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1. Introduction
A well-known fact is that every automorphism of the symmetric group on a

set must be inner (whether the set is finite or infinite) unless the set has exactly
six elements (4, § 13). A long-standing conjecture concerns the analogue of this
fact for the group A(S) of all order-preserving permutations of a totally ordered
set S. The group A(S) is lattice ordered (l-group) by defining, for
f,ge A(S), f^g whenever xf ^ xg for all xeS. From the standpoint of
/-groups, A(S) is of considerable interest because of the analogue of Cayley's
theorem proved in (2), namely every /-group may be embedded in some A(S).
Unlike the non-ordered symmetric groups, which must be highly transitive,
A(S) is severely restricted if assumed transitive. Of special interest are those
cases when A(S) is doubly transitive (relative to the order), since the building
blocks (primitive) of all transitive A(S) are either doubly transitive or uniquely
transitive. It is easily seen that each inner automorphism of A(S) must preserve
the lattice ordering (that is, must be an l-automorphism). It is tempting to
conjecture that every /-automorphism of A(S) must be inner. However, an
easy counterexample is at hand. If S consists of two copies of the ordered set
of integers, one entirely above the other, then A(S) is the direct product of two
copies of the /-group of integers, which has an outer /-automorphism exchanging
the two factors. The conjecture referred to above is that if A(S) is transitive
on S, then every /-automorphism of A(S) is inner. The conjecture has been
verified for many special classes of groups A(S) satisfying stronger hypotheses
than transitivity ((1), (5), (7), (8)). In this paper it is shown that the conjecture
is false. In fact, there is an example of A(S) which is not only transitive but
doubly transitive, and which has an outer /-automorphism. Some slightly
weaker conjectures are investigated, and it is found that for a transitive A(S),
every closed /-ideal is /-characteristic, and in most, but not all, cases, every
/-ideal is /-characteristic.

2. A counterexample

We will construct a totally ordered set S which is doubly homogeneous (for
every x, y, z, w e S, if x < y and z < w, then there exists g e A (S) such that xg = z
and yg = w) and such that A(S) has an outer /-automorphism. I am indebted
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to Andrew Glass for his suggestion to use the ultrafilter in the following con-
struction.

Let X! denote the smallest uncountable ordinal, and for each ordinal
a<Xi, let Za = Z be the ordered set of integers. Let

R= P] Z« = . . .xZ a x . . .xZ 2 xZ 1 ,
a<Ni

which is to be ordered lexicographically from the right. Let °U be an ultrafilter
on Kx containing all final segments. Let

S = {(..., ra, ...)eR\{<x\rae2Z}e%}.

Then 5 is totally ordered as a subset of R.
We first show that A(S) is transitive on 5. Let (..., sx, ...),(..., ra, ...) e S.

Then U = {a | ra, sx e 2Z} e °tt. Define \\i: R->R by

Then if (..., ta, ...)eS, {a| ?ae2Z} = F e t , Pntfeft, and for all
cteVnU, ta-sa+rxe2Z. Hence ^: S->S. Similarly ip'1: S->S, so that
^ e /4(S). Moreover, (..., *„, ...)<A = (..., ra, ...).

If a<Kj, we define an equivalence relation =„ on S by

(..., rf, ...) =„(..., ^, ...)

if re = Sp for all /? ^ a. Note that the permutation ^ defined in the previous
paragraph respects each of these equivalence relations.

It is easily seen that any one of the equivalence classes s =a is isomorphic to
S. It follows that any right ray within any equivalence class is isomorphic to
any right ray within any other equivalence class (even for different equivalence
relations), and the same for left rays.

To show that A(S) is o-2-transitive on S, it suffices to show that if x, y, z e S
with x<y<z, then there exists g eA(S) such that xg = x and yg = z. Let
a be the smallest ordinal such that x ^=xy. Let X be all lower bounds in S
of the =a-class containing^, and let Y = S\X. Then the left ray in the =a-class
containing y beginning at y is isomorphic to a left ray of S. Consequently,
Y is isomorphic to S. As A(S) is transitive, there exists an order-preserving
permutation of Y mapping y to z, and we extend this to a permutation of S
by mapping X identically onto itself, so the proof is complete.

