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Abstract

We study models of economic equilibrium with fixed budgets and assuming superlinear
connections between consumption and production. Extremal problems and the existence
of equilibria are discussed for such models along with some related differential properties.
Examples to illustrate the broad nature of the model are discussed.

1. Introduction

The mathematical theory of economic equilibria forms an important part of mathe-
matical economics. Fixed point theorems together with methods of convex analysis
are used in the study of existence of equilibria in various economic situations (see, for
example, [1,2,6-8]). There is a special class of models of economic equilibria whose
analysis can be undertaken only by the application of simple convex optimization
problems without fixed point theory (see, for example, [7]). This class is character-
ized by two assumptions: first, that the budgets of economic agents are fixed (that is,
they do not depend on activity); and second, that the utility functions of agents are
positively homogeneous.

Models of economic equilibrium with fixed budgets and positively homogeneous
utility play an important role in the study of special models of economic dynamics (see
[7]). One of the main problems in the theory of von Neumann-type models of economic
dynamics is the construction of efficient trajectories. If a model describes the joint
activity of various agents then the most natural mechanisms for designing efficient
trajectories are equilibrium mechanisms. It has transpired that the usual Walras-type
equilibrium models are not suitable for this purpose (see [7]). Construction of an
efficient trajectory is possible only if the rates of growth of welfare are equal for all
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[2] Equilibrium with fixed budgets and superlinear connections 463

agents so the agents have to subsequently redistribute their income. After redistribution
each of the agents receives a new fund which can be considered as a fixed budget.
Thus an equilibrium model with fixed budgets appears to be a natural tool for the
construction of trajectories. Since von Neumann type-dynamics are described by
positively homogeneous mappings it follows that the associated utility functions of
these equilibrium models are also positively homogeneous.

Equilibrium mechanisms with fixed budgets used for the design of trajectories
have been studied in detail in [7] only for the classical situation where it is assumed
that there are no restrictions on free exchange. Equilibrium with restrictions on free
exchange is studied in [5] and [7] in the framework of models with superlinear con-
nections. The construction of efficient trajectories, by using equilibrium mechanisms
with restrictions on free exchange, is much more complicated than without any re-
strictions. We have to investigate at least two problems before we can begin to study
the action of equilibrium mechanisms. The first is to investigate the properties of
equilibrium models with fixed budgets and positively homogeneous utilities under
restrictions on free exchange and the second is to find mechanisms for redistribution
of income between agents.

We shall study in detail the first problem in this paper. We suppose that restrictions
on free exchange are expressed in the form of superlinear connections so we shall
study models with fixed budgets and superlinear connections. We suppose also that
an equilibrium for these models is defined in an abstract form by so-called matched
four-tuples of vectors (see [5,7]). This abstract definition allows us to formulate
meaningful definitions of equilibria for specific models. We verify this formulation
for special models in this paper. In particular we give a definition of equilibrium for
a model with public goods assuming that the superlinear connections are expressed
through a matrix equality. (In fact matrix equalities are only used for the description of
restriction in several interesting cases: exchange under fixed prices, direct distribution
and mixed mechanisms (a mixture of free exchange and direct distribution)). Some
results in this direction have been obtained in [11] but only for a model with fixed
prices.

Without any restriction on free exchange, the main property of models with fixed
budgets and positively homogeneous utilities is that (see [7,9,12]) it is possible to
construct equilibria by solving a very simple convex extremal problem. We show
that this assertion is also valid for models with some restriction on exchange. It is
impossible to generalize the proofs given in [7,9,12] for such models, so we develop
a new approach to study this problem. This result allows us in particular to prove the
existence of equilibria. We also study differential properties of equilibria and show
that there is a system of m first order differential equations with respect to m variables
such that the equilibrium utilities of the agents satisfy this system. It is very interesting
that this system does not depend on the specific superlinear connection which is used
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in the definition of equilibria.
This paper has the following structure: Section 2 contains preliminary information

on superlinear mappings. Section 3 is devoted to the definition of equilibria for a
model with fixed budgets in the presence of restrictions on free exchange in the form
of superlinear connections. Models with public goods are considered in Section 4.
Extremal properties and the existence of equilibria are discussed in Section 5. Dif-
ferential properties of equilibria are described in Section 6 and we conclude with a
discussion of some open problems in the final section.

