
26
The standard model

The development of a unified theory of the electroweak interactions surely
must be regarded as one of the great intellectual achievements of our era.
We assume the reader is familiar with the basic phenomenology of the
weak interactions [Cu83, Wa95] and turn to the so-called standard model
of the electroweak interactions [We67, We72, Sa64, Gl70]. The discussion
follows [Wa95]

Most leptons (l, νl) are light, or massless, and they can be created and
destroyed in weak interactions. This indicates that they must be described
with relativistic quantum fields. In the interaction representation, fermion
fields take the following form [Bj65, Fe71]

ψ(x) =
1√
Ω

∑
kλ

[
akλu(kλ)e

ik·x + b
†
kλv(−kλ)e−ik·x

]
(26.1)

In this expression a destroys a lepton, b† creates an antilepton, and λ de-
notes the helicity with respect to the accompanying momentum variable.1

A spinor field can always be decomposed as follows

ψ =
1

2
(1 + γ5)ψ +

1

2
(1 − γ5)ψ ≡ ψL + ψR

ψ̄γμ
∂

∂xμ
ψ = ψ̄Lγμ

∂

∂xμ
ψL + ψ̄Rγμ

∂

∂xμ
ψR

ψ̄ψ = ψ̄LψR + ψ̄RψL (26.2)

The lepton fields for the electron and electron neutrino2 will be com-

1 Hole theory implies that v(−kλ) is a negative-energy wave function with helicity λ with

respect to −k.
2 And similarly for the other leptons.
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232 Part 4 Selected examples

bined in the following fashion:

ψl =

(
ψνe

ψe

)
≡
(

ν

e

)
(26.3)

The fields (L, R) are defined by

L ≡
(

νL
eL

)
=

1

2
(1 + γ5)ψl

R ≡ eR =
1

2
(1 − γ5)ψe (26.4)

The kinetic energy of the leptons is then given by3

L0
lepton = −

[
ψ̄eγμ

∂

∂xμ
ψe + ν̄Lγμ

∂

∂xμ
νL

]

= −
[
L̄γμ

∂

∂xμ
L + R̄γμ

∂

∂xμ
R

]
(26.5)

This lagrangian is invariant under a global SU(2)W symmetry — a weak
(left-handed) isospin — which treats the field L as a weak isodoublet and
R as a weak isosinglet. The generators for this SU(2)W symmetry can be
immediately written in terms of the above fields as

T̂ i
W =

∫
L†(x)

1

2
τiL(x)d3x

=

∫
ψ

†
l (x)

1

2
τi

1

2
(1 + γ5)ψl(x)d3x (26.6)

It follows immediately from the canonical (anti)commutation relations
that these generators satisfy an SU(2) algebra

[T̂ i
W , T̂

j
W ] = iεijkT̂

k
W (26.7)

The finite symmetry transformations are given by

exp {iθ · T̂W }L exp {−iθ · T̂W } = [e− i
2 θ·τ ]L ; doublet

exp {iθ · T̂W }R exp {−iθ · T̂W } = [1]R ; singlet (26.8)

These equations follow from the projection properties of (1 ± γ5)/2.
The mass term for the electron has the following form

−meψ̄eψe = −me[ēLeR + ēReL] (26.9)

3 There is only one neutrino field in the standard model νL ≡ 1
2
(1 + γ5)ψν; it describes

left-handed neutrinos and right-handed antineutrinos. This is put in by hand, as is the

fact that this neutrino is massless mν = 0.
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26 The standard model 233

This expression is not invariant under SU(2)W . Hence if one wants to
build on this symmetry, it is necessary to start with massless fermions.

The corresponding lagrangian for point Dirac nucleon fields is rela-
tively simple and illustrates the general structure of the theory [We72]; we
present this first. Matrix elements for physical nucleons then follow from
general symmetry considerations. The somewhat more complex formula-
tion in terms of quarks is then given [Gl70].

