another where it is calculated within [xg + 0.7Lp, xou¢], 1.€. from
70 % of the bubble length to the outlet. This is an indicative region coinciding with
incipient shear layer reattachment and the nonlinear interaction of K-H waves to mimic
the true nonlinear mechanism. We outline the reconstruction performance of both test
cases in figure 11. As the behaviour of the squared energy gain in the top row suggests,
the linearised operator in (6.2) is not low-rank, implying the underlying mechanism
cannot be approximated accurately with a low-order linear model. The restricted forcing
case achieves better projections overall, especially within the leading three modes — see
figure 11(b). While the behaviour of « is locally erratic, we observe a decay on average,
meaning the projection degrades for high-order modes. Overall, the relative error of
the forcing approximation ¢ ; is large — see figure 11(c). The restricted forcing case is

clearly better than the unrestricted one, however, even with 20 modes, the error settles
around 80 % and 90 %, respectively. These results highlight the limitations of linear RA
in modelling the internal stresses produced by the nonlinear dynamics of this LSB flow
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Figure 11. (a) squared resolvent gain, (b) modulus of the projection coefficient, (c) relative error of
the K-H forcing approximation and (d) of the nonlinear response approximation with error bound
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even at low amplitude. In figure 12 we compare the shape of the true and approximated
K-H forcing with streamwise spatial restriction for the streamwise component of both the
forcing itself and the curl of the forcing. The ground truth (figure 12a,e) is characterised
by structures emerging in the site of reattachment, which is where saturation of K-H waves
occurs — refer to figure 9(c—f). The approximation with one mode (figure 125, f) falls short
in that both the shape and the amplitude are extremely inaccurate, leading to approximately
95 % error. The reconstruction improves with 20 modes (figure 12¢,g) but the error of the
x-component of the curl is still large, which is attributed to the y and z components of the
forcing vector — see figure 31 in Appendix G for more details.

Despite the poor reconstruction of the K-H forcing, the approximation of the nonlinear
(28, Ow) response is surprisingly good. With only four modes in the unrestricted forcing
case, we achieve an error of approximately 25 %, while with only two modes in the
restricted forcing case, we reach an error of 15 %. With seven modes the error drops
to approximately 15 % and 10 % in the unrestricted and restricted cases, respectively —
see figure 11(d). The u’ structure of the response is qualitatively captured by only the
first resolvent mode, but with 20 modes the improvement is remarkable since we observe
virtually no mismatch in the amplitude (figure 13a—d). The streamwise vorticity of the
response computed as @y 2,0 = dyW2,0— i1, is less accurate compared with the u’
reconstruction (figure 13e—h). While one mode is insufficient to recover the vortical
structures even qualitatively, 20 modes improve the accuracy but the error is still above
20 % (refer to figure 31c¢).
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Figure 12. Resolvent-based reconstruction of the weakly nonlinear (A =1 x 10~7) K-H forcing f K-y from
the restricted forcing case: (a,e) true nonlinear forcing, reconstruction with (b, f) N,, = 1 mode, (¢,g) N, =20
modes and (d,h) amplitudes. Streamwise components of the forcing (a—d) and curl of forcing (e—h) shown.
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Figure 13. Same as figure 12 but for the nonlinear response w3 .

The results show that many modes are required to reconstruct the full streamwise
vorticity triggered by centrifugal instability. We can therefore conclude that centrifugal
instability is not due to a single resolvent mode, but to multiple modes, which all exhibit
streamwise vorticity.

6.4. Role of centrifugal instability for laminar—turbulent transition
At high forcing amplitude (A = 10 x 10~7), the centrifugal instability arising in region
I of figure 9 becomes more unstable and grows farther upstream inside the separation
zone (see figure 14), a feature observed in the global eigenmode representative of modal
centrifugal instability of the bubble — figures 7 to 25.

In the remainder of the manuscript, we describe the role of this instability for breakdown
of the main K-H roller shed by the shear layer, which paves the way to turbulence. We
highlight that at high amplitude weakly nonlinear approximations fail and other methods,
such as DNS, become necessary. Our HBNS methodology offers a self-contained tool
to also explore high amplitude disturbance mechanisms of the late transition stages. We
recall from figure 8 that larger systems are required for these regimes, hence, we employ
10 harmonics in space (M = 10) and one in time (N = 1) for the analysis hereafter.

1016 A43-26


https://doi.org/10.1017/jfm.2025.10444

https://doi.org/10.1017/jfm.2025.10444 Published online by Cambridge University Press

Journal of Fluid Mechanics

1073 Centrifugal response (+28, Ow)

T
—o—A4=1x10"7 (HBNS, )
51|—==4=10x107 (HBNS); )

’
el

0.8 0.9 1.0 1.1 12
X x10°

Figure 14. Amplitude of o/, of the nonlinear (+28, Ow) response at low and high forcing amplitudes.

(b)
0.754
: 1.2
0.50, Lo
0.8
0.252, o
(d) S
N 0.752, 04
- 0.504, - 02
. 0
A, - - 0.251, - 01
08 09 1.0 11 12 13 14 15 16 08 09 10 L1 12 13 14 15 16
X <105 x X105

Figure 15. Reconstruction of the instantaneous flow at A =10 x 10~7 from HBNSo,1. Isosurfaces of
(a,c) u=0 and (b,d) Q-criterion (isovalue, 4 x 10~y coloured with u within the spanwise domain marked
by the red-solid lines. (a,b) Time- and spanwise-averaged flow + (+18, +1w) harmonic, (c,d) time- and
spanwise-averaged flow + (£18, £1w) + (£28, Ow) + (£38, £1w) harmonics.

6.5. Spanwise vortex distortion and breakdown

In order to describe the sequence of events leading to breakdown of the shear layer, we
reconstruct the spatiotemporal flow obtained from HBNSg | system at A =10 x 107,
Spanwise-periodic oscillations of wavelength 1, =27 /8 (approximately equal to the
mean separation length, L;) appear in the separation bubble and are ascribed to the
K-H mode which is activated in the fore part of the bubble (figure 15a). Mutually, a roller
of finite span (= A, /2) detaches from the shear layer at x & 1.1 x 10° (figure 15b), indica-
tive of the roll-up process (Marxen et al. 2013; Michelis et al. 2018a,b; Hosseinverdi &
Fasel 2020). Spanwise vortices are shed downstream at fixed temporal frequency equal
to the K-H instability frequency, confirming that the main vortex shedding dynamics is
driven by the K-H mechanism and hence explaining the success of linear stability analysis
in recovering its characteristic frequency (Simoni et al. 2013; Yarusevych & Kotsonis 2017;
Ziade et al. 2018; Michelis et al. 2018a,b).