2. Preliminaries on superlinear mappings

In this section we provide some preliminary definitions and results on superlinear
mappings which we need in subsequent sections.

Let / be a finite set. We will use the following notation.

• Rl is the set of all functions defined on / (that is, / - vectors).
• x' is the i-th coordinate of a vector x e R7 .
• x > y if x'> y'Vi el;x>yifx>y and x ^ y; x » v if x' > v'Vi € / .
• [x, y] is the inner product of vectors x and y. (We suppose that R7 is Euclidean

space with the usual inner product.)
• R'+ = [x € D& : x > 0}.

We shall use the following definitions (see [7] for a detailed discussion).

DEFINITION 2.1. A multivalued mapping A : \&'+ -* W+ with A(x) ^ 0 for all
x 6 K+ is called superlinear if gr A = {(y, x) e \&'+ x R'+ : x € A(y)} is a convex
cone.

Using the terminology of convex analysis we can say that a superlinear mapping
A is a convex process such that dom A = R'+ and Im A c ®L'+. We will consider only
closed superlinear mappings A (that is, mappings where gr A is a closed set) with the
property A (0) = {0}.

DEFINITION 2.2. A superlinear mapping A is called polyhedral if its graph is a
polyhedral set.

In the following work we will use the superlinear polyhedral mapping Q of free
exchange which describes exchange between participants of an economic system
provided that there are no restrictions on exchange. We assume that m participants
operate in the system and let J = [I,... , m}.
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[4] Equilibrium with fixed budgets and superlinear connections 465

DEFINITION 2.3. The free exchange mapping 9) defined on the cone (R+)y = R+"
is given by the formula

=\x = (xj)jeJ e (R'+)J :
I jeJ jeJ

DEFINITION 2.4. Let A : IR+ -*• R+ be a superlinear mapping. Then

(1) The mapping A* : R+ -*• R+ is a conjugate with respect to A if for all / € R+

we have

A*(f) = {g € K+ : (Vy € K+), (V* € A(y)) | / , *] < [g,y]\;

(2) A four-tuple (y,x,g,f) is called a matched four-tuple with respect to the
mapping A if

xeA(y), g€A*(f), [g,y] = [f,x].

We will require the following assertion (see [7]).

THEOREM 2.1. If A :K'+->K'+ is a superlinear mapping then

max {[/,*] :x € A(y)} =inf {[g,y] : g € A*(/)}.

/^ i« addition, A is a polyhedral mapping then the infimum in this formula is attained.

3. Equilibrium with fixed budgets and superlinear connections

In this section we describe an equilibrium model with fixed budgets and superlinear
connections. It is assumed that m agents are active in the economy. We will denote
the set {1 , . . . ,m}byJ.
States of agents and states of the economy: Each agent j e J possesses a consumption
set Xj and a production set Yj. It is assumed that Xj = R'+ and Yj c K+ is a compact
convex set (here / is the finite set of products). A state of the agent j is represented
by a vector Zj = (*,, y,) € K+ x Yj; a state of the system is a collection (z, )y eJ where
Zj is a state of the agent j for each _/ € J.
Prices: Each agent is assumed to have their own prices, with purchase and sale prices
not necessarily being equal. Let pj = (/,-, gj) be prices used by the j -th agent, where
fj are prices for purchased goods and gj are prices for sold goods. It is assumed that
fj,gj 6 K+. The vector p = (pj)j€j will be referred to as the price vector in the
system.
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Preferences: The preferences of the j -th agent are described by a utility function Uj
defined on R'+. We shall assume that «; is a nonnegative upper semicontinuous and
superlinear (that is concave and positively homogeneous of degree one) function with
the property that there is an interior point xj of the cone R'+ such that w, (xj) > 0. It
follows immediately from superlinearity of Uj that w, (x) > 0 on the interior of this
cone.
Budgets: Each agent j e J has a certain budget kj > 0 that can be spent in order to
buy products.

The model S with fixed budgets is defined as

£={l,J,(Yj)jzJAuj)jeJ,&j)jej}. CD

In order to define an equilibrium for the model g we need a closed superlinear
mapping 98 : (W+)J -> (R^)y with 98(0) = {0}. This mapping describes all possible
exchanges among agents. More precisely if v = (yj)jej with yj e Yj is a vector of
manufactured products then a vector* = (xj)j€j is admissible for consumption if and
only if x € 98 (y).