We note that S is dense in R, so we may identify R in an obvious way with
a subset of the dedekind completion S of S. In fact, R is characterised as the
points of S of lower point character Xt; that is, for each reR, the shortest
well-ordered subset of S with least upper bound r, and not including r, has
cardinality X^ To see that each element of R has this property, suppose that
r = (...,ra,...) e i?,and define,foreacha<K1,ja = (...,O,ra+1-l,ra, ....r^eS1.
Then s1<s2<-..<sot<..., and r is the least upper bound of {sa}. No shorter
sequence will do, for if s[ <s2<. . . < r is a countable sequence, then letting d(n)
be the smallest index at which s'tt and r differ, {d{ri)\ n = 1, 2, ...} is countable
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and so has an upper bound )3<K1. Then the element sfi denned previously is
such that s'n<Sp<r, so that r is not the least upper bound of {s'n}. Conversely,
to see that each point of S of lower point character Kt belongs to R, one may
consider a bounded increasing sequence of points of S,

where
sfi = ( , p „ ) , t

An induction argument shows that for each a, there exists a' such that for all
P ^ a', sfiy a = v , «• The element r = (..., j a , a, ...) of R is then easily seen
to be the least upper bound of the sequence {sfi}.

Now we define <t>: R-*R by (..., xa, ...)$ = (..., xa+l, ...)• Then </> is an
order-preserving permutation of R, and S<t> = R\S while S<£2 = S. It now
follows that the mapping $ = 4>~1g(j) is an /-automorphism.

The automorphism $ cannot be inner, for if /e A(S) and $ e S, s/~* # J</>~*
since i / ' 1 e S while s<j>~ieR\S. Suppose, for example, that sf'^Kscj)'1.
By o-2-transitivity, there exists a non-trivial g e /4(5) such that the support of
g (suppg) lies between sf'1 and s<j)~*. For choose points ^, yeS with
5 /~ 1 <x<7<^~ 1 . Then there exists 1 ^ g1 e A(S) such that sf~1g1 = sf-1

and xgt = j ; also there exists 1 ^fir2
G^(^) s u c n that xg2 = y and

s(j>~ig2 = scj)'1; now define # to be the identity off the interval [.s/"1, 50"1]
and gfj A#2 on this interval. Then sf~l<suppg<s4>~1. Therefore

Hence g$ = <f>~1g(j) ¥= f~1gf, and $ is not inner.

3. Primitive groups

Every element of A(S) has a unique extension to an order-preserving permu-
tation of the dedekind completion S, and we shall make no distinction between
the permutation g e A(S) and its extension.

A fact which is fundamental to all that follows was proved by Lloyd.

Proposition 3.1. (J. T. Lloyd, (5)) Let A{S) be transitive and let every non-
trivial interval of S support a non-trivial member of A(S). Then every l-auto-
morphism ofA(S) is induced by an inner automorphism of A{S).

This is precisely the situation of the example in the previous section.
A{S) is said to be an Ohkuma group if it is sharply transitive; that is, for

each x, y e S, there exists exactly one g e A(S) such that xg = y. This is clearly
the case when 5 is the set of integers; other less obvious examples are con-
structed by Ohkuma (9). A congruence is an equivalence relation on 5, each
class of which is convex, and whose classes are permuted by the elements of
A(S). A(S) is o-primitive if the only congruences are the trivial ones. That
every Ohkuma group is o-primitive follows from (9); also, it is clear that any
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o-2-transitive A(S), such as when S is the set of rational numbers or the set of
real numbers, is o-primitive. For a converse, see Proposition 3.2. An l-ideal
of A{S) is a convex normal subgroup sublattice. We note that if 1 <g e A{S),
the positive ( > 1) elements of the /-ideal of A(S) generated by g, are just those
positive elements which are bounded above by a product of conjugates of g.

We will show that every /-ideal of an o-primitive A(S) is /-characteristic;
that is, is mapped onto itself by every /-automorphism of A(S).

Proposition 3.2. (See (1, 5).) If A(S) is transitive and o-primitive then
either A(S) is an Ohkuma group or A(S) is o-2-transitive.

The following proposition was proved in (2, Theorem 6) for the case when
S is the chain of real numbers, but the same proof, with minor modifications
still works.

Proposition 3.3. Suppose that A(S) is o-2-transitive and that S has a countable
coterminal subset (with no upper bound and no lower bound). Then any one of the
following four conditions is sufficient to guarantee that there exist conjugates g' and
g" of g such that f-Zg'vg".