Proton and neutron fields are included in a manner analogous to the
above

NL =

(
pL
nL

)
=

1

2
(1 + γ5)ψN ; doublet (26.10)

pR, nR ; singlets

L0
nucleon = −

[
N̄Lγμ

∂

∂xμ
NL + p̄Rγμ

∂

∂xμ
pR + n̄Rγμ

∂

∂xμ
nR

]

This lagrangian is now also invariant under SU(2)W ; again this is true
only if one starts with massless fermions.

The standard model introduces an additional global U(1)W symmetry
weak hypercharge defined so that the fields transform according to

exp {iαŶW }φ exp {−iαŶW } = e−iαYWφ (26.11)

Now assign quantum numbers to the fields (and corresponding particles)
so that the lagrangian is invariant and the electric charge is still given by
the Gell-Mann–Nishijima relation4

Q = (T3 +
1

2
Y )W (26.12)

Conservation of electric charge will be imposed as an exact symmetry
of the theory. Assignments of the weak quantum numbers for the fields
introduced so far are shown in Table 26.1.

As with QCD in chapter 25, this is now made into a Yang–Mills local
gauge theory based on the symmetry group SU(2)W

⊗
U(1)W [Ya54,

Ab73]. The only slight new complexity is that now one has the direct
product of two symmetry groups with commuting generators; however,
an examination of the basic concept shows that this is an inessential
complication. The steps of the Yang–Mills construction are as follows:

1. Add gauge bosons, one for each of the generators (T̂ i
W , ŶW )

Ai
μ(x) ; i = 1, 2, 3

Bμ(x) (26.13)

4 This follows for the fermions by constructing the appropriate operators in second

quantization [Wa95].
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234 Part 4 Selected examples

Table 26.1. Weak symmetry quantum numbers in the standard model.

Particle/field TW T3W YW Q

(νe)L 1/2 1/2 −1 0
eL 1/2 −1/2 −1 −1
eR 0 0 −2 −1

pL 1/2 1/2 1 1
nL 1/2 −1/2 1 0
pR 0 0 2 1
nR 0 0 0 0

φ+ 1/2 1/2 1 1
φ0 1/2 −1/2 1 0

2. Use the covariant derivative in the lagrangian

∂

∂xμ
→ D

Dxμ
≡

(
∂

∂xμ
− i

2
g′YWBμ − i

2
gτ · Aμ

)
; on doublets

≡
(

∂

∂xμ
− i

2
g′YWBμ

)
; on singlets (26.14)

3. Include a kinetic energy term for the gauge bosons

Lgauge = −1

4

(
∂Bν

∂xμ
− ∂Bμ

∂xν

)2

− 1

4

(
∂Aν

∂xμ
− ∂Aμ

∂xν
+ gAμ × Aν

)2

(26.15)

Mass terms of the form m2
BBμBμ or m2

AAμ · Aμ break the local gauge
invariance; hence the gauge bosons must be massless.

The Yang–Mills lagrangian thus takes the form

Llepton = −
[
L̄γμ

(
∂

∂xμ
− i

2
(−1)g′Bμ − i

2
gτ · Aμ

)
L

+R̄γμ

(
∂

∂xμ
− i

2
(−2)g′Bμ

)
R

]

Lnucleon = −
[
N̄Lγμ

(
∂

∂xμ
− i

2
(1)g′Bμ − i

2
gτ · Aμ

)
NL

+p̄Rγμ

(
∂

∂xμ
− i

2
(2)g′Bμ

)
pR + n̄Rγμ

(
∂

∂xμ
− i

2
(0)g′Bμ

)
nR

]

Lgauge = −1

4
BμνBμν − 1

4
Fi

μνFi
μν (26.16)
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26 The standard model 235

The masses for the gauge bosons are now generated by spontaneous
symmetry breaking. One proceeds to:

1. Introduce a weak isodoublet of complex scalar mesons

φ ≡
(

φ+

φ0

)
(26.17)