Let z = ((Xj, yj))j€j be a state of the model and p = (ifj, gj)jeJ) be a price
vector. We shall use the notation

X = (Xj)jej, y = (yj)jeJ, f = (fj)jeJ, 8 = (gj)jeJ-

DEFINITION 3.1. The equilibrium of the model S with respect to a closed super-
linear mapping 98 : (R'+)J -*• (R'+)J with 98(0) = {0} is a pair (p,z), where
p = ((fj, gj))jej is a price vector and z = ((xj, yj));ej is a state of the model, such
that

(1) f j i=-0 and Xj is a solution of the problem

M; Ot,) —> max subject to xj > 0, [fj,Xj]<kj,

for ally € J;
(2) yj is a solution of the problem

{gj .>!>]-*• m a x subject to yj 6 Yj,

for all j 6 J;
(3) the four-tuple (y, x, g, f) is matched with respect to the mapping 98.

We shall give three examples illustrating this definition.

EXAMPLE 1. Let Q be a mapping of free exchange (see Definition 2.3). It is known
(see [7], Lemma 8.17) that a four-tuple (y, x, g, f) is matched with respect to mapping
S> if and only if there exists a vector f such that

gj>f>fj for ally (2)
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and

[gj-f,yj] = [f-fj>xj]=o. (3)

Thus each agent would like to sell his or her products on at prices higher than /
and to purchase at prices cheaper than / . Nevertheless actual trades are made only
at these prices. The exchange mapping S> describes the classical exchange between
agents and our definition leads to a version of classical equilibrium in this case. We
shall give an alternative proof that Definition 3.1 leads to (2) and (3) in this paper (see
Remark 4.2).

EXAMPLE 2. Consider the model Sx defined by the data:

/ = / = {l,2}, Yl = Y2 = {y}, with y = (1, 1); A.,=X2 = 1,

[ll,xl], u2{x2) = [£2,x2],

where tj = {I), I)) e IK*., I) +1) = 1,1) > 0,1) > 0, j = 1, 2 . Assume also that

yi) = {(JCI,JC2) : 0 < x, < yu 0 < x2 < y2}.

It is easy to check that 3§*(f\,f2) = {(gu g2) : gj > fjj = 1, 2}, so the four-tuple
(Cyi i y2)(xi»x2), (gi, g2), (ft, f2)) is matched with respect to 38 if and only if

x\<y\, *i<yi, f\<gu fi<gi,

\f\,*\\ + [f2,x2] = [gi,y\] + [g2,y2].
Assume the pair

( ) { 2 ) , ( f i , f 2 ) ) (5)

is an equilibrium of the model S\ with respect to the mapping 38. Clearly yx = y2 = y.
By the definition of equilibrium the vector *, (/ = 1, 2) is a solution of the problem

[£,-, JC]-»• max subject to [/,, x] < 1, x > 0 (6)

and (4) holds.

We shall consider various possible cases for vectors fi, f2 to appear as equilibrium
prices.

(1) / i = £], f2 = t2. Clearly an arbitrary nonnegative vector x' with the property
[tj, x'] = 1 is a solution of the problem (6). It easily follows from (4) that there exists
a unique equilibrium in this case with JC, = 3? = (1, 1) and gj = fj = £, for j = 1,2.
(2) The vectors f} are proportional to vectors tj, that is there are numbers /i, > 0

such that fj = (Xj t} (j = 1, 2). It is easy to check that an equilibrium does not exist
if at least one of the numbers /x, is not equal to one.
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(3) The vector / , is not proportional to 11 and both coordinates / , ' , /,2 of this vector
are positive; f2 is an arbitrary positive vector. A solution X\ of the problem (6) with
j = 1 is either the vector (I//,1,0) or the vector (0, I//,2). Assume there exists an
equilibrium (5). Since yt > X\ and g\ > / i and one of the coordinates of the vector
xx is equal to zero, it follows that [guy\\ > [fi,xi]. Also [g2,y2] > [f2,x2], so
the equality in (4) does not hold. Thus the equilibrium does not exist in this case.
Symmetrically the equilibrium does not exist if f2 is a vector with positive coordinates,
not proportional to £2.
(4) One of the coordinates of the vector fj with j = 1 or j = 2 is equal to zero.