(i) \<g e A(S), 1 ^ fe A(S), and f has bounded support.

(ii) 1 <g e A(S), 1 ^ fe A(S), the support of g has no upper bound, and the
support of f has a lower bound.

(iii) The upper-lower dual of (ii).

(iv) 1 <g e A(S), 1 ^ fe A(S), and the support ofg has neither an upper nor
a lower bound.

Corollary 3.4. If A(S) is o-2-transitive and S has a countable coterminal
subset, then every l-ideal of A{S) is l-characteristic.

Proof. If \p: A(S)—>A(S) is an /-automorphism and l<geA(S), then
Proposition 3.1 implies that the support of g and the support of g\]/ have the
same " bounded " type. It follows from Proposition 3.3 that

for some conjugates g' and g" of g, and hence that any /-ideal containing g
must also contain g\p.

It is only a small step now to go to the more general case when 5 has no
countable coterminal subset.

Proposition 3.5. If A(S) is o-2-transitive then every l-ideal of A(S) is l-
characteristic.

Proof. Let \j/: A(S)->A(S) be an /-automorphism, induced by the mapping
$: S-*S (Proposition 3.1), let 1 <g e A(S), and let T s S be the set of common
fixed points of $ and g. Then T is a closed subset of S. If s e S\T, there exists
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a non-trivial open interval s* of S, maximal with respect to the properties ses*
and s*nT is empty. It is obvious that A(s*) is o-2-transitive.

We now show that s* satisfies the hypotheses of Proposition 3.3. Suppose
to the contrary, for example, that every countable subset of s* has an upper
bound in $*. Then since s$T, either sg # s or sip # s. The two cases are
similar, and we choose the former. Thus s<sg<sg2<... is a countable subset
of s* which must have a least upper bound ut es*. It is clear that uvg = ur.
However, ut $ T, so utip ^ uv Thus ul<ul | ip |<ut \ ip | 2 < . . . is a countable
subset of s* which must have a least upper bound u2 e s*. Then u2 is a fixed
point of \p, and hence moved by g. Proceeding in the same way, we produce a
sequence « I < M 2 < - - of points of s* such that each u2n is a fixed point of ip
and each u2n+1 is a fixed point of g. This countable sequence must have a
least upper bound u e s*, and obviously u is fixed both by g and by ip. The
contradiction establishes that s* does indeed have a countable subset with no
upper bound in s*. In a dual manner, we see that there is a countable subset
with no lower bound in s*. Hence s* satisfies the hypotheses of Proposition 3.3.

Because of the definition of s*, ip maps s* onto itself, and hence ip induces an
/-automorphism ip* of A(s*). Likewise, if g* is the restriction of g to s*, then
g* e A(s*). Proposition 3.3 now implies that there must exist h*, h2eA(s*)
such that

The construction may be performed on each maximal interval in the comple-
ment of T in S. Finally, we patch together all the various h* to form hx e A(S),
fixing each point of T. Construct h2 from the h* similarly. We then have

and so every /-ideal of A(S) containing g also contains g\p, and the proposition
is proved.

It was observed in (1) that an Ohkuma group has no /-automorphisms, other
than the identity. Hence, the conclusion of Proposition 3.5 is trivially true for
Ohkuma groups. Combining this with Proposition 3.2, we have

Theorem 3.6. IfA(S) is o-primitive, every l-ideal of A(S) is l-characteristic.

We close this section with the observation that there do exist o-primitive
examples in which S contains no countable coterminal subset. One such is
the " long rational line " which is the lexicographic product (0, 1) x Kx where
(0, 1) is the open rational interval.

4. Locally Ohkuma groups

Suppose that A(S) is transitive, yet fails to satisfy the hypothesis of Lloyd's
theorem (Proposition 3.1). Then each point seS is contained in a minimal
interval Os which supports some member of A(S). The sets Os are the classes
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of a congruence on S, and A(OS) is uniquely transitive, hence an Ohkuma
group. In this case, we say that A(S) is locally Ohkuma. For example, if Z
is the set of integers and T is any homogeneous chain, then S = ZxT gives
rise to a locally Ohkuma A(S) whose congruence classes have the form
Zx {/}, t eT. Every locally Ohkuma group arises in this way with Z replaced
by some Ohkuma group. Every Ohkuma group is /-isomorphic to a subgroup
of the real numbers (9).