Spanwise K-H rollers are prone to destabilise due to the action of the centrifugal
instability discussed earlier. More specifically, the net effect of the interaction
between (*18, +1w) and (+28, 0w) modes, which gives (+38, £1w) through a
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Figure 16. (a) Isosurfaces of Q-criterion (isovalue, 4 x 10~!!) coloured with u from the full flow field and
of (magenta/cyan) positive/negative w/, from the (£28, Ow) mode. (b) The y—z planar views extracted at four
x-stations [1.1, 1.2, 1.32, 1.5] x 105, labelled with numbers (1) to (4).

suitable triad, is the distortion of the spanwise vortex, as seen in figure 15(c,d).
The K-H rollers developing within the shear layer are progressively distorted into
structures that are reminiscent of A-vortices (figure 15d). The uplift of (negative)
spanwise vorticity at x ~ 1.3 — 1.4 x 10°, which, in turn, promotes mixing between
the boundary layer and the outer flow, is a direct consequence of this mechanism.
Therefore, it is observed that the (18, £1w) + (£28, Ow) = (£36, £1w) triadic
interaction is key for the initiation of the main K-H vortex breakdown which
paves the way to turbulence. This mechanism is further illustrated in figure 16.
Here we provide an overview of the complete sequence of events that characterises
the breakdown of the K-H vortex and discuss the underlying physical mechanism.
In figure 16(a) we show the 3-D structure of the transitional shear layer and
in figure 16(b) four y—z sectional views extracted at x =[1.1, 1.2, 1.32, 1.5] x 10°.
At the first station, the K-H roller is essentially 2-D. At the second station, the shape
of the roller is visibly distorted since spanwise oscillations appear. At the third station,
the deformation is enhanced as the roller is no longer aligned in the z-direction. The
central region is uplifted and stretched away from the sides along the streamwise direction.
At the fourth station we observe a A-shaped structure. The mechanism by which the roller
deforms is driven by the centrifugal instability, appearing in the figure as a pair of counter-
rotating streamwise vortices whose distance from the centres is A;/4, i.e. approximately
one quarter of the mean separation length, L. These vortices act through the braid regions
(located between two consecutive rollers) and induce upward flow that interacts with the
spanwise roller, causing its distortion and disintegration (Marxen et al. 2013; Kumar &
Sarkar 2023). This process shares some similarities with secondary flow structures, called
‘rib’ vortices, which are responsible for the breakdown of spanwise rollers in mixing layers
and wakes (Lopez & Bulbeck 1993; Sun et al. 2014; Yang 2019). While we do not observe
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vortex loops revolving around the rollers, the mechanism whereby streamwise vorticity
disintegrates the main vortex is present in our results, the origin of streamwise vortices
being a centrifugal-type instability of convective nature discussed earlier.

The complete breakdown of A-structures establishes transition to turbulence of the shear
layer. Notably, when the large scales of the flow breakdown to turbulence energy spreads
to infinitely many (smaller) scales all the way down to the Kolmogorov microscales (Pope
2000; George 2013). Capturing these structures is outside the scope of this work since
the proposed methodology aims at characterising the transitional stages of the flow given
a finite set of harmonics retained in the model. This means we are able to resolve only
part of the energy spectrum, the remainder being the truncation error associated with the
expansion (2.11). Regardless of this limitation, the HBNSg ; system is able to capture
the final stage of the A-vortex breakdown — see figure 16. Additional insight into the
main sites of turbulence production is offered by plotting the production of turbulent
kinetic energy in figure 17. Two regions of the flow are identified, one is along the
inflection line near incipient shear layer reattachment, which is where shear layer roll-
up and K-H roller shedding take place. The correct estimation of production at this
station is paramount for the prediction of the bubble topology and, consequently, the
generation of turbulence in the redeveloping boundary layer downstream of reattachment,
which constitute two major problems in RANS turbulence models applied to separated
transitional shear layers (Bernardos et al. 2019a,b). Along the vortex shedding line (y ~
26%), but substantially downstream of reattachment, there are local patches of production,
which match the locations of A-vortex formation (x ~ 1.4—1.5 x 10°) and breakdown
(x ~1.6—1.7 x 10°). Much closer to the wall (y = 8*/5), the thin layer of turbulence
production is related to near-wall turbulence.

6.6. Integral quantities

Although the accurate estimation of the boundary layer transition point is an extremely
arduous task, it is often sought to inform turbulence models used in steady simulations
for which it is clearly impossible to predict transition otherwise (Bernardos et al. 2019a,b;
Dellacasagrande et al. 2024). Being equipped with spatiotemporal information of the flow,
the transition point is yet not fixed in time/space and a single location cannot be identified.
Nevertheless, we employ boundary layer integral analysis on the time- and spanwise-
averaged flow to possibly draw a connection between the dynamic events of transition
described thus far and the statistical characteristics of the boundary layer. In figure 18
we plot the skin friction coefficient C s of the time- and spanwise-averaged flow for five
HBNS system architectures: HBNS> 1, HBNS4 1, HBNSg 1, HBNSg 1 and HBNSg ;. The
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Figure 18. Skin friction coefficient evaluated for different quasilinear-in-w systems (N = 1, M > 1) and three
forcing amplitudes A = [2, 6, 10] x 10~7. The laminar and turbulent (from White (1991)) ZPG boundary layer
profiles are plotted with black dashed and dashed—dotted lines.

reference laminar (Blasius) and turbulent (White 1991) curves for ZPG boundary layer are
also superimposed together with the baseline C ¢ from the laminar base-flow.