Clearly the problem (6) has no solution for the given j so the equilibrium does not
exist in this case either.

Thus there exists a unique equilibrium for the the model Sx with respect to the mapping
SS and the equilibrium prices are determined by utility functions.

EXAMPLE 3. Let/ i , f2 be positive two-dimensional vectors. We shall denote by 5,
the simplex {x > 0 : [fj, x] < 1}. We now consider the model S2 with /, / , (X;)jey
and (uj)jej as in Example 2 and 1} = 5, for; = 1,2. We shall study an equilibrium
with respect to the same mapping 3§ as in Example 2 assuming that vectors / ; are
not proportional to £j,j = 1, 2. Clearly one of the coordinates of a solution Xj of the
problem (6) is equal to zero. Assume that Xj = (I//-1, 0). Let yj == Xj and gj = fj.
Then

m a x [ g j , y ' j ] = m a x {[gj , y ] ] : [gj, y'.] < 1 } .

So the function y' -» [gj, y'] achieves its maximum over the set Yj, in particular at
the point yj. Clearly the pair (5) with the given yj, Xj, fj and gj forms an equilibrium
of the model <f2 with respect to the mapping SS. Thus the equilibrium prices are
determined in this example by production sets Yj.

4. Equilibrium in the presence of public goods

In this section we shall consider Definition 3.1 in order to define an equilibrium
for models £ with fixed budgets and superlinear connections in the presence of public
goods. Suppose that there are both individual and public goods in the economy under
consideration. Let us denote the set of individual goods by /] and the set of public
goods by I2 so I = Ix U I2. The main property of individual and public goods is that
without any restriction on free exchange it is possible to exchange a vector y = (yj)jj
for an arbitrary vector x = (JC, ) j e J such that
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[8] Equilibrium with fixed budgets and superlinear connections 469

We assume that there are some restrictions on free exchange expressed in the form

Sx = Ty, (8)

where 5, T : (R'+)J -> RL are linear nonnegative operators.
For simplicity we will denote the space of individual goods K'1 by K"1 and the space

of public goods R/2 by Rpu. For a vector* € K' we have the natural decomposition
x = x'n + xpu where xin = (x')ieh is the 'individual' part of the vector x and
xpu = (x')ie/2 is the 'public' part of this vector.

Thus we can represent a superlinear mapping $ which describes exchange with
restrictions in the presence of public goods in the form

wy) = \x = (Xj)jeJ e w+y: J2x'j" = £?;".*;" ^ ! > ' " • S x = Ty\ • <9>
i j j j i

where y = (jy);€y € (IR^)y. Assume the set &(y) is nonempty for all y € (K^)y.
Clearly if x e &(y) then there are the usual balance equations for individual goods
and each participant can consume all the available quantities of public goods; at the
same time the exchange activity of agents is restricted by the equality Sx = Ty.

In order to apply Definition 3.1 we need a description of matched four-tuples with
respect to the the mapping &.

First we will describe the conjugate mapping Sf*.

PROPOSITION 4.1. Let f = (fj)j€j e m'+)J. Then g = (gj)jeJ e Sf* ( /) if and
only if there exist vectors I € R£; k e RL and h = (hj)JeJ e (Rpu)J, h, > 0 such
that for all j e J

g)n > i + ( r x ) ; ; g;u > crx)f + h (ii)

with h = ^k hk.

PROOF. For/ = (/,),,=, e (R'+)J, set

} Vy e (R'+)J. (12)

The functional 5/, defined on the cone (R'+)J by (12), is superlinear. Clearly the set
&*(f) coincides with the superdifferential

of t he funct ional sy . W e sha l l u s e the no ta t ion : x * = (x,... ,x) e (R+)" ' , w h e r e
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We now represent sf (y) as the optimal value of the linear programming problem:

[f, x] -> max subject to Pxx — bu P2x < b2; x > 0 (13)

where

and Pi : (R'+)J - • OS'" x RL, P2 : (R'+)J -+ WU)J are linear operators defined by
the formulae

The dual problem of (13) is

[//,, bx] + [H2, b2] -+ min subject to P*Ht + P*H2 >f, H2> 0.