Let A(S) be locally Ohkuma, and for each s e S let

Ls = {ge A(S)\ xg = x, all x $ Os).

Then Ls is a convex subgroup of A(S) and is /-isomorphic to A(OS). Hence,
like every Ohkuma group, Ls is totally ordered. Conversely, let G # {1} be a
totally ordered convex subgroup of A(S). Choose 1 <g e G and s e S such that
sg T4 s. Then there exists fe Ls such that sg = sf. By sharp transitivity, for
every / e Os, tg = tf. Hence 1 < / ^ g, so fe G. Since Ls is archimedean,
Ls £ G. Now suppose that G i= Ls. Then there exist l<heG, r$Os, such
that rh =£ r. As before, there exists 1 <keLrr\G. But then/A/t = 1, contra-
dicting the fact that G is totally ordered. Hence G = Ls. Thus, the groups
L,, se S, are the totally ordered convex subgroups of A(S).

Now let $: A(S)-*A(S) be an /-automorphism. Choose a reference point
p e S. Then Lp(j) is a totally ordered convex subgroup of A(S), and so Lp<j) = Lq

for some qeS. We define a map (j>: S->S in the following way. If s e S,
there exists fs e A(S) such that pfs = s. Then define scj) = q{fj$). This is
independent of the choice of fs, for if pf = pg, t hen^" 1 fixes each point of
Op, so thaty^"1 is disjoint with each element of Lp. Consequently (Jg~l)<j>
is disjoint with each element of Lq, so that/$> and g^> agree at each point of Oq.

To show that (j> is one-to-one and preserves order, let x, y e S, x<y, and
choose fx e A(S), pfx = x. Then p = xf~1 <yfx~

1, and so there exist 1 <k e Lp

and 1 ^ h e A(S) such that pfcfc = yf~l. Then

where the strict inequality occurs because k<j> belongs to the Ohkuma group Lq

and so must move every point of Oq.
It is clear that 4> is onto, and so 4> e A(S). It is a straight-forward computa-

tion to show that for each g e A(S), g<f> = <j)~1g<f>. This proves

Theorem 4.1. If A(S) is transitive and locally Ohkuma, then every l-
automorphism of A(S) is inner.

We note that the special case of this theorem when A(S) is locally discrete
was proved in (1). Also, we now have a more general form of Lloyd's theorem
(Proposition 3.1), without the special " support" hypothesis.

Corollary 4.2. If A(S) is transitive, then every l-automorphism of A(S) is
induced by an inner automorphism ofA(S).
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5. Closed 1-ideals

An /-ideal L of a lattice ordered group G is closed if whenever a subset of £
has a least upper bound in G, that least upper bound belongs to L. In this
section we will show that every closed /-ideal of a transitive A(S) is /-
characteristic.

The orbits of any /-ideal of A(S) are the classes of a congruence. Con-
versely, if # is any congruence, {g e A{S)\{sg)^s, all s e S} is a closed /-ideal of
A(S) (Lloyd (6)), whose orbits are the ^-classes. Thus, there is a natural
one-to-one correspondence between the closed /-ideals of a transitive A(S)
and the congruences on S. The congruences form a tower under inclusion (1),
and hence so do the closed /-ideals. It will be convenient to extend each
congruence # on S to a congruence # for the action of A(S) on S in the following
way. For x,yeS define x@y if x = y or there exist a, be Ssuch that atfb and
x and y lie between a and b.

Theorem 5.1. If A(S) is transitive, every closed l-ideal of A(S) is l-
characteristic.

The proof occupies the rest of this section, and proceeds by way of contra-
diction. Suppose that A(S) is transitive, that $> is an /-automorphism of A(S),
and that L is a closed /-ideal of A(S) such that L$ # L. Since the closed /-ideals
form a tower, we may assume that L is a proper subset of L$. By Corollary 4.2,
$ is induced by some 4> e A(S). Let if0 be the congruence on 5 whose classes
are the L-orbits, and S£?° its extension to S as previously described. Thus, the
if°-classes are produced by convexifying the if°-orbits in S. In a similar
manner, let f̂" and S£n denote, respectively, the congruence corresponding
to Left" and its extension.

An easy computation shows

Lemma 5.2. If A is an 2?n-class, then A</> is an JZ"1+1-class, and conversely.