2. Assign weak quantum numbers as indicated in Table 26.1;

3. Use the covariant derivative of Eq. (26.14);

4. Add a term to the lagrangian for this scalar field that is invariant
under local SU(2)W

⊗
U(1)W

Lscalar = −
(
Dφ

Dxμ

)�(
Dφ

Dxμ

)
− V (φ†φ) (26.18)

Thus5(
Dφ

Dxμ

)�(
Dφ

Dxμ

)
= (26.19)

φ†

⎛
⎝ ←

∂

∂xμ
+

i

2
g′Bμ +

i

2
gτ · Aμ

⎞
⎠(

∂

∂xμ
− i

2
g′Bμ − i

2
gτ · Aμ

)
φ

5. Assume the most general form of the scalar self-interaction potential
V for a renormalizable theory

V = μ2φ†φ + λ(φ†φ)2 (26.20)

Assume that μ2 < 0 and λ > 0 so that the potential V has the shape
shown in Fig. 26.1. The minimum of the potential no longer occurs at the
origin with φ = 0, but now at a finite value of φ. Hence the scalar field
acquires a vacuum expectation value. Only the neutral component of the
field can be allowed to develop a vacuum expectation value in order to
preserve electric charge conservation. Furthermore, the (constant) phase
of the field can always be redefined so that this vacuum expectation value
is real. Thus we write

〈φ0〉 = 〈φ0∗〉 ≡ v√
2

(26.21)

5 The metric is not complex conjugated in v�μ ≡ (v†,+iv
†
0).
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236 Part 4 Selected examples

Fig. 26.1. Form of the scalar self-interaction potential to generate mass for the
gauge bosons by spontaneous symmetry breaking. The illustration is for a single,
neutral, complex φ.

At the minimum of the vacuum expectation value of the potential one
finds

v2 = −μ2

λ
(26.22)

Without loss of generality, one can now parameterize the complex
scalar field φ in terms of four real parameters {ξ(x), η(x)} describing the
fluctuations around the vacuum expectation value in the following fashion
[Ab73]:

φ ≡ exp

{−i

2v
ξ · τ

}(
0

1√
2
(v + η)

)
(26.23)

The theory has been constructed to be locally gauge invariant. Make use
of this fact to simplify matters. Make a gauge transformation to eliminate
the first factor in this equation. Define

φ′ ≡ exp

{
+i

2v
ξ · τ

}
φ = U(ξ)φ =

1√
2

(
0

v + η

)
(26.24)

Written in terms of the new field φ′, the three scalar field variables
{ξ(x)} now no longer appear in the lagrangian; and, as we proceed to
demonstrate, the free lagrangian has instead a simple interpretation in
terms of massive vector and scalar particles. The lagrangian in this form
is said to be written in the unitary gauge where the particle content of the
theory is manifest. The procedure for generating the mass of the gauge
bosons in this fashion is known as the Higgs mechanism [Cu83, Ab73].

Substitution of the expression in Eq. (26.24) in the scalar lagrangian in
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26 The standard model 237

Eqs. (26.18)–(26.20) leads to

Lscalar = −V

[
1

2
(v + η)2

]
− 1

2
χ

†
↓

[
∂η

∂xμ
+

ig′

2
(v + η)Bμ +

ig

2
(v + η)τ · Aμ

]

×
[
∂η

∂xμ
− ig′

2
(v + η)Bμ − ig

2
(v + η)τ · Aμ

]
χ↓ (26.25)

Here χ↓ ≡
(

0
1

)
. An evaluation of the potential term, utilizing the

minimization condition in Eq. (26.22), gives

V

[
1

2
(v + η)2

]
=

μ2

2
(v + η)2 +

λ

4
(v + η)4 (26.26)

= v2

(
μ2

4

)
+ η2(−μ2) + η3(λv) + η4

(
λ

4

)

Note that there is no term linear in η when one expands about the true
minimum in V . The coefficient of the term linear in ∂η/∂xμ similarly
vanishes in Eq. (26.25).

