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On a New Method of Graduation.

By Professor E. T. WHITTAKER, F.R.S

(Read Hth Nov. 1919. Received, in amended form, 8th Aug. 192S).

§ 1. Introductory.

Suppose that as a result of observation or experience of some
kind we have obtained a set of values of a variable u corresponding
to equidistant values of its argument; let these be denoted by
«!, M2, ... un If they have been derived from observations of
some natural phenomenon, they will be affected by errors of
observation ; if they are statistical data derived from the examina-
tion o£ a comparatively small field, they will be affected by
irregularities arising from the accidental peculiarities of the field ;
that is to say, if we examine another field and derive a set of
values of u from it, the sets of values of u derived from the two
fields will not in general agree with each other In any case, if
we form a table of the differences Auj = M2 - u^, AM2 = us - M2 , ... ,
A21*! = AM2 - Awj, etc., it will generally be found that these
differences are so irregular that the difference-table cannot be used
for the purposes to which a difference-table is usually put, viz.,
finding interpolated values of u, or differential coefficients of u
with respect to its argument, or definite integrals involving u;
before we can use the difference-tables we must perform a process
of " smoothing," that is to say, we must find another sequence
M/, U2', U3', ..., u,t', whose terms differ as little as possible from
the terms of the sequence uY, u2, ... un, but which has regular
differences. This smoothing process, leading to the formation of
ttj', w2', ••• Mn! is called the graduation or adjustment of the
observations.

Workers in experimental science generally deal with the
problem by plotting the numbers w,, ?i2, ... un, against the corre-
sponding value of the argument, and drawing a freehand curve as
nearly as possible through them. This somewhat arbitrary method
is insufficient for the needs of Actuarial Science, and a large
number of "graduation formulae1' are to be found in the journals
of the Actuarial Societies.
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The standpoint of the present paper is, that the problem
belongs essentially to the mathematical theory of Probability ; we
have the given observations, and they would constitute the "most
probable " values of u for the corresponding values of the argument,
were it not that we have a priori grounds for believing that the
true values of u form a smooth series, the irregularities being due to
accidental causes which it is desirable to eliminate. The problem
is to combine all the materials of judgment—the observed values
and the a priori considerations—in order to obtain the resulting
" most probable " values of u.

§ 2. The basis of the method in the theory of' Probability.
Let us then suppose tbat we are concerned with a number ux

which depends on an argument x, and suppose that we have n data
Mi, u2, ... un, which are affected with uncertainties or irregu-
larities due, e.g., to accidental errors of observation; so that when
ux is plotted as a function of x, the n points so obtained do not lie on
a smooth curve, although there is a strong antecedent probability
that if the observations had been more accurate the curve would
have been smooth We may make the somewhat vague word
"smooth'" more precise by interpreting it to mean that the third
differences A3 ux are to be very small.

Now consider the following hypothesis; that the true value
which should have been obtained by the observation for ux lies
between M/ and »,' + o- where o- is a small constant number ; that
the true value which should have been obtained by the observation
for !'.„ lies between u2' and w2' + o-, etc., and finally, that the true
value which should have been obtained by the observation for nn

lies between un' and un' + cr. This hypothesis we shall call
"hypothesis H."

Before the observations have been made we have nothing to
guide us as to the probability of this hypothesis If except the
degree of smoothness of the sequence w/, M2', . .., wn', which may
be measured by the smallness of the sum of the squares of the
third differences*
S=(ui - 3u3' + 3w2' - Uif + (us' - 3M/ + 3us' - «a')

2 + ...

* The theory may be extended to the case when the observations are not
taken at equidistant values of the argument, by taking instead of S the sum
of the squares of the third divided differences of the graduated values.
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We may therefore, by analogy with the normal law of frequency,
suppose that the <i priori probability of hypothesis H is c e ~ crn

where c and A. denote constants.
Next, let us consider the a priori probability that the measures

obtained by the observations will be tiu w2, ... wn, on the assumption
that hypothesis H is true. Since the true value of the first
observed quantity is, on this hypothesis, w/, the probability that a
value between ux and uL + o- will actually be observed will
(postulating the normal law of error) be

h -*?(«,-«,/)•

where A, is a constant which measures the precision with which
this observation can be made.

Similarly, tbe probability that a value between u2 and u2 + o-
will actually be obtained for the second observed measure is

where h2 is the measure of precision of this observation.
Thus, on the assumption that hypothesis H is true, the a priori

probability that the observed measure of the first observed quantity
will be between M, and u, +<r, the observed measure of the second
observed quantity will be between w2 and u2 + (r, etc., is

where F denotes the sum

F= h\ (u, - u,'f + V (», - «,')' + • • • + K (un - un'f.