Choosing a non-trivial .S^-class A, by transitivity there exists g e A(S) such
that A$g 2 A. Replacing $ by its product with the inner automorphism
induced by g, we may assume that A is a proper subset of A<j>. Then we have,
for each integer n, A4>n s An+1, and each containment is proper.

Let M be the union of all A4>". Then A/# = M, so </> induces an /-auto-
morphism of the transitive A(M), under which, the closed /-ideal L* corres-
ponding to L is not fixed, and u(Z,*$") = A{M). Thus, without loss of
generality, we may assume uL$" = A(S).

UtN= nL$n. Then N is a closed /-ideal of A(S) and N$ = N. If Jf
is the corresponding congruence, then $> induces an /-automorphism of A{S\Jf)
under which the closed /-ideal L corresponding to L is not fixed, and r\{L'$n)
is the identity.

Then, without loss of generality, we shall assume for the rest of this proof,
E.M.S.—19/4—Z

https://doi.org/10.1017/S0013091500010439 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010439


338 W. CHARLES HOLLAND

that A(S) is transitive, $> is an /-automorphism of A(S) induced by 0 e A(S),
Lisa, closed /-ideal of A(S) such that u(L$") = A(S) and r\(L$") is the identity.

It is easily seen that (j> must permute the orbits of A(S) on S.

Lemma 5.3. No closed l-ideal of A(S) is fixed by $, except the trivial ones.

Proof. Let K be any non-trivial closed /-ideal of A{S). Since the closed
/-ideals form a tower and u(Z,^") = A(S), r\(L<f>") = {1}, then for some n,
L$" £ K<=L$n+1. It follows that L$n + 1 = K$, so that K * K$.

Lemma 5.4. If for some xeS,x and xcj) lie in the same orbit of A{S) on S,
then that orbit is dense in S.

Proof. Let O be the orbit containing x. Since 4> permutes orbits, and
xcf> e O, O(f) = O. Identifying two points of S whenever no point of O lies
between them produces a congruence on S, whose associated closed /-ideal in
A(S) is mapped onto itself by $. According to Lemma 5.3, that /-ideal can
only be {1}. It follows that O is dense in S.

Let
0 = {x e S\S I the orbit of A(S) containing x is dense in S}.

Lemma 5.5. 0 is an orbit of A{S).

Proof. It is obvious that 0^(5) = 0. We now establish that A(S) acts
transitively on 0. Let x, y e 0, let n be any integer, and let A be any if-class,
and let a, b e A, a < b. Because the orbit of x is dense in S, there exists g e A(S)
such that a<xg<b, so that xeHg'1 = Jn, a non-trivial if "-class. Likewise,
y e /„, also a non-trivial .Sf-class. By transitivity again, there exists gn e A{S)
such that Jngn = /„.

Let Po = 5 ^ ) and for each negative integer n, Pn = /n_1\./,I. Then
{Pn | n = 0, - 1 , - 2 , ...} is a partition of S, and we define/: S->5 by letting/
agree with gn on Pnt for each « = 0, - 1 , - 2 , .... It is easily verified that
feA(S)&ndxf= y.

Lemma 5.6. For some orbit 0 of A{S) on S, Ocj) = 0.

Proof. We choose x<y, points of S, such that x and y lie in the same
i?"+1-class, but not the same jSf-class. By Lemma 5.2, x$~x and yep'1 lie in
the same JS?"-class. By transitivity, there exists g e A(S) such that x and x(j)-1

lie in the same jSf"-class and x<x(j>~1g. Then y(j)~1g must also lie in the same
if "-class with x. Since y lies in a different class,

Hence the continuous map (t>~1g: S^S must have a fixed point zeS, between
x and y. Thus z<\>~1 = zg~x\ that is, z is mapped by (f>~1 into the orbit of
A(S) containing z. Consequently, that orbit is mapped onto itself by 0"1,
and also by 0.
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Lemma 5.7. <j> e A(S).

Proof. The orbit O of Lemma 5.6 must, according to Lemma 5.4, be
dense in S. It follows from Lemma 5.5 that there are at most two dense orbits,
namely S and 0 . If O = S, then S<f> = S and we are done. But if O = 0 ,
then since S<j> must be some dense orbit, and Ocp = O, it can only be that
S<f> = S, and we are done.

The conclusion of Lemma 5.7 is, of course, contradictory, since it implies
that $ is inner, while Z,$ # L. Thus we have proved the theorem.