Firstly, the turbulent curve is reached only by systems with M > 8, in agreement with
the analysis in § 6.1. When the truncation error is large, the turbulent energy cascade
cannot take place and the skin friction levels remain close to the baseline laminar curve
(systems HBNS; | and HBNSy4 1). The HBNSg 1 system contains the minimum number of
harmonics necessary to reach the turbulent curve at A = 10 x 103, but trajectories of C ¢
at high forcing amplitudes converge only for M > 8. In this case, the critical amplitude
is found to be A =6 x 10~7. As the amplitude is progressively increased, the coordinate
where the skin friction crosses the turbulent curve moves towards the mean reattachment
point. A similar trend is also observed for increasing system’s order, suggesting that in
the limit of zero truncation error, transition and reattachment should collapse to the same
point, giving rise to the turbulent reattachment scenario observed in Hosseinverdi & Fasel
(2019, 2020).

From the skin friction results we notice some robustness of the HBNS solutions in
the prediction of Cy, at least in the transitional regime. Beyond this stage, i.e. where
C has crossed the turbulent curve, the turbulent reattached boundary layer developing
downstream of the bubble requires an intractably large number of harmonics in both z and
t to resolve the full spectrum of turbulence down to the dissipative scales. This is where
the current state-of-the-art HBNS approach loses robustness and accuracy. An irregular,
wavy behaviour of C is observed in figure 19(a), which also displays the statistical state
of the boundary layer downstream of the transitional region. Despite the oscillations, the
skin friction remains around the turbulent level.

Another parameter we consider is the boundary layer shape factor H = §*/6 plotted in
figure 19(b). The shape factor gradually departs from the laminar value (H = 2.6 for ZPG
boundary layer, (Pope 2000)) due to the influence of the pressure gradient. High values of
H are reached in the separated zone (H,,,x & 5.5), later followed by a sharp drop due to the
coexisting effects of boundary layer reattachment and onset of transition. In the transition
region the shape factor crosses the laminar reference level and marches towards the
turbulent range (1.3 < H < 1.5 for ZPG boundary layer, (Pope 2000)). Downstream of the
transition region the shape factor settles around H = 1.6, which is, together with the C
curve, another indication of a turbulent-like boundary layer in the postreattachment region.

Finally, we show the boundary layer velocity profile in inner units extracted at three
x-stations marked with blue (x = 1.2 x 10%), red (x = 1.35 x 10°) and green (x = 1.5 x
10°) arrows in figure 19(c). The profiles are superimposed on the viscous sublayer (y* < 5)
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Figure 19. (@) Skin friction coefficient, (b) shape factor and (c) boundary layer mean velocity profiles at
A =10 x 1077, Mean reattachment and the streamwise coordinate at which the skin friction reaches the
turbulent curve are plotted with grey-dashed and blue-solid lines, respectively. Profiles extracted at (blue)
x=1.2x10°, (red) x = 1.35 x 10° and (green) x = 1.5 x 10°.

and log-law (30 < y™ < 300) curves. A turbulent boundary layer is known to follow the
universal log-law profile in the log region (Pope 2000), hence we look at whether and how
accurately the extracted profiles follow this trend. The velocity profile at x = 1.2 x 10°
is extracted from the early-transitional region, and, in agreement with Cy and H, it is
not turbulent yet — in fact, it is still very close to the laminar state since the ut = y™
law is followed accurately in the viscous sublayer, but the log-layer slope is missing. The
boundary layer is definitely not turbulent at this stage, also because, from a spatiotemporal
point of view, the process of K-H roller distortion and breakdown is still at an early stage
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(refer to figures 15 and 16). At x = 1.35 x 107, the profile bends towards the log-law curve,
portending the breakdown event, yet, the slope is not perfectly recovered. At this station,
the K-H vortex has deformed sufficiently to form a A. Ultimately, the log-layer slope
is captured more accurately at x = 1.5 x 10°, suggesting a more pronounced turbulent
character of the boundary layer. Contextually, the A-vortex is on the verge of breaking
into small-scale turbulence.

It should be noted that a fully developed turbulent profile may not be achievable within
our computational domain since the boundary layer relaxes to the turbulent equilibrium
several separation bubble lengths downstream of the reattachment point, estimated to be
around six by Alam & Sandham (2000). Hosseinverdi & Fasel (2019) hypothesise this
slow relaxation may be due to the persistence of coherent vortex structures reminiscent
of the large-scale K-H rollers in the boundary layer downstream of reattachment. The
final breakup of these large scales into small vortical structures generated near the wall
yields profiles in better agreement with the fully developed turbulent boundary layer
characteristics.

7. Conclusions

Nonlinear I/O analysis using the framework of the HBNS equations (Rigas et al. 2021)
was applied for the first time to spatially developing, non-parallel flows featuring flow
separation. Specifically, we have studied the optimal route to turbulence of a convectively
unstable laminar shear layer forming above a short separation bubble with peak reversed
flow of 2 %. This baseline was shown to be stable to intrinsic global instabilities, making
it suitable for the investigation of external disturbance/noise-driven transition.

Preliminary linear analysis by means of the resolvent approach revealed that boundary
layers subject to APG promote the amplification of the K-H instability, even in the
absence of separated flow (case C in figures 3 to 5). It was shown that this inviscid,
shear-driven mechanism originating from the unstable inflectional boundary layer velocity
profile, dominates over other convective instabilities, such as T-S waves, which are
instead dominant in ZPG boundary layers. On the low-frequency end of the spectrum
of disturbances, streamwise velocity streaks appear at g =100 x 107>, as a result of
the non-modal, transient, lift-up mechanism, typical of transitional boundary layers
(Jacobs & Durbin 2001; Balamurugan & Mandal 2017; Rigas et al. 2021). In the
presence of separation, the most unstable spanwise wavenumber for streaks increases
to B =150 x 10~ and the lift-up process, although preserving its fundamental physics,
occurs over two distinct regions of the flow, one upstream of separation and the other
in the postreattachment redeveloping boundary layer. Although being very damped in
globally stable separation bubbles compared with other convective disturbances, linear
analyses also detected the modal centrifugal instability at low B reported in the literature
(Duck et al. 2000; Gallaire et al. 2007; Rodriguez et al. 2013; 2021).