The remaining boson interactions in Lscalar are proportional to

χ
†
↓(g

′Bμ + gτ · Aμ)(g
′Bμ + gτ · Aμ)χ↓

= χ
†
↓(g

′2B2
μ + g2A2

μ + 2gg′Bμτ · Aμ)χ↓

= (g′2B2
μ + g2A2

μ − 2gg′BμA
(3)
μ ) (26.27)

Hence the scalar lagrangian in the unitary gauge is given by

Lscalar = −1

2

⎡
⎣( ∂η

∂xμ

)2

+ (−2μ2)η2

⎤
⎦ − λ

4
(4vη3 + η4) − 1

4
μ2v2

−1

8
(v + η)2(g′2B2

μ + g2A2
μ − 2gg′BμA

(3)
μ ) (26.28)

The term in v2 in the second line now provides the sought-after mass
for the gauge bosons. The coefficient of this term is a quadratic form in
the gauge fields, which can be put on principal axes with the introduction
of the following linear combinations of fields:

W (+)
μ ≡ W�

μ ≡ 1√
2
(A(1)

μ + iA(2)
μ )

W (−)
μ ≡ Wμ ≡ 1√

2
(A(1)

μ − iA(2)
μ )
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Zμ ≡
−gA(3)

μ + g′Bμ

(g2 + g′2)1/2

Aμ ≡
g′A(3)

μ + gBμ

(g2 + g′2)1/2
(26.29)

The fields (W�
μ ,Wμ) will create particles (W+

μ ,W−
μ ), respectively, the third

field describes a neutral Z0
μ vector boson, and the fourth is the pho-

ton field. The relation between (Bμ, A
(3)
μ ) and (Zμ, Aμ) is an orthogonal

transformation. Note in particular that the weak angle is defined by

sin θW ≡ g′

(g2 + g′2)1/2
(26.30)

The scalar lagrangian can thus finally be written in the unitary gauge as

Lscalar = −1

2

⎡
⎣( ∂η

∂xμ

)2

+ (−2μ2)η2

⎤
⎦ − λ

4
(4vη3 + η4) − 1

4
μ2v2

−1

4
v2(g2 + g′2)

1

2
Z2
μ − 1

4
v2g2WμW

�
μ

−1

8
η(2v + η)[(g2 + g′2)Z2

μ + 2g2WμW
�
μ ] (26.31)

The first term in the first line is the lagrangian for a free, neutral scalar
field of mass −2μ2 — the Higgs field; this is the only remaining physical
degree of freedom from the complex doublet of scalar fields introduced
previously, in this unitary gauge. The second term describes cubic and
quartic self-couplings of the Higgs field; the third term in the first line is
simply an additive constant. The terms in the second line proportional to
the constant v2 represent the quadratic mass terms for the gauge bosons.
Note, in particular, that no mass term has been generated for the photon
field, which thus remains massless, as it must. Finally, the terms in the last
line proportional to (2vη + η2) represent cubic and quartic couplings of
the Higgs to the massive gauge bosons.

Since the transformation in Eqs. (26.29) is orthogonal, the quadratic
part of the kinetic energy of the gauge bosons remains on principal axes
and Eq. (26.15) can be rewritten as

Lgauge = −1

2
W�

μνWμν − 1

4
ZμνZμν − 1

4
FμνFμν

−g

2
Fμν · (Aμ × Aν) − g2

4
(Aμ × Aν)

2 (26.32)

Here the field tensors are defined by the linear Maxwell form Vμν ≡
∂Vν/∂xμ − ∂Vμ/∂xν and the original gauge field Aμ in the nonlinear terms

https://doi.org/10.1017/9781009290616.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.031


26 The standard model 239

must still be expressed in terms of the physical fields defined through Eqs.
(26.29). The second line in the above result represents cubic and quartic
couplings of the physical gauge fields.

The particle content of the theory is now made manifest in this unitary
gauge, since the free lagrangian has the required quadratic form in the
kinetic energy and masses. In addition to the original (still massless!)
fermions, the theory evidently now contains

1. A massive neutral weak vector meson Z0
μ with mass given by

M2
Z =

v2(g2 + g′2)

4
(26.33)

2. Massive charged weak vector mesons W (±)
μ with masses

M2
W =

v2g2

4
= M2

Z cos2 θW (26.34)

3. A massless photon

M2
γ = 0 (26.35)

The lagrangian retains the exact local U(1) gauge invariance generated
by the electric charge Q̂, corresponding to QED.