6. Other /-characteristic subgroups

Proposition 6.1. If A(S) is transitive, if $ is an l-automorphism of A(S)
induced by the point mapping (j> e A(S), and if^ is a non-trivial congruence on S,
then (j> induces a mapping <f>*: S/e£-+S/<H> so that $ induces an inner automorphism
of the quotient

Proof. Let L be the closed /-ideal of A(S) whose orbits are the "^-classes,
and let $? be the natural extension of <& to S. The non-trivial "^-classes are
precisely those which contain a point of 5. Moreover, the <f-classes are the
sets obtained by convexifying the orbits of L on S. By Theorem 5.1, L§ = L,
and so $ must permute the orbits of L on S. Hence, </> permutes the ^-classes,
and therefore also the non-trivial ^-classes. The map </>* is defined, for a # -
class C, by C(p* = DnS where D is the "f-class which contains all the points C<f>.
The permutation (j>* then induces an inner automorphism $* of A{SI^).
A{SI%>) is /-isomorphic to A(S)/L, and as £ $ = L, <j> induces an /-automorphism
of A(S)/L, which under the natural identification is the same as <j>*.

Lemma 6.2. If A(S) is transitive and not locally Ohkuma, and if(j>: S-+S
induces an inner automorphism of A(S), then (j>: S-*S.

Proof. As in the paragraph at the end of Section 2, if there exists seS
such that s<l> $ S, l e t / e A(S), so s$ # sfe S. Since A(S) is not locally Ohkuma,
every non-trivial interval of S contains the support of a non-trivial member of
A(S). Hence there exists 1 # g e A(S) whose support lies between s(f> and sf.
Then clearly <£#</>" * ^fgf'1, and hence (f> does not induce an inner auto-
morphism of A(S).

Theorem 6.3. If A(S) is transitive, and for some non-trivial congruence
class C £ S, every l-automorphism of A(C) is inner, the same is true of A{S).

Proof. In the case that A{S) is locally Ohkuma, the conclusion is true by
Theorem 4.1. Suppose A(S) is not locally Ohkuma, and <j>: S-*S induces an
/-automorphism of A(S). Then if C is the dedekind completion of C (the
convexification of C in S), C<p = D, where D is a class of the same congruence,
by Proposition 6.1, and so there exists g eA(S) such that <j)g: C-»C. Then
(j)g induces an /-automorphism of A{C), and A{C) cannot be locally Ohkuma
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since A(S) is not. By Lemma 6.2, <f>g: C-*C. Therefore <£: C->S. The same
is true of every class of the same congruence. Hence <j>: S-+S, so </> 6 A(S).

We now introduce an hypothesis which seems to be slightly stronger than
the assumption that every /-ideal is /-characteristic, although for all we know, it
may be equivalent.

If 1 <g e A(S) and $ is an /-automorphism of A(S), then g$ ^ g'g", where
g' and g" are conjugates of g. (*)

The proof of Theorem 3.6 shows that every o-primitive A(S) has property (*).

Theorem 6.4. If A(S) is transitive, and for some non-trivial congruence
class C, A{C) satisfies (*), then every l-ideal of A{S) is l-characteristic.

Proof. Let <& be the congruence of which C is a class. Let $ be an /-auto-
morphism of A(S), and 1 <g e A(S). By Proposition 6.1, there exists fe A(S)
such that for each #-class C, C<\> = Cf, where 4>: S-*S is the mapping which
induces $>. In particular, C(g^) — C{gJ). If, for a certain C, Cf~1g ^ Cf'1,
then

and so certainly for every point x in such a C, x(g<j>)<xf~1g2f In the other
case, if Cf'^g = Cf~\ then if k is the restriction off~lgf to C, ksA{C), and
/ " * $ induces an /-automorphism of A(C), so by assumption there are two
conjugate k'c, k'c of k such that

Of course, k'c and k'c are also conjugates of g. It is easily seen that there exist
conjugates k', k" of g such that for each C (with Cf'^g = Cf'1), k'\C = k'c
and k"\C = kc. Then 1 <g$ ^ ( / ~ V ) v(jfc'ifc"), so # $ is in the /-ideal
generated by g.

Corollary 6.5. If A(S) is transitive and locally o-primitive, every l-ideal of
A(S) is l-characteristic.