Linear stability analysis being limited only to the initial linear stage of the transition
process, we employed the HBNS framework to describe the following stages where
nonlinearities govern the behaviour of the shear layer towards turbulence. Furthermore,
we performed optimisation on the forcing shape in order to identify an efficient route
to turbulence at a significantly lower cost compared with DNS or experiments where
optimisation is computationally expensive, if not prohibitive.

At low forcing amplitude, we observed that K-H waves self-interact to produce a
3-D, steady, Gortler-type mode that displays a strong streamwise vorticity signal near the
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reattachment point and induces streamwise velocity streaks by lift-up effect in the reat-
tached boundary layer. This scenario shows similarities but also differences with respect
to the mechanisms identified by Schmid & Henningson (1992) and Rigas et al. (2021)
for attached boundary layers. The oblique T-S instability is replaced here by oblique K-H,
but both mechanisms generate a streamwise rotational forcing, this forcing being stronger
in the case of K-H instability due to the fact that K-H instability is a stronger inviscid
instability mechanism than the viscous T-S mechanism. Another striking difference is that
in attached boundary layers streaks arise from the lift-up effect only, while in the separated
case centrifugal instability first generates vortical forcing structures, which then transform
into streamwise streaks by the lift-up effect. Hence, there are two inviscid mechanisms, the
K-H and centrifugal mechanisms, which overall make the separated case more unstable.
Moreover, it appeared that centrifugal instability does not just manifest within a single
resolvent mode, but is recovered across many modes, which cumulatively reconstruct the
streamwise vorticity of the nonlinear response.

At high forcing amplitude, our study revealed that transition of the separated shear layer
is achieved by progressive 3-D distortion of the K-H rollers through a series of mechanisms
that we summarise in figure 20 and briefly recall the following.

(i) Infinitesimal, 3-D disturbances force the K-H instability (18, 1w) through a linear,
non-modal mechanism that is driven by shear.

(i1) The saturation of the K-H instability around the mean shear layer reattachment point
leads to
(a) shear layer roll-up (a K-H roller of finite span detaches from the shear layer);

(b) the nonlinear self-interaction of K-H waves, which generates forcing in the
(28, Ow) harmonic. Although not being the optimal source of excitation, it is
sufficient to excite an inviscid centrifugal instability.

(iii)) The centrifugal (28, Ow) instability consists of counter-rotating, streamwise-
oriented, stationary vortices of spanwise wavelength A, =2m/28. Through the
generation of upwash/downwash of streamwise momentum, they distort the K-H
rollers, which develop spanwise oscillations.

(iv) The distortion of K-H rollers under the action of streamwise vortices progressively
leads to A-structures. They appear concurrently with the emergence of the (38, 1w)
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mode, which is the result of the interaction between the (28, Ow) and (18, lw)
harmonics.
(v) The disintegration of As marks the breakdown event and transition to turbulence.

Overall, the fundamental connection between the K-H vortex breakup and the onset
of turbulence we describe is substantially in agreement with Marxen et al. (2013) and
Kumar & Sarkar (2023).

We found that shear layer transition can be achieved robustly with quasilinear-in-w
and nonlinear-in-8 expansions with M > 8 harmonics, implying that 2w harmonics do
not play any significant role. This is valid prior to the establishment of turbulence, at
which stage the energy spectrum becomes broadband and continuous. Integral boundary
layer quantities confirm the occurrence of transition over a short distance away from
the reattachment point, highlighting the important link between the transition and
reattachment processes in separated shear layers (Yarusevych & Kotsonis 2017; Karp &
Hack 2020; Hosseinverdi & Fasel 2020; Kumar & Sarkar 2023). Although our method
does not resolve the turbulent scales, turbulent-like velocity profiles are obtained in the
reattached boundary layer, and the log-law slope recovered quite accurately. Mismatches
in the slope may originate from the prolonged influence of the pressure gradient even after
the shear layer has reattached and the truncation error of the harmonic expansions at the
fully turbulent stage. A remedy to the latter that we propose is the coupling of closure
models with the existing framework, which is left to future work.

Lastly, we note that the present work does not model the leading edge of the geometry,
and therefore does not capture instabilities or modifications to existing modes that may
arise due to leading-edge receptivity. A natural extension of this study would be to consider
a more realistic aerofoil configuration or explicitly model the leading edge, as in Brandt
et al. (2011), to include the influence of upstream receptivity mechanisms on the transition
process.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10444.
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Appendix A. Validation of the LSB numerical set-up and comparison with the
literature

A detailed view of our model LSB (case D in figure 2) is displayed in figure 21. From
this figure we can extract the key topological features that allow comparison with other
LSBs available in the literature. The dividing streamline from which we determine the
size of the bubble is calculated using the definition of zero mass-flux through said
streamline, [ uo,0dy =0 (Fitzgerald & Mueller 1990). The height of the bubble is
hp = 672, which is approximately 1.348 5, 6 g, being the Blasius boundary layer thickness
at separation x = xg. We mark this point with the circle marker in figure 21. The location
of the maximum bubble height is x5, = 1.04 x 10°. Another meaningful parameter is the
bubble length, which is commonly expressed as Rey, = UsoLp/v =0.31 x 10°, where
L, =xg — xgs is the distance between the reattachment and separation points (marked
with triangle and square markers in figure 21, respectively). These locations are, by
definition, where the streamwise velocity gradient computed at the wall (figure 22a)
vanishes. From the streamwise velocity gradient plot we notice the LSB base-flow departs
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Figure 21. Close-up view of the LSB (case D). Contours of streamwise velocity and velocity vector field
(0.0, v0,0) displayed. Green-solid, 0.99U, boundary layer thickness; black-dashed, displacement thickness;
red-solid, inflection line on the shear layer; yellow-solid, LSB dividing streamline; yellow-dashed, u =0
isoline. Separation xg, maximum bubble height /; and reattachment xg are indicated with square, circle and
triangle markers.
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Figure 22. Validation of the LSB numerical set-up. (a) Streamwise velocity gradient at y = 0 scaled by
Re =800 for direct comparison with Karp & Hack (2020). (b) Pressure coefficient at y = 0.