The total lagrangian for the standard model as presented so far is the
sum of the individual contributions discussed above

L = Llepton + Lnucleon + Lgauge + Lscalar (26.36)

Note that this lagrangian now contains all the electroweak interactions
[Cu83, Wa95]. The coupling of the leptons to the gauge bosons follows
immediately from Eqs. (26.16) and (26.29)6

L(±)
lepton =

g

2
√

2
[j(+)
μ Wμ + j(−)

μ W�
μ ]

L(0)
lepton = − g

2 cos θW
j(0)
μ Zμ

Lγ
lepton = epj

γ
μAμ (26.37)

Here the electric charge ep is defined by

ep ≡ gg′

(g2 + g′2)1/2
(26.38)

6 The details of this algebra are provided in [Wa95].

https://doi.org/10.1017/9781009290616.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.031


240 Part 4 Selected examples

The lepton currents are given by the following expressions

j(±)
μ = iψ̄lγμ(1 + γ5)τ±ψl

jγμ = iψ̄lγμ

[
−1

2
(1 − τ3)

]
ψl

j(0)
μ = iψ̄lγμ(1 + γ5)

1

2
τ3ψl − 2 sin2 θWjγμ (26.39)

The interaction of the point nucleons with the gauge fields takes exactly
the same form as in Eqs. (26.37), with hadronic currents given by

J(±)
μ = iψ̄γμ(1 + γ5)τ±ψ

Jγμ = iψ̄γμ

[
1

2
(1 + τ3)

]
ψ

J(0)
μ = iψ̄γμ(1 + γ5)

1

2
τ3ψ − 2 sin2 θWJγμ (26.40)

The lepton and nucleon doublets appearing in these currents are defined
by

ψl =

(
ψνe

ψe

)
ψ =

(
ψp

ψn

)
(26.41)

An analysis of the S-matrix for single, heavy weak boson exchange
shows how interactions with the gauge bosons of the form in Eqs. (26.37)
lead to an effective current–current lagrangian in the low-energy, nuclear
domain where q2 � M2

W ,M2
Z . In particular, comparison with that analysis

immediately establishes the following relationships between the gauge
couplings and masses of the standard model and the traditional weak
Fermi coupling constant [Wa95]

G√
2

=
g2

8M2
W

=
g2

8M2
Z cos2 θW

(26.42)

It is also evident that the total weak currents here receive additive
contributions from the leptons and hadrons

J(±)
λ = J(±)

λ (hadrons) + j
(±)
λ (leptons)

J(0)
λ = J(0)

λ (hadrons) + j
(0)
λ (leptons) (26.43)

The semileptonic parts of this effective low-energy lagrangian form the
basis of most of the nuclear applications. Formulation in terms of quarks,
discussed below, simply changes the underlying structure of Jλ(hadrons).
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The corresponding effective four-fermion lagrangians are [Wa95]

L(±)
eff =

iG√
2

{
[ψ̄eγλ(1 + γ5)ψνe + (e ↔ μ)]J(+)

λ (hadrons) (26.44)

+[ψ̄νeγλ(1 + γ5)ψe + (e ↔ μ)]J(−)
λ (hadrons)

}
L(ν)

eff =
iG√
2

[
ψ̄νeγλ(1 + γ5)ψνe + (e ↔ μ)

]
J(0)

λ (hadrons)

L(l)
eff = − iG√

2

[
ψ̄eγλ(1 + γ5)ψe − 4 sin2 θW ψ̄eγλψe + (e ↔ μ)

]
J(0)

λ

The theory as formulated assumes massless fermions. The fermion mass
is now put in by hand. One adds Yukawa couplings of the fermions to
the previously introduced complex scalar field that preserve the local
SU(2)W