Let us call A(S) plugged if whenever {Q} is a tower of congruence classes,
one from each non-trivial congruence on S, then r\Ca is not empty. If A{S) is
locally o-primitive and transitive then A(S) is plugged.

Theorem 6.6. If A(S) is transitive, plugged, but not locally o-primitive, then
every l-automorphism of A{S) is inner.

Proof. Let (f>: S-+S induce an /-automorphism of A(S), and let seS.
Then s = r>Ca, where the Cx are all the non-trivial congruence classes containing
s. We may also write s = r\Ca. By Proposition 6.1, Cj$> = Da where Dx is a
class of the same congruence with Cx. By assumption, s<j> = r\Da = nDae S.
Hence $ e A(S).
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If one modifies the example at the end of this section by defining

,S = ... xA2xAu

then A(S) satisfies the hypotheses of Theorem 6.6.
Finally, we construct an example to show that it is not always the case that

for a transitive A(S), every /-ideal is /-characteristic. By Corollary 6.5 and
Theorems 6.3 and 6.6 such an example cannot be plugged and cannot be locally
o-primitive.

The example will resemble that of Section 2, modified so that the natural
equivalence relations become congruences. Let N denote the set of natural
numbers. For each ne N, there exists a set An with the following properties
(see (8)). An is a totally ordered set; | An \ = Xn; An has a subset with no upper
bound and no lower bound, whose cardinality is Kn_,; if X and Y are non-
empty subsets of An such that \ X\, | 7 |<Kn and X< Y, then there exists
ae An with X<a< Y; A(An) is transitive.

Let Z be the naturally ordered set of integers, and for each ne N,Tn = Z x An,
ordered lexicographically from the right. Let

£„ = {(«, a)6 TJ i is even}.

Let T- ...xT2xTu ordered lexicographically from the right. Let °U
be a non-principal ultrafilter on N, and

S = {(..., tn,...)eT\{n\tneEn}e®}.

We will show that A(S) is transitive and has an /-ideal which is not /-
characteristic.

Suppose that (..., rn,...), (..., sn,...) e S. Then since each A(An) is transitive,
there exists /„ e A(Tn) such that rnfn = sn. Moreover, if rn, sn e En, then /„ can
be chosen so that EJn = En. Nowdefine/: T-+Tby(...,tn, ...)f= (...,tjn,...).
Then (..., rn, . . . ) / = (..., sn, ...), and if (..., tn, ...)eS, there exists UB% such
that for all neU, rn, sn, tn e En, which implies EJn = En, and so tjn s En.
Hence (..., tn, ...)/e S, so that /e A(S), showing that A(S) is transitive.

The natural equivalence relations are defined on S by

(..., xn, ...) =m(...,yn, ...)

if x, = y, for all i ^ m. Let D be any =m-class. Then D has a certain density
property. Namely, let {ax \ a < Km} be a well-ordered subset of D and {ba | a < Xm}
an inversely well-ordered subset of D with aa<bfi for all a, /?. Then there exists
n ^ m such that for no aa, bp is ax = n + 1 bp (otherwise, the sequences would be
countable), but for some =n-class C, C contains some aa and some bf. We
now project into C/=n+1, which is isomorphic to Tn+U producing uncountable
sets {o,}, {Btt} with 58<5,, each a, p, and |{58}|, |{5,}| ^ Nm ̂  «„<«,+!• It
follows that there exists ceC such that ax<c<bp, all a, p.

Now let /e A(S). If Z)/were not contained in some one =m-class, then Df
would contain two points x, y in the same =m_!-class M but not in the same
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sm-class. Projecting into the quotient M\ = m, we may assume that 5c and y
are adjacent points, say x<y (since M/=m is isomorphic to Tm). Am+U and
hence also Tm+1, has a coterminal subset of cardinality Km. If X and Y are,
respectively, the sm-classes containing x and y, the quotient of either by = m + 1

is isomorphic to Tm+1, and so there are subsets {att | a<Km} cofinal in X and
{ba | a<Km} coinitial in Y, and since X and Y are adjacent, no element of Df
lies between them. This contradicts the fact that Df is isomorphic to D.
Hence Df is contained in one sm-class, and we have proved that each =m

is a congruence.
It now follows that A(S) is contained in the wreath product of the groups

A(Tn) (3). That is to say, each g e A{S) is determined by a Nx. S matrix {gin, s)}
where g{n, s)eA{Tn) and (..., sn, ...)g = (..., sng{n, s), ...), and such that if
J E , . , ! , then g(n, s) = gin, t). The rules of composition, which can easily be
deduced are (fg)(n, s) = f\n, s)g(n, sf), and g~\n, s) = {gin, sg'1))'1.