from the ZPG boundary layer early on due to the influence of the APG. Well before
separation (0.3 x 10° < x < 0.8 x 10°) the flow loses momentum near the wall (resulting
in lower shear) and, eventually, the boundary layer becomes inflectional. The inflection
line, shown in figure 21, is the locus of the inflection points emerging in the boundary
layer velocity profile at each streamwise location. At separation, xg = 0.85 x 10, the flow
splits into two parts: the recirculatory flow contained within the LSB dividing streamline
and the separated shear layer (Gaster 1963; Horton 1968). Beyond the separation point
the wall velocity gradient is negative due to the presence of reversed flow. In the range
xg <x < 1.1 x 10° a pressure plateau appears in the C p curve plotted in figure 22(b).
This is associated with the dead-air region located in the fore portion of the separation
bubble. Shortly after, there is a pressure rise corresponding to the intensification of
reversed flow, which forms a vortex core towards the aft portion of the bubble. The
transition from the pressure plateau to the pressure rise is less pronounced in smaller
bubbles, as observed from comparison of the two LSB cases in figure 22. To force flow
reattachment at xg = 1.16 x 10°, wall-normal velocity blowing is applied at the top far
field to generate a favourable pressure gradient; refer to the boundary condition in figure 1.
At the onset of reattachment, the velocity gradient (hence the skin friction coefficient)
increases sharply and overshoots the ZPG solution. Because reattachment is driven by the
externally imposed pressure gradient and not by any transition mechanisms in a nominally
laminar flow, the reattached boundary layer recovers the ZPG Blasius solution a long
distance downstream of the reattachment point, therefore indicating the flow remains
laminar throughout.
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Reyg Re5§ Reg, Rey, Rey;e Reg,
0.85 x 10° 917.38 23176 1.16 x 10° 1079.5 261.79
Rey, Xn, hy Ly/ by P =(03/v)(AU/AX)
0.31 x 10° 1.04 x 10° 672 45.42 —0.13

Table 3. Characteristics of the laminar separation bubble of figure 21. The Reynolds numbers are computed
by multiplying U /v by the relevant length scale.

ol 03 ‘Lengths noP-dimensio?alised such‘ that (x, ) = (Rey, Rey)‘
—— Michelis (2017) - exp. -v-Borgmann (2025) - exp. -+ Marxen (2011) - DNS
5 |- Yarusevych (2017) - exp. — Hosseinverdi (2019) - DNS -+ Rist (2002) - DNS L
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Figure 23. Comparison of our model LSB (u,, =2 %) with experimental and numerical LSBs from the
literature. For the experimental studies the unforced LSB test case was considered. All lengths extracted
from the original source are non-dimensionalised to match our non-dimensionalisation and the location of
the separation point is enforced to be xg to allow direct comparison.

Good agreement with the DNS data of Karp & Hack (2020) is observed in figure 22
for the u,., =6.60 % LSB. Notably, the location of the bubble is subcritical to local
modal instability of planar T-S waves since Reyx, < Rey ¢ris, Where Rey ¢y = 1.22 X 10°
is the Reynolds number at which T-S waves undergo amplification due to the boundary
layer receptivity process (Schmid & Henningson 2001). Although the placement of the
bubble on the plate may have an impact on boundary layer transition, this aspect is not
investigated.

In table 3 we summarise all the measured geometric properties of the LSB. Comparison
with existing literature on the classification of LSBs (Marxen & Henningson 2011;
Mohamed Aniffa et al. 2023) helps us conclude that our baseline bubble is ‘short’,
meaning the effects of separation on the surrounding pressure field are local, as opposed
to ‘long’ bubbles. Application of the two-parameter bursting criterion by Gaster (1969),
for which we compute the pressure gradient parameter P = (9§ /V)(AU/AX) =—-0.13
(AU is the change of streamwise velocity at the edge of the boundary layer over the
separation distance A X) and the Reynolds number based on the momentum thickness at
separation Regg = 231.76, also confirms that our baseline bubble is indeed short since P
and Reg, fall below the bursting line (see figure 23 in Gaster 1969 and figure 8 in Russell
1979).

An additional comparison targeting the characteristic 8,,/L;, and d,,/hp ratios
highlights the commonalities of our numerical LSB with experimental LSBs. In Michelis
et al. (2017), 8xg/Lp =0.056 and &y5/hp =3.174, in Kumar & Sarkar (2023), these
ratios amount to 0.033 and 1.2, Diwan & Ramesh (2009) report 0.05 and 1.2, while in
the extensive experimental database of Dellacasagrande et al. (2024) they range from
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Figure 24. (a) Contours of temporal amplification (o = Re{A1}) in the parametric space (i, B). Marginal
stability axis, black-dotted line. Spanwise wavenumber at which maximal amplification occurs, Bp,4y, yellow
circle. Trajectory of B, black-dashed line. (b) Eigenvalue spectrum for 8 = 36 x 1073 in the neighbourhood
of the marginal stability axis for a stable and an unstable LSB.

0.041 to 0.084 and from 0.6 to 3.24, respectively. From our LSB we obtain 8,,/L;, =
0.049 and 68y,/hp =2.317, which fall into the typical range found in the literature.
Nevertheless, obtaining similar bubble shapes across experimental and high-fidelity
numerical investigations is very challenging, as observed in figure 23, since LSBs are
inherently unstable at transitional Re numbers 103 — 10° and therefore sensitive to the
flow set-up. This means any differences in Re number, location of the bubble, boundary
conditions, disturbance environment, control/no-control, etc. will likely yield dissimilar
bubble topologies. Although the comparison attempted in figure 23 by extraction of several
dividing streamline profiles from the cited studies is by no means exhaustive and should
not be considered a one-to-one evaluation, we notice a significant spread across both
experimentally and numerically derived LSBs.

Overall, these comparisons with literature suggest our LSB can be used as a
representative model for the investigation of instabilities and transition. In fact, most of
the aforementioned studies report the K-H instability mode as the most unstable primary
mechanism developing in the separated shear layer, although the associated growth rates
are clearly sensitive to flow-specific conditions.