⊗
U(1)W local gauge symmetry. One such coupling is introduced

for each fermion field. The fermions then acquire mass when the scalar
field develops its vacuum expectation value. As a consequence of this
procedure, each fermion also has a prescribed Yukawa coupling to the
fluctuation of the scalar field about its vacuum expectation value — the
real scalar Higgs. We illustrate the procedure in the case of leptons.7

Start with the following lagrangian with Yukawa couplings of the fermi-
ons to the complex scalar field and invariant under local SU(2)W

⊗
U(1)W

Lint = −GeR̄(φ†L) + h.c. (26.45)

Each term is a weak isoscalar, and each term is neutral in weak hy-
percharge (Table 26.1). Now with the previously discussed spontaneous
symmetry breaking, and in the unitary gauge φ is given by Eq. (26.24).
Substitution into Eq. (26.45) and the use of Eq. (26.9) then gives

Lint = −GeēR

{
[0,

1√
2
(v + η)]

(
νL
eL

)}
+ h.c.

= − v√
2
Geēe − η√

2
Geēe (26.46)

The first term is the sought-after fermion mass (there is one adjustable
coupling constant for each fermion mass in the theory). The second term
is the remaining Yukawa interaction with the real scalar Higgs particle,
with a prescribed coupling determined by the mass of the fermion.

The deeper formulation of the electroweak theory is in terms of quarks.
At first glance, one might expect that the first quark weak isodoublet
would just be that constructed from (u, d) quarks. The actual quark weak

7 For point nucleons see [Wa95].
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isospin doublets that couple in the electroweak interaction have a more
complicated form [Ca63, Gl70]. They are

qL =

(
uL

dL cos θC + sL sin θC

)
≡
(

uL
dcL

)
(26.47)

QL =

(
cL

−dL sin θC + sL cos θC

)
≡
(

cL
DcL

)
; weak doublets

The fact that it is a rotated combination of fields in the charge-changing
current, which includes a small strangeness-changing component, was first
noted by Cabibbo [Ca63]. The discovery that one requires a second doublet
with an additional c quark and the orthogonal rotated combination is due
to Glashow, Iliopolous, and Maiani (GIM) [Gl70] who predicted the
existence of the c quark on the basis of the arguments given below.8

As before, the right-handed quark fields form weak isosinglets

uR, dR, sR, cR ; weak singlets (26.48)

The quarks are assigned the weak quantum numbers in Table 26.2. The
assignments are again made so that the electric charge operator is

Q̂ = (T̂3 +
1

2
Ŷ )W (26.49)

Because one has two orthogonal linear combinations, the following
(GIM) identity holds

d̄cdc + D̄cDc = (d̄ cos θC + s̄ sin θC)(d cos θC + s sin θC)

+(−d̄ sin θC + s̄ cos θC)(−d sin θC + s cos θC)

= d̄d + s̄s (26.50)

No off-diagonal, strangeness-changing terms appear in this expression;
as a consequence, the neutral currents generated in the standard model
have no lowest-order strangeness-changing components — an empirical
observation that was the primary motivation for the introduction of the c

quark in [Gl70].
The GIM identity can be used to rewrite the non-interacting quark

kinetic energy as

L0
quark = −

[
q̄Lγμ

∂

∂xμ
qL + Q̄Lγμ

∂

∂xμ
QL (26.51)

+ūRγμ
∂

∂xμ
uR + d̄Rγμ

∂

∂xμ
dR + s̄Rγμ

∂

∂xμ
sR + c̄Rγμ

∂

∂xμ
cR

]

8 The extension to include still another (heavy) quark family is discussed in [Wa95].
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Table 26.2. Weak isospin and weak hypercharge assignments for the quarks.