(We denote by A* the conjugate operator to a linear operator A.) Let us describe
vectors //,, H2 such that P*Hi + P2H2 > f. For Hx = (i,X) e K"1 x KL and
H2 = {hj)jU e (®L'+)J we have

[P*Hl + P;H2,x] = [Hu Ptx] + [H2, P2x]

[H2,x
pul

So
\ p* f-f _|_ p* f-f f y~\ = : \p^ -L (S*\.Yn x'n~\ -k l(S*}Pu -I- M Y^U~\

Since P,*//, + P2*//2 > / if and only if [P*H{ + P2*//2 - / , * ] > 0 for all x > 0 it
follows that the set {(//, = (I, X), H2) : P,*//, + P*H2 > / } coincides with the set
U(f):

U(f) = {(i,X,H2):H2>0; I* + {S*X)in > / ' " ; (5*X)"" + H2 > / " « } . (14)

Thus

= min U.^y!"
L j J

(t,X,H2)eU(f)

^ + (H)1", yin\ + [(T*(X)YU
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with ft = E t hk- For H\ = (^. *) and H2 = (fyW> set

B(HU H2) = (lA + (T*XYn, (T*(k))pu + hA).

Clearly B is a linear operator. Thus

sf(y)= min B(HuH2)(y) = min

Since £/(/) is a polyhedral convex set and B is a linear operator it follows that the set
B(U(f)) is also convex and polyhedral. It is easy to check, by applying properties
of superlinear functions defined on a closed convex cone (see, for example, [7]), that
dsf = B{U{f)) + (K+)y. Thus g e $?*(/) = dsf if and only if there exists a vector
{I, k, (hj)) € U(f), that is, hj > 0 and

I + (5*A)j- > / /"; (S*A)f + hj > ff Wj € J

with

g'" > £ + (rxy;-, g>;u > (r^)f + h y/ e y.

PROPOSITION 4.2. A four-tuple (y,x,g,f) with

y = (yj)j€j, x = (Xj)jeJ, g = (gj)je, f=(fj)ju

is matched with respect to <& if and only ifx e ^{y) and there exist vectors I G
U I L and he (^pu)J, h>0, such that (10) and (11) ftoW/or all j e 7

(15)

PROOF. Let (>>,x, g,f) be a four-tuple such thatx e <g(y) and g e ^ * ( / ) . Then
(7) and (8) are valid and there is a vector (i, k, (hj ))jeJ such that (10) and (11) hold.
Since g € &*(f) it follows that [f, x] < [g, y]. It is easy to check that this nonstrict
inequality becomes an equality if and only if (15) to (17) hold.

REMARK 4.1. The equalities (15)—(17) represent complementary slackness condi-
tions. For example, consider equality (16). This equality is clearly equivalent to the
system:

iel2
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with y — J2jej y> • ^ follows from the definition of the mapping ^ and (18) that for
all j e J and i G I2 we have

These results allow us to define an equilibrium for the model under consideration.
We shall exploit Definition 3.1 and Proposition 5.2.

DEFINITION 4.1. The equilibrium of the model S with superlinear connection Sx =
Ty, individual goods / e I\ and public goods i e I2, is the pair (p, z), where
p = ( ( / , , gj ))jej is a price vector and z = ((*,, yj ))y ey is a state of the model, such
that
(1) fj^O and Xj is a solution of the problem

Uj (Xj) -> max subject to Xj > 0, [fj, JC, ] < Xj

for all j 6 J;
(2) yj (j e 7) is a solution of the problem

subject to y} € Yj;

(3) inequalities (10) and (11) and equalities (15)—(17) hold for ally e J.

REMARK 4.2. If the set I2 is empty then we obtain a definition of equilibrium
with individual goods and linear restriction on exchange. If in addition there is no
restriction, that is, S = T = 0, we obtain a version of the classical definition of
equilibria given in Example 1.

If 5 = T = 0 and I2 ^ 0 then the definition transforms to a version of the
classical definition of the equilibrium with public goods (see, for example, [2]). Since
S = T = 0 it follows that the inequalities (10) and (11) and the equalities (15H17)
lead to the following (with respect to public goods): for all j € J there exists a price
vector hj > 0 such that

hj > / / " , gpju > h, where A = £ f y ,

ye-/

L keJ J

Thus we can consider h as a total price for public goods and hj as the j th agent's
contribution to this price.
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5. Extremality and existence of equilibria

Let us consider the model g defined by the formula (1):

S = [I, J, (Yj)JeJ, (Uj)JeJ, (kj)Jej}.