Appendix B. Global stability

Linear global stability analysis is performed on the LSB base-flow for the identification of
primary global instability. As figure 2 shows, the LSB can be either convectively unstable,
meaning that the generation of turbulence requires continuous external excitation,
or globally unstable if a self-excited perturbation mode naturally manifests without need
of external forcing. The threshold between these two regimes can be determined by solving
a generalised eigenvalue problem to find the unstable eigenmode.

A range of spanwise wavenumbers is investigated to account for 3-D eigenmodes.
In order to track the trajectory of any unstable mode as the spanwise wavenumber is varied,
the shift parameter, initialised at the origin of the complex plane for the first calculation,
is updated to the location of the least stable eigenvalue found in the eigenspectrum. In our
search for global instability we also vary the peak reversed flow parameter u,., which
ultimately corresponds to separation bubbles of varying size.
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Figure 25. Componentwise amplitudes of (@) velocity and (b) vorticity disturbances of the global eigenmode
computed for the unstable LSB with peak reversed flow u,, = 9.08 % at =36 x 107>,
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Figure 26. The 3-D structure of the global eigenmode of figure 25. (a) Isosurfaces of (red) positive and (blue)
negative u’ superimposed on the u = 0 isosurface of the LSB. (b) The y—z planar view at x = 1.2 x 10° showing
contours of u’, vectors from the (v', w’) velocity disturbance field and contours of /. (magenta, into the page;
cyan, out of the page).

Figure 24(a) shows the temporal amplification of the least stable eigenvalue computed
for several base-flows and spanwise wavenumbers. The LSB base-flow is globally unstable
to a 3-D mode (8 #0) and the instability onset is around u,., &9 %. Conversely, the
base-flow is always stable to 2-D disturbances. We also notice B4, is lightly affected
by the bubble size, in agreement with Rodriguez et al. (2013) and Rodriguez et al.
(2021). Even though an exact comparison cannot be made due to the different base-flow
topology, Rodriguez et al. (2021) found Bax = 36 x 107>, which is in the range observed
in our results. For turbulent shear layers, the optimal spanwise wavenumber decreases,
as reported in Cura et al. (2024), where B is approximately 1/3 to 2/3 of our values.

In figure 24(b) we plot the four least stable eigenvalues of two LSB base-flows. As the
recirculation in the bubble becomes sufficiently strong, the least stable eigenvalue crosses
the marginal stability axis and the system experiences global resonance at time rate o > 0.
The unstable mode is clearly non-oscillatory since w = 0.

The computed perturbation displays a strong streamwise velocity disturbance
component in the aft part of the separation zone (figure 25), which we visualise with
u’ isosurfaces in figure 26(a). These structures sit just above the separation bubble.
The amplitudes also show two distinct peaks in w’ and a); one in the fore and one
in the aft part of separation. The velocity disturbance field in the y—z plane (shown in
figure 26a), illustrates the connection between streamwise vorticity and the alternation
of positive/negative u’ disturbances associated with downwash/upwash. Moreover, this
dynamics leads to transverse velocity disturbance w’, as indicated by the two peaks in the
amplitudes of w’ and o/, in figure 25, also noticed by Gallaire ef al. (2007) in separation
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Figure 27. Shape functions (black circle markers on solid lines) of |u’| =+/Re{i}? + Im{ii}? extracted at
seven x-stations from the most unstable 3-D waves calculated by linear resolvent. The profiles are normalised
such that their amplitude is in the range [0, 1] and the y-coordinate is normalised for each x-station by either
the displacement thickness (a,b) or the inflection line (c,d). The critical layer y. is superimposed in (a) and
(b). Red dashed—dotted lines in (a) refer to the 2-D mode (8 = 0).

bubbles behind a bump. These characteristics suggest the presence of a global, self-excited,
centrifugal instability originally found by Duck et al. (2000) for incompressible separation
bubbles with u,,, in the range 7 %—8 %. More rigorous analysis such as the Rayleigh
discriminant criterion or the geometric optics (Wentzel-Kramers—Brillouin) method along
streamlines would further support our conclusion but we refer the reader to Sipp, Lauga &
Jacquin (1999), Sipp & Jacquin (2000) and Gallaire et al. (2007) for this. Lastly, it is
important to note that while this instability is of centrifugal nature, it should not be
confused with the Gortler instability which is convective and therefore requires external
forcing to be excited (Gortler 1941; Saric 1994).

Appendix C. Effect of APG on T-S waves

Similarly to figure 5, we here look into the optimal spatial modes computed by linear RA
on the four base-flows A, B, C and D (figure 2) representative of different APG conditions.
We show the amplitude of the streamwise velocity disturbance from the unsteady modes
summarised in table 2 at several streamwise locations in figure 27.
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For a ZPG boundary layer (case A) we retrieve the typical dual-lobe profile in both 2-D
and 3-D T-S waves, the latter showing a less pronounced upper lobe in proportion to the
amplitude of the lower lobe Xu et al. (2017). The main peak is located around the critical
layer height where the phase speed of the wave matches the mean velocity (Schmid &
Henningson 2001; Brandt et al. 2011).

In mild APG conditions (case B) the profiles are broadly similar to the ZPG case, the
main difference being a small local peak located deep inside the viscous sublayer (below
the displacement thickness) which arises in the APG region and dampens in the favourable
pressure gradient region.

In strongly inflectional boundary layers (cases C and D), the shape of incoming waves
changes dramatically as they convect through the APG region. As thoroughly explained in
Diwan & Ramesh (2009), the progressive emergence of an inflectional velocity profile due
to the APG creates an efficient site of disturbance production around the inflection point,
well visible in the disturbance mode shape as a localised strong peak along the inflection
line. This feature is ascribed to the inviscid K-H instability. Another lobe appears close to
the wall originating from viscous shear (Diwan & Ramesh 2009).

Overall, our resolvent analysis correctly captures the complex scenario according to
which viscous (T-S) waves in the upstream boundary layer get convected downstream and
feed the inviscid inflectional (K-H) instability that governs the linear dynamics of the
separated shear layer.