Field /particle qL QL uR dR sR cR
TW 1/2 1/2 0 0 0 0
YW 1/3 1/3 4/3 −2/3 −2/3 4/3

The covariant derivatives acting on the quark fields are as before (see
Table 26.2)

(
∂

∂xμ
− i

2
g′YWBμ − i

2
gτ · Aμ) ; on isodoublets

(
∂

∂xμ
− i

2
g′YWBμ) ; on isosinglets (26.52)

The gauge boson and Higgs sectors of the theory are exactly the same
as discussed above. The electroweak currents representing the interaction
with the physical gauge bosons can also be identified exactly as before
[Wa95]. The charge-changing weak current is given by

J(±)
μ = iq̄γμ(1 + γ5)τ±q + iQ̄γμ(1 + γ5)τ±Q

J(+)
μ = iūγμ(1 + γ5)(d cos θC + s sin θC)

+ic̄γμ(1 + γ5)(−d sin θC + s cos θC) (26.53)

Note it is the Cabibbo-rotated combination that enters into these charge-
changing currents. The electromagnetic current of QED is just the point
Dirac current multiplied by the correct charge

Jγμ = i

[
2

3
(ūγμu + c̄γμc) − 1

3
(d̄γμd + s̄γμs)

]
(26.54)

The weak neutral current is

J(0)
μ = iq̄γμ(1 + γ5)

1

2
τ3q + iQ̄γμ(1 + γ5)

1

2
τ3Q − 2 sin2 θWJγμ

J(0)
μ =

i

2
[ūγμ(1 + γ5)u + c̄γμ(1 + γ5)c − d̄γμ(1 + γ5)d − s̄γμ(1 + γ5)s]

−2 sin2 θWJγμ (26.55)

The second equality follows with the aid of the GIM identity. Terms of
the form (̄sd) or (d̄s) have been eliminated; hence there are no strangeness-
changing weak neutral currents in this quark-based standard model, as
advertised.

The quarks can be given mass in the same fashion as were the leptons
above, although the argument is somewhat more complicated in the case
of quarks [Ab73, Cu83, Wa95].

https://doi.org/10.1017/9781009290616.031 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.031


244 Part 4 Selected examples

How does the standard model of electroweak interactions get combined
with QCD, the theory of the strong forces binding quarks into hadrons?
Consider for simplicity the nuclear domain of (u, d) quarks. Quarks now
carry an additional color index that takes three values (R,G, B), and the
quark field gets extended to

ψ =

(
u

d

)
→

(
uR uG uB
dR dG dB

)
≡ (ψR, ψG, ψB) (26.56)

These get combined into a three-component (actually multicomponent)
field ψ

ψ ≡

⎛
⎝ ψR

ψG

ψB

⎞
⎠ (26.57)

Let O be a matrix that is the identity with respect to color, but an
arbitrary matrix O with respect to flavor

O ≡

⎛
⎝ O

O

O

⎞
⎠ (26.58)

Then under the extension of the quark fields to include color, all elec-
troweak currents are defined to be correspondingly extended to

ψ̄γμOψ → ψ̄RγμOψR + ψ̄GγμOψG + ψ̄BγμOψB

≡ ψ̄γμOψ (26.59)

Such currents are evidently invariant under strong SU(3)C .
The full lagrangian of the strong and electroweak interactions thus takes

the form (see [Do93] for an extended discussion)

L = L0 + Lint
QCD + Lint

EW (26.60)

This lagrangian is locally gauge invariant under the full symmetry group

SU(3)C
⊗

SU(2)W
⊗

U(1)W (26.61)

This full theory is renormalizable. It has the following characteristic prop-
erties:

• The electroweak interactions are colorblind — they are the same,
independent of the color of the quarks;

• The gluons are absolutely neutral to the electroweak interactions —
the electroweak interactions couple to the quarks.
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Let us examine the implications of this development for nuclear physics.
To summarize the weak and electromagnetic quark currents in the stan-
dard model, we have

J(+)
μ = iūγμ(1 + γ5)[d cos θC + s sin θC]

+ic̄γμ(1 + γ5)[−d sin θC + s cos θC]

J(0)
μ =

i

2
[ūγμ(1 + γ5)u + c̄γμ(1 + γ5)c

−d̄γμ(1 + γ5)d − s̄γμ(1 + γ5)s] − 2 sin2 θWJγμ

Jγμ = i

[
2

3
(ūγμu + c̄γμc) − 1

3
(d̄γμd + s̄γμs)

]
(26.62)

Each current is actually a sum over three colors
∑

colors(· · ·) leading to an
operator which is an SU(3)C - singlet as discussed above.