In order to describe equilibria for this model we need the extremal problem

.y log Uj(xj) -» max subject to x = (Xj)jeJ € 3&(y), y e Y, (19)

where Y = Y\jeJ Yj. We assume as usual that logO = — oo.
We now show that under some additional natural assumptions a solution of problem

(19) can be considered as the consumption part of an equilibrium of the model S'.

THEOREM 5.1. Assume that

(1) 38 is a polyhedral mapping;
(2) the set K = U{JC € 9S[y) : y 6 Y] contains a strictly positive vector.

Then for each solution x of the problem (19) there exist vectors y, f, g such that the
pair ((y,x), (f, g)) forms an equilibrium of the model £.

PROOF. Let us consider the function q(x) = J^jeJ k} log M; (X, ) defined on the cone
(R'+)J. Clearly q is a concave function. We shall denote by 3 q (x) the superdifferential
of the function q at a point x. Since Y is a compact convex set and 38 is a superlinear
mapping it follows that the set K = 3B(Y) is compact and convex. Letx = (Xj)jeJ

be a solution of the problem (19). Since the set K contains a strictly positive vector
it follows that q(x) > -oo so M̂  (JC,- ) > 0 for all j G J. It follows from well-known
necessary conditions for a maximum of a concave function over a convex set that there
exists a vector/" e dq(x) such that

/ (x) = max{/(x) : x 6 K}. (20)

Let us represent / in terms of superdifferentials of the functions w,. For this pur-
pose we shall express q in the form q(x) = (p(u\(xi),... , um(xm)) where 0(z) =
5Z,-ey kj log(z,) . Since the function <p is a concave increasing function we can apply
well-known results from convex analysis (see, for example, [3], Lemma 12.2) which
show that/ € dq(x) if and only i f / (x) = H ; 6 yM;^ (^ ) where fi = (fij) e d(p(z)
with z = (ui(x{),... , um{xm)) and £j € duj(xj). Since </>(z) is a smooth function
we have (assuming that Zj > 0 for all j € J)

"«-{&•••£)}•{£ £
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Thus / e dq(x) if and only if

( ^ % O (21)
um(x)

where lj € duj (Xj) for all j e J.
Thus for the solution x of the problem (19) there exists a vector/ of the form (21)

such that the equality (20) holds.
We shall denote the vector (Xj /Uj (Xj ))lj by fj. Since w; is a superlinear function

on R'+ it follows that lj ^ 0, therefore fj ^ 0. We now check that the vector Xj is a
solution of the problem

uj (XJ ) -» max subject to Xj > 0, [fj, Xj ] < Xj. (22)

Indeed ifxj € R+ and [fj,Xj] < Xj then [lj,Xj] < Uj(Xj). Also lj € du(Xj) implies
Uj (Xj) < [lj, Xj ] for all Xj > 0. Thus uj (xj) < M; (XJ ).

We now find vectors g and y that together with / and x form an equilibrium. Recall
that 38 is a polyhedral mapping. By applying (20), a standard minimax theorem and
Theorem 2.1 (for polyhedral mappings), we can conclude that

[/, x\ = max max [/, x\ = max min [g, y] = min max[g, y].

Let vectors g e 38* (f) and y e Ybe defined by the equalities

min max[g, y] = max[|, y],

ly] = [g,yl (23)

Then [f, x] = [g, y], that is, the four-tuple (y,x, g,f) is matched with respect to 38.
Also the equality (23) shows that

n»ax[l7.%] = [«y.3i>] (24)
yj*Yj

for all j e J. It follows from (22) and (24) that the pair ((y, x), (g, / ) ) forms an
equilibrium of the model S'.

COROLLARY 5.1. If conditions (1) and (2) of Theorem 5.1 hold, then the model S
has an equilibrium with respect to mapping 88.

Indeed the concave upper semicontinuous function q achieves its maximum over
the compact set K. By applying Theorem 5.1 we can deduce that the equilibrium
exists.