Appendix D. Lift-up mechanism affected by the APG

The componentwise structures of the optimal forcing-response resolvent mode ascribed
to lift-up in attached and separated boundary layers are visualised in figures 28 and 29.
The pressure gradient increases from top to bottom. Notably, streamwise vortical forcing
excites streamwise velocity response for any pressure gradient considered, demonstrating
that the lift-up mechanism retains the same physics for both attached and separated cases.
The main difference imparted by the bubble is that the process occurs both upstream of
separation and in the postreattachment region, leading to u’ response structures both within
the separated zone and in the redeveloping boundary layer — for this reason referred to as
‘double’ lift-up in contrast to classic lift-up in attached boundary layer flow (Andersson
et al. 2001; Jacobs & Durbin 2001; Schmid & Henningson 2001; Balamurugan & Mandal
2017; Rigas et al. 2021).

Appendix E. Rayleigh discriminant criterion for centrifugal instability

Centrifugal instabilities may originate not only from modal resonance in globally unstable
flows (§4.2, Appendix B) but also from convective mechanisms (Gortler instability) in
flows featuring either geometric curvature (Gortler 1941; Saric 1994; Li & Malik 1995) or
pressure gradient-induced curvature (Hildebrand ez al. 2018; Shinde et al. 2019, 2020).

Here we introduce a sufficient criterion for the onset of short-wave centrifugal
instability. This method is effectively an extension of the classic Rayleigh discriminant
criterion that also accounts for rotating frames of reference (Sipp et al. 1999; Sipp &
Jacquin 2000).

Defining the absolute shear and curvature vorticity as w; + 2£2 and V/R + 2, where
w; is the vorticity due to pure shear, £2 is the rotation of the frame of reference,

V =Vu? + 9% + w? is the velocity magnitude and R is the algebraic radius of curvature
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Figure 28. Lift-up mechanism in APG boundary layers. Amplitudes of optimal resolvent forcing (a,c,d,g)
and curl of forcing (b,d.f,h) for four boundary layer flows: (a,b) ZPG; (c,d) low APG; (e,f) medium APG;
(g,h) LSB. These modes are steady (w = 0).

associated with the streamline ¥,

V3
VU . (u-Vu)
we consider the parameter,
8 (x0, y0) =2 (0; +282) (V/R + £2), (E2)

defined on the points belonging to the streamline ¥. If at any point (xp, yp) the parameter
8 <0, the streamline is locally unstable to a centrifugal instability. Clearly, for a fixed
frame of reference like in our case, §2 = 0 and we recover the classic Rayleigh discriminant
8 =2w; V/R. This criterion essentially states that regions of the streamline where the
signs of shear and curvature vorticity are opposite are locally unstable to centrifugal
instability. If § < O everywhere along the streamline the centrifugal instability is globally
unstable. The sign of shear vorticity is determined by the sign of the velocity strain
o0v/dx — du/dy, while the sign of curvature vorticity depends on the local curvature of
the streamline: positive curvature is defined for anticlockwise spin and negative curvature
for clockwise spin.
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Figure 29. Lift-up mechanism in APG boundary layers. Amplitudes of optimal resolvent response velocities
(a,c,d,g) and vorticities (b,d.f,h) for four boundary layer flows: (a,b) ZPG; (c,d) low APG; (e,f) medium APG;
(g,h) LSB. These modes are steady (w = 0).

In figure 30 we show the analysis for an open streamline adjacent to the separation
bubble, whose location is essentially representative of fluid particles within the shear
layer. The streamline topology is obtained from the time- and spanwise-averaged flow
solved by the HBNS, | system at amplitude A = 1 x 10~7. Curvature vorticity (figure 30b)
is zero away from the separation bubble, where there is no streamline curvature, and
changes sign three times over the separation zone. At the separation and reattachment
points the streamline is bent upward (positive curvature) and is otherwise bent downward
(negative curvature) around the maximum bubble height. The zeros of V /R within the
separation length are, by definition, the inflection points of the streamline. The shear
vorticity (figure 30c) is negative everywhere, which is typical of separated shear layer
velocity profiles. This is because the average rotation of the shear layer is clockwise
since there is slow moving flow near the wall underneath faster moving flow in the shear
layer. As a result, the Rayleigh discriminant § (figure 30d) is weakly negative around the
separation point and strongly negative at reattachment. It is positive around the bubble’s
apex. These results indicate that the present bubble can support locally unstable centrifugal
disturbances at separation and reattachment and also agree with the initial statement that
the flow is not globally unstable to a centrifugal mechanism because § is not negative
everywhere. This was also verified for all either open and closed (within the separation
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Figure 30. Rayleigh discriminant criterion applied to a streamline of the mean-flow calculated at A = 1 x 1077
by the HBNS; | system: (a) streamlines in black and selected streamline for the criterion in red; (b) curvature
vorticity; (c) shear vorticity; (d) § parameter.

bubble) streamlines, therefore ruling out the existence of a global centrifugal instability
for this globally stable LSB.

Appendix F. Forcing produced by the nonlinear interaction of a pair of K-H waves

In the following, we write the explicit terms of the operator N{ (Wy,—1, wy,;) which
represents the forcing of the harmonic @ o produced by the nonlinear interaction of two
K-H waves w1 _; and w1 .

Taking advantage of the spanwise (z) symmetry of the solution to the HBNS system, we
know that

Wy =w", (F1)

s

where w_j 1 is the z-symmetric harmonic of @, implying that [, 0, W, pl_11 =
[i4, U, —W, pli.1. In other words, we can obtain w; _; directly from w; ; by applying
the symmetry and the complex conjugate conditions.

The operator can therefore be rewritten as

A% PN A A%
N} (87, @1.1) = (u“" g 'V"—“), (F2)
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where the two convective terms can be expanded as

A LIER A 3121’ A s ~
U175 TV RN
~ ~ 00 A E)v
— * 1,1 * 1,1
I‘Vul,l_ u—l,lw—i_v—ll 3y —|—1,3U) llvll s (F3d)
~ ow ~ dw
* 1,1 * ll
U_11 5% +U—1 1 +ipwI, W
~ ou*
(UI, +v11 SR AR U
~ vt =1\ & aflil L fl 1 | spA Ax F3b
upi-vu_j1=1\ u1 =+ v Ay —|-1,3w1,1v71 L (F3b)
A auv* a
Ui, g gyt iAW

by virtue of the gradient operator V;;,5 = [8 /9x, 0 / 8 y, imB] " valid for spanwise-periodic
solutions.