To a good approximation, the hadrons that make up the nucleus are
composed of (u, d) quarks. As a starting point for nuclear physics, consider
that subspace of the full Hilbert space consisting of any number of (u, d)
quarks and their antiquarks (ū, d̄). We refer to this as the nuclear domain.
The quark field in this sector takes the form

ψ
.
=

(
u

d

)
; nuclear domain (26.63)

Assume that the (u, d) quarks have the same mass in the lagrangian;
they are in fact both nearly massless. In this case, the lagrangian of
the strong interactions, with the full complexity of QCD, has an exact
symmetry — the SU(2) of strong isospin. This is the familiar isotopic spin
symmetry of nuclear physics. It is important to note that one still has the
full complexity of strong-coupling QCD with colored quarks and gluons
in this truncated flavor sector of the nuclear domain; nevertheless, one
can draw conclusions that are exact to all orders in the strong interactions
using this strong isospin symmetry.

The quark field ψ in Eq. (26.63) forms an isodoublet under this strong
isospin. The quark currents in Eqs. (26.62) can then be written in terms
of this isospinor in the nuclear domain as follows

Jγμ = iψ̄γμ

(
1

6
+

1

2
τ3

)
ψ

J(±)
μ = iψ̄γμ(1 + γ5)τ±ψ

J(0)
μ = iψ̄γμ(1 + γ5)

1

2
τ3ψ − 2 sin2 θWJγμ (26.64)

The properties of these currents under general symmetry properties of the
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theory now follow by inspection [Wa95]

Jμ = Jμ + Jμ5 ; V − A

J(±)
μ = JV1

μ ± iJV2
μ ; isovector

Jγμ = JSμ + JV3
μ ; EM current

J(±)
μ = JV1

μ ± iJV2
μ ; CVC

J(0)
μ = JV3

μ − 2 sin2 θWJγμ ; standard model (26.65)

Here the Cabibbo angle has been absorbed into the definition of the
hadronic weak charge-changing Fermi coupling constant

G(±) ≡ G cos θC cos θC = 0.974 (26.66)

Note that the numerical value of cos θC is, in fact, very close to 1 [Cu83].
The first of Eqs. (26.65) indicates that the weak current is the sum of a

Lorentz vector and axial vector, the second that the charge-changing weak
current is an isovector, and the third that the electromagnetic current is
the sum of an isoscalar and third component of an isovector. The fourth
equation is the statement of CVC. The conserved vector current (CVC)
relation states that the Lorentz vector part of the weak charge-changing
current is simply obtained from the other spherical isospin components of
the same isovector operator that appears in the electromagnetic current.
As a consequence, one can relate matrix elements of the Lorentz vector
part of the charge-changing weak currents to those of the isovector part
of the electromagnetic current by use of the Wigner–Eckart theorem
applied to isospin. The resulting relations are then independent of the
details of hadronic structure; they depend only on the existence of the
isospin symmetry of the strong interactions. CVC is a powerful, deep,
and far-reaching result, for it established the first direct relation between
the electromagnetic and weak interactions which a priori have nothing to
do with each other! All known applications of CVC are consistent with
experiment. The last of Eqs. (26.65) exhibits the structure of the weak
neutral current of the standard model in the nuclear domain.

If the discussion is extended to that sector of the full theory with no
net strangeness or charm, and the electroweak interactions are treated in
lowest order, then the first four of Eqs. (26.65) still hold; however, the weak
neutral current is modified by the addition of an isoscalar contribution

δJ(0)
μ =

i

2
[c̄γμ(1 + γ5)c − s̄γμ(1 + γ5)s] (26.67)

In this sector of the theory, (s, c) quarks and their antiparticles (̄s, c̄) enter
through loop processes.
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