The sums S and F enable us to express numerically the
smoothness of the graduated values, and the fidelity of the graduated
to the ungraduated values, respectively.

We must now make use of the fundamental theorem in the
theory of Inductive Probability, which is as follows:—Suppose
that a certain observed phenomenon may be accounted for by any
one of a certain number of hypotheses, of which one, and not more
than one, must be true: Suppose, moreover, that the probability of
the 8th hypothesis, as based on information in our possession before
the phenomenon is observed, is pa while the probability of the
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observed phenomenon on the assumption of the truth of the
«'h hypothesis is P,. Then when the observation of the phenomenon
is taken into consideration, the probability of the «"' hypothesis is

where the symbol 2 denotes summation over all the hypotheses.
It follows from this that whereas before the phenomenon was

observed, the most probable hypothesis was that for which p, was
greatest, the most probable hypothesis after the phenomenon has
been observed is that for which the product P,p, is greatest.
Applying this theorem to the case under consideration, we see that
the most probable hypothesis is that for which

C ftj 7*2 . . . hn _ \2 g __ ]P

is a maximum, that is fro say, the most probable set «,', w2', ... «„' of
values of the quantities is that which makes

a minimum.

§ 3. The analytical formulation.

Writing down the ordinary conditions for a minimum, we
obtain the equations

u3 =
+ 3A.2AJ«S' -

We shall now make the simplifying assumption that the
measure of precision is the same for all the data, so

* If this is not the case, we graduate some funotion of v, such as log u,
instead of u, choosing this function so that its measure of precision has
nearly the same value for all values of the argument.
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Tf we write li\ = Ki = ...- eAr the equations may now be written

ci^ = tu.,' , 2

tu, - tu.: - 3 A V + 3A3Mo' - A3M..'

eit4 = tu,' + A3«,' - 3AW + 3A:!w,' - A"w4'

tu,, = tu,,' + A3w,,_3' .

(1)

Now all the equations, except the three first and the three
last, are of the form

Moreover, if we introduce a quantity «„' such that A3 u0' = 0, the
third equation becomes

tu3 = tu3' - A6«0',

which is of the same form ; and similarly the first two and last three
equations can be brought to the same form by introducing new
quantities u'_^, M'_2 , u'n+1, u'H+i , it'n+3, such that

AV_1 = 0, AV_2 = 0, As«'B_2 = 0, AVn_, = 0, A3«n' = 0.

Thus the graduated values ux' satisfy the linear difference-equation

tu;-A«u'x_3 = tut, (2)

being in fact the particular solution of this equation which satisfies
the six terminal conditions

= 0, AV_, = 0, A3M'_2 = 0, AVn_2 = 0, AV,,_, = 0, A V = O...(3)

whence we have at once

AV_2 = 0, AV_, = 0, AV_2 = 0, AVn_2 = 0, A4M',,_, = 0, AV,,_C = 0 (4)

§ 4. The Theorems of Conservation.

From (2) we have by summation

t (ul'+ui;+... + un') -1 (M, + M2 + ... + M«) = AV_g + AV_, + ... + AV,,_
= AV«_S-AV_2

= 0 by (4).

Therefore «,' + %'+ ... +uH'**u, +1^+... +u , (5)
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Moreover, by (2)
e («,' + 2M2' + 3us' + ... + nun') - c(u1 + 2w2 + ... + nu,,)

= AV_2 + 2AV_, + ...
= ni!M',_2 - A4tt'n_2 + AV_2

= 0 by (4).
Therefore

M/ + 2w2' + 3M3' + ... + «wn' = ?̂ i + 2w2 + 3M3 + ... +nun (6)

Next, by (2)

e « + 22«2' + 3 V + ... + n2un') - « (« , + 22w2+ 32w3+ ... +ra2un)

= A6 «'_2 + 22A6 u'_i + .. • + m2Ae w'n_3

= n2A5 w'n_2 - (2» - 1 )A4 «'„_„ + 2AVn_., - A3 w'_2 - A3 u_x

= 0 by (3) and (4).

Therefore

w/ + 22W2' + 32K3' + ... +n2M2' = M1 + 22M2 + 32M3,+ ... +W2Mn (7)

Equations (5), (6), (7) show that the moments of orders 0, 1, 2
are the same for the graduated data as for the original data. This
may be called the Theorem of Conservation of Moments. We may
express it by saying that the graph which represents the ungraduated
data and the graph which represents the graduated data have the same
area, the same x-coordinate of the centre of gravity, and the same
moment of inertia about any line parallel to the axis of u.