Since
N A A e N A
ui,1 URe + 1 N URe — 1UIm
A A A - A /\* /\* A - A
U=\ vi1 | =\ Ret+ivim |, u_ 1=V |=| We—10m |, (F4)
A A - A /\* A oA
wi,1 WRe + Wi W2 —WRe + Wi
then
1° Vu1 1

~  QlRe ~ 0l A 0 ou
URe =5 <+ URe_aﬁe + U 3)1;" + Vg Im + B(WRel i — WimlRe)

AR dURe a0 a0 A A
_ URe 5 3x ¢ + URe 3y <+ ulm lm + Ulm Im + B(WRe Vi — WimPRe)
~ 8w dw aw Bw AA
URe R + tRe R + i I + Opm Im + B(WReWim — WimWRe)
=0
i A Oige  ~ Oiige A A A A
URe ax t+ DRe 3y — i = Uim =5, + B(—WRelRe — Winit1m)

4 3v Bv A PN A A .
+ Im + g I —Um 3§ — Ulm al;e + B(—WReURe — WimVim) | 1,

~ 31,?) ~ BUAJ A QURe L) ~D
URe B;m + URe_a;m —UIm—3, — VUm ARL + B(— wRe w]m)

(F5a)

A Ak
u171 . Vu_l’l

~ 3 A D ~ Ol ~ 3 ACA PSS
URe _3§e + URea_fVee + U a;m + Vm [Im + B(WRel i — WimlRe)

A QY ~A O
URe 3§e + URe Re

A~ 9D, A 0D
+ ulma_im + Vim Im + B(WRe Vi — WimtRe)

P 11) L A QW A~ 8w A A ~ A
—URe ajl:e URe a;,ae Ulm =" — Vim 3;’1 + B(—WRe Wim + WimWRe)

=0

+ IB(li)ReﬁRe + wlmﬁlm)

L, A au[m +um 3x ‘l‘vmlee

—URe 5yt — VRe

A~ A ~ 3 .
+ | —Ure=," _vRe 8y +Mm Bx +vm Re + B(WReURe + WimVpm) | 1

~ o ~ 9 ~ 9 ~ 3 ~D
fige =5 + e awylm — lm 5 = Oim wRe +B(= wRe Wi,
(F5b)
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and if we add these two terms as in (F2), we get

. OUge | . OUge . g . il AN
2 uRe_e + vRe_e + u]m_m +Vim—— =+ 28 (wReuIm wlmuRe)
ax ay ax dy

1 _ ~ 3ﬁR ~ 31A)R ~ 81)1 ~ 8U1 ~
N1 =12 |: Re_e + VRe—(— <+ Um—( =4 Uim—(— s 2B (wReUIm wImURe)

ax dy ax ay
0
0
0
0
. owj . owy . 0wg . OuR . ,
! Z[MRe gy TRy A = e}_zﬁ(%%ﬁwzzm) 1
0

(F6)

which means that the K-H forcing fy = —PTN{(®™ | |, 1) is a complex three-
component vector with real streamwise (x) and wall-normal (y) components and
imaginary spanwise (z) component.

Appendix G. Relative errors ¢; and e j
G.1. Upper bounds on ey,

Here we provide the derivation of the upper bounds of the relative error €4 in (6.8).
Let
n—>od
Wog— Wo o= dioic | Fews f , Gl
20— W20= Y #ioie <fK—H fK-H>Q (GD
i=Np+1

be the error between the true nonlinear response wj o and the approximation #; o due to
truncation of the linear modes i = [N,, + 1, oo[. If we substitute this equation and (6.4) in
the definition of the relative error (6.7), we obtain

n— 00 2 2 n—00 2
Zi_Nm"l‘l o; lov; | ) Z,’ =N+ 1|05i|

2
82 = o , (G2)
w Z?:)IOO 2 |al|2 XY Npy+1 Z;’l_—IOO 2 |al|2
and similarly for the relative error associated with the K-H forcing approximation,
&2 — Zzn—_)NO: 1 |Ol, (G3)
f Zn—)oo | l|2
We can use relations (G2)—(G3) to obtain
2
o
2 Np+1 2
ex < fos (G4)
Y XY ot el S
> e ?
where
—2 Zznjloo 1 |O‘t|2 5
S T G5
ot leil
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Figure 31. Squared componentwise relative error of the reconstruction of (a) K-H forcing, (b) nonlinear

response and (c) vorticity computed from the nonlinear response.

Because
n— oo n—oo
2 2 2 24 2 2
> o7 il Za leil*+ Y of el
i=1 i=1 l—Nm+1
we obtain
N, 2 n— 00 2 12 n—o0o 12
—2 _ Zl—ml 0-2 |al| Zl—l |al Zl—Nm+1 O_. |al| l:Nm+1 |al|
- n— 00 2 n— 00 n— 00 2
Zl—1 loi 1> 200 e PIEATEE 71 LD S tad 1

and recalling (6.9) and letting

n—oo
2 2i=N,, 107 loil?
i=Np+1 1%

we get

52—012\, (l—sf)—i—cr f> %v <1—8§;>.

Finally, the inequality (G2) still holds if we inject (G9), yielding

o2 &2 g2
2 Nu+l f S
0 < g ’
v 512\, 1—e2 " 1—¢2
m f f
which directly leads to the condition (6.8).
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G.2. Componentwise error

The contribution of each x, y and z component reconstruction to the total (squared)
relative error is plotted in figure 31 for the K-H forcing (figure 31a), the nonlinear response
velocities (figure 315) and vorticities (figure 31¢). The quantities shown are such that the
total squared error is the sum of the squares of the componentwise errors.

For the K-H forcing reconstruction, 70 %—-80% of the error comes from the
z-component, while x and y components have equal 10 %—15 % contribution each. For the
nonlinear response velocities, the streamwise & component contains approximately 60 %
of the error, followed by w at 40 % and v which has negligible contribution. Finally, for
the vorticity computed from the response velocities, @, and &, have similar contribution,
while @, carries negligible error.
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