We will now define a certain element of the wreath product by its matrix
components and show it actually belongs to A{S). For each n e Nlet dn e A(Tn)
be any non-trivial positive element of bounded support such that Endn = En.
Then define g{\, s) = 1, and for n> 1,

Un, otherwise.

The fact that £,</, = £;, together with the inversion formula and an induction
argument, yield

Un
 ! , otherwise.

Now let seS. Then there exists U eQl such that for all neU, sneEn.
Hence for each neU, {sg)n = sng{n, s) which is either sn or sndn, but in either
case belongs to En. Therefore sg e S. Similarly, sg~x e S, so g e A{S).

For each neN, let #„ e A(Tn) be defined by (i, a)4>n = (/+1, a), and define
0 e A(T) component-wise by

<f>(n, t) = (j>n f o r a l l t.

It is easily seen that S<j> = T\S and (T\S)<I> = 5. Noting that T consists of those
points of S of countable character, and hence <j>:T -* T, it follows that (f> induces
an /-automorphism $ of A{S) b y / $ = ^~V^. We claim that#<£ does not lie in
the /-ideal of A(S) generated by g, which is, therefore, not /-characteristic.

Lemma 6.7. Let K be any finite subset of A{S). Then there exists a point
seS which is fixed by each k~ igk, ke K, and by (f>~1g(j).

Proof. We define the coordinates of s by induction. Since for n>l,f(n, s)
depends not on all coordinates of s, but only on (sn.u ..., s^, we may write
/(«, s) =/(/?, (.?„_!, ..., Si)). Since/(I, s) is independent of s, we may write
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/( I , s)=f(l, ( )). We begin by choosing any ^e i s^ . Then for every
keKu{<t>},

Now suppose we have chosen slt ..., sn such that for each j ^ n, SjeEj
and for every k e ATu{0}, s} is fixed by (k~1gk)(j, (sj-i, ..., s,)). Then

(sn, ..., s1)k~1g = (sn, ..., sjk'1.
Hence

^ l , (sn> ..., sx))

l, (sn, ..., Sl))gf(« + 1, (sn, ..., sJfc-^feCn + l, (sn, ..., s^fe"^)

, ..., sJfc-^-VCn + l, (*„, .... sOfe-^w + l, (sn, ..., sjk'1)
which has bounded support, since g(n + l, (sn, ..., s^) does. Therefore, there
exists sn+1eEn+i which is fixed by each of these. Proceeding by induction,
we construct s = (..., s2, st) which belongs to S since each sn e En, and which is
fixed by each of the functions k~xgk, k e Ku{4>}.

Now let {ku ..., kn] <= A(S), C{ = krlgkh and p = C^C2...Cn. We will
show that g$ ^ p. Let s e S be fixed by each Cf and by <t>~1g<p, as guaranteed
by the lemma. Then

p(j, s) = d(j, s)C2(j, sC!) . . .^ ; , sCi.-.Q-i)

= dU, s)C2(;, s)...Cn(;, s).
Also

CH, s) = WU, skr^y^gij, sfef1)^;, s/cf1).

For each ke{ku ..., /:„}, 5A;~x e S. Therefore, there exists U e % such that for
all jeU, and for each k, (sk'^jeEj, and also SjeEj. Hence, for all
j e U, p(J +1, s) = 1. On the other hand, for all j e U,

(s^"1); = srf-'U, s) = Sj(<t>(j, sf-'THEj, since SjeEj.

Hence, 0(7+1, sfy'1) = djj= 1, and

Let w be the smallest integer in U. Then since (g$)(m +1, s) # 1, there exists
x e 7m +! such that x(g<j))(m +1, s) i= x. Let J ' be any member of S of the form
s' = i..,x,sm,sm.u ..., sj. Then

s'p = (..., xp(m + l, s), smp(m, s), ..., 5^(1, s))

= ( . . . , X, Sm, . . . , S j )

l, s), sm(g$)(m, s), ..., st(g^)(l, s))

Thus, g<ji $ /?. It follows that g$ does not belong to the /-ideal of A(S)
generated by g, and so that /-ideal is not /-characteristic.
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