Thus by this method we secure that the total of the u's and
their first and second moments shall be the same in the graduated
table as in the actual statistics on which it is based.

§5. The numerical process of graduation.
The parameter e is at our disposal, and measures the importance

which we attach to keeping close to the original data, as weighed
against our desire to attain perfect smoothness in the graduated
curve. If e were taken absolutely zero we should obtain a perfectly
smooth graduated curve which would have the same moments of
orders 0, 1 and 2 as the ungraduated curve, but in other respects
might not fit the observed data closely. In practice therefore we
do not take t to be absolutely zero, but it may usually be taken to
be a small number, so that it is convenient to expand the solution
in ascending powers of « and retain only the part which is inde-
pendent of « together with the part which involves the first power
of e : the parts involving higher powers of « may be neglected.
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Suppose then that the terms in the graduated value uj are
arranged according to the powers of e which they involve, thus

Substituting in (2) and equating the coefficients of <r, we have

' ^ . - ^ U ^ ' w . (9)
which is a linear difference equation to determine u'x l, if u'x 0 can
first be found.

Now u'x 0 can be found without difficulty in the following way :
From equation (1) it follows at once that, when e is zero, the third
differences of the graduated values are all zero : so u\ 0 must be a
polynomial of degree two in x, say,

u'x „ = a + bx + ex2 (10)

where a, b, c, are independent of x. Substituting in equations
(5), (6), (7), they become

L)(2w + 1) c = Mo

where Mm Mx, M2 denote the moments

(u, + w2+ ... +un), ( « ! + 2 M 2 + ... +nun), and (M! + 2 % 2 + ... +rrun)

of the ungraduated data. The three equations (11) determine
a, b, c; the solution may conveniently be performed as follows :•—

Compute successively the numbers p, q, r, s, t, where

_M_0 2M, QM., 6 ( g - p )
P n ' 9 n ( n + l ) ! *" *

n-1

Then c is given by
\5{i-(n+\)s}

b is then given by

6 = s - ( n + l ) c

and a is then given by

a = q - \(2n + 1) b - \n (n + 1) c

(12)
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The first of equations (11) may be used as a check.

Substituting the numerical values of a b c thus found in
equation (10) we obtain the formula for «',,„: and by substituting
a;=l, 2, 3, ... in it, we obtain the numerical values of

Thus, performing the work in algebraical symbols for the oase n = 7, we
find in this way

Substituting these values of a, b, c, in (10), we obtain

iut - 6u, - 3u0 + 5u,)

and, similarly, for «'3), u'^, . . . A check is afforded by verifying that the
last equation may be written

since the values of u10' - u,, v.M' -IL,, ... thus found must always be expressible
as linear combinations of the third differences of the ungraduated data.

Having thus found u'x_u in terms of the ungraduated data, by
substitution in equation (9) we obtain AV.,^ j in terms of the
ungraduated data. Denoting A3 u'z , by vx, we therefore have AV,
known ; and from (3) and (4) we have

A3t>_., = 0, Av_, = 0, vQ = 0,

so by mere summation of a difference-table we can obtain all
the v's.

Then, continuing the literal working in the case n - 7 , we have

where yx denotes A3ux ; similarly

42 Asu_i = - 15y! - 15y2 - 9y3 - Syt

42 A\= - 3 ^ - 18y2 - 15y3 - 6y4,

and so on; writing these down in the A3 column of a difference-table, and
forming the A3, A1, and A° columns by summation, we obtain the complete
difference-table as follows:—
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Having now obtained the numbers vx, v.,, v3, v,,_3 we have to
find the numbers « ' u , "'2,!, ... u'n , from them. For this we use
the conditions that (1) u'xl satisfies the difference-equation

A » < , = ^ (13)

and (2) that it is the particular solution of this difference-equation
for which the moments of orders 0, 1 and 2 vanish. So in order to
compute u'xl, we write down i-,, v.:, ... vu_s as the third column of
a difference-table, and form the second, first and zero columns by
summation, taking any arbitrary numbers whatever for the entries
at th'e top of the columns. In this way we obtain in the zero
column a set of numbers «;,, wa, ... wn which satisfy the difference-
equation (13), but which are not the particular solution we require.
However, any two solutions of (13) differ only by a solution of the
difference-equation A3y = 0, i.e. they differ only by a quadratic
function of x. So we can write

u'x lt = wx- A - Bx - Cx- (14)

and we have now only to determine A, B and C. For this we use
the second of the above conditions; denoting the sums

(«), + w% + ... + »„), {wl + 2w2 + ... + nwn), (w, + 2"ws + ... + n"wn)
by iVr

0) Jfu N2 respect ively, we have by summing equat ion (14)

n A + i n (n + 1) B + \n (n + 1) (2n+ 1) C = JV0

} n (n + 1) (2M + 1) A + £•«,- (n + \)-B

These equations are of the same type as equations (11), and are
solved in the same way ; that is we compute successively

r = — , U = • • - , JK = —
n n(n+l)' n(w+l) ' n-l

n - l
then C is given by

G = -
2)(n-2) '

B is given by B = S-{n+l)C
and A is given by

The first of equations (15) may be used as a check.
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Having thus found A, B, C we substitute in equation (14), and
so calculate u'x , for x = 1, 2, 3, ... n. Lastly, from the equation

< = «x. 0

we compute the graduated values u'x for x=l, 2, ..., n. The
graduation is thus completed.

The quantity «, which is at our disposal, is not selected until
the end of the process, when we try two or three different values
and see which gives the most satisfactory result. By increasing
£ we bring the graduated values into close fidelity to the
ungraduated values, while by diminishing t we make the sequence
of graduated values smoother. There is not much labour involved
in these trials as they merely amount to multiplying the column of
known values of u'x j by the final value of e, and adding to the
column of known values of u'x 0 .

The advantages of this method of graduation seem to be
(1) Its elasticity, due to the freedom of choice of t. A satis-

factory method of graduation ought to possess such
elasticity, because the degree to which we are justified in
sacrificing fidelity in order to obtain smoothness varies
greatly from one problem to another.

(2) Its more logical basis in the mathematical theory of
Probability.

(3) The total of the u's and their first and second moments
are the same in the graduated table as in the actual
statistics on which it is based. (These conditions are
not satisfied in methods such as Sheppard's or Spencer's,
which depend on formulae for graduating individual
values.)

(4) It makes use of the whole material available to obtain each
graduated value, whereas in e.g. Spencer's formula each
value is graduated by using only it and its ten nearest
neighbours on either side, and therefore the material
used in order to graduate one value is slightly different
from the material used in order to graduate the next
member in the sequence.

(5) There is no difficulty near the beginning and end of the
sequence, whereas Spencer's formula cannot be applied
when we are within ten places of either terminal.

(6) These advantages are not counterbalanced by greater labour
in the computations.
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§ 12. An example.
A short section of the Government Female Annuitants (1883)

Ultimate Table is here graduated by (i) Spencer's formula (Journal
of the Institute of Actuaries 88 (1904), p 334,47 (1907), p 361),
by (ii) Todhunter's method of interlaced parabolas (ibid 53 (1922)
p. 92), (iii) by the method of the present paper, taking e = 0 (iv),
and taking « = 0-01, and (v) taking * = 0-08.

— I Ungraduated
Graduate 1

by
Spencer's
formulae

q A8

50 1019

51 1550

! 1278

: 1332

1 551 , -9

52 ! 1611 ' 1494

• -204 ~ 8

53
i

54

1753 1605

-120 — o

1772 1707

Graduated i Graduated
by

Todhunter's '
by

i I the methoddhunters ' ^
method ; of th« paper

! wi the=0

q A8 ! q A»

1298

1391

1497

1244

! 1379
- 1 3

- 8
1504

+ 941 2

1603 1620
6 |

1701 | 1727
- 4 !

Graduated
\
hy

the method
of this paper
with e=0-01

} A3

1219

1386

4

1525

3

1640

8

1734

9

Graduated

by
the method
of this paper
with e=0-08

« A8

1048

1436

16

1673

42

1775

58

1784
60 i

55

56

57
—

58

59

Sams

1548

-

2022

1923

1842

2329

17369

1271

591

550

1795

1871

1940

2012

2095

17179

5

10

8

1797

1887

1972

2062

2160

17368

1

10

3

1824

1911

1989

2057

2115

17370

1

-1

0

1815

1892

1968

2050

2139

17368

3

7

1

1758

1757

1828

2005

2305

17369

47

34

17
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The sum of the absolute values of the differences between the
graduated and the corresponding ungraduated members is 1576
for Spencer's method, 1595 for Todhuntei's, 1563 for the present
method with e = 0, 1438 for the present method with e = 001, and 996
for the present method with < = 0 08. An examination of the figures
shows that so far as smoothness alono is concerned the best result is
obtained from the present method with e = 0 (as of course is inevit-
able) and that the graduated values thus obtained show a slightly
greater fidelity to the ungraduated values than is attained by
Spencer's or Todhunter's formula. If, however, we wish to attach
more importance to fidelity, the new method \* ith e = 0 08 yields
graduated values which are very much closer to the ungraduated
values, and whose third differences are fairly regular and not
very large.
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