We now shall prove the inverse theorem. The consumption part of an arbitrary
equilibrium of the model S is a solution of the problem (19) without any additional
assumptions. At first we shall prove the following simple assertion.
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LEMMA 5.1. Lett,f G R'+ and x be a solution ofthe problem

[t,x] -»• max subject to [f,x]<k,x> 0. (25)

Further assume that the value of this problem is finite. Let

/ / = {/ e / : / ' • > 0}, h = {i € / : V > 0}, /,- = {i e / : x, > 0}. (26)

Then It C. If, \ei < fifjor all i G // and k£t = Pfifor all i G /,- D lt where 0 is the
value of the problem (25).

PROOF. Since the value of the problem (25) is finite it follows that h^If. It is

easy to check that the value 0 of the problem (25) is equal to X max,£ / / (£,-//,-). Thus

M« < Pfi for all i e I/. Let a, = / (* , - /* . Then ^ , e / « . = L/, Jc]A = 1 and a, > 0.

Clearly a, > 0 for i € If n I;. We have

p = m a x — = [£,x\ = > a ,-—.
ielr f, *—' f:

I J I iGl J '

So A.£,- = fifi for all / G /* with a, > 0. Thus k£t = /?/, for i G /*- n It.

THEOREM 5.2. Let a pair ((y,x), (g,f)) be an equilibrium of a model § with
respect to a mapping SS. Then the vector x is a solution of the problem (19).

PROOF. First we calculate the maximum of the equilibrium prices / over the set
K = SS{X). We have

max[/ , x] = max max [ / , * ] = max min [g, y] < max [g, y] = [g, y] = [f, x].

Also

max max [/ ,x] > [f,x].

Thus

max[/,x] = [f,x]. (27)
x€K

We now consider the following extremal problems for ally G J:

Uj (x) -*• max subject to [fj ,Xj] < k}, x} > 0. (28)

Since Xj is a solution of the problem (28) it follows that there exists a vector £j G
duj (Xj) such that xj is also a solution of the problem

[£j, xj ] -> max subject to [/; ,Xj]< kj, x} > 0. (29)
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It follows from Lemma 5.1 that

A / / > V j (Vi € / , - ) , Pjfj=Wj (Vie / € > n / i y ) , (30)

where If., Itj and /iy are defined as in (26) and ft is the value of the problem (29).
Since the set [XJ > 0 : [fj,Xj] < kj} contains an interior point of the cone R+ and uj
is positive on the interior of this cone it follows that fij > 0. The first relation in (30)
shows that

1 ^ ^ ^
jeJ Pj jeJ

Since If. c It. it follows that the second relation in (30) implies

H>^- 02)
jeJ jeJ RJ

Let £ = ((kj/Pj)£j)Jej. By combining (27), (31) and (32) we deduce that

(33)

We now check that £ € dq(x) where q(x) = J^jej h l°g M; (x;)- Since £y e duj (x)
and M; is a superlinear function it follows that Uj {Xj) — [tj,Xj] = fa. So

This equality shows (see the proof of Theorem 5.1) that £ € dq(x). Applying this fact
in combination with (33) we deduce that u(x) < [£, x] < [t, x] = u(x) for allx € K.

COROLLARY 5.2. Let X be the set of all x € (K+)y with the property that there
exist vectors y, g, f such that the pair ((y, x), (g,f)) is an equilibrium of the model
S. Then X is a compact convex set.

COROLLARY 5.3. Let x, x' € X where the set X is defined in Corollary 5.2. Then
Uj (xj ) = Uj (xj) for all j .

PROOF. Assume there is an index k such that uk(xk) ^ Uj(x'k). Since the log
function is a strictly concave function we have for a € (0, 1) that

*-j log uj (axj + (1 - a)x'j) > £ Xj log(a«, (Xj) + (1 - a)Uj (JCJ)

lja log Uj (xj)
j

= A,

where A is the value of the problem (19). Thus we obtain a contradiction.
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6. Differential properties of equilibria

We shall consider in this section a family of equilibrium models

gh = [I, J, (Yj)JeJ, (

depending on the parameter A = (kj)jeJ. We shall consider only strictly positive
values of the parameter A and study equilibria of the models §K with respect to
a polyhedral superlinear mapping SS independent of A. Let us denote by x,(A)
an equilibrium consumption of the agent j for the model &K. Then we can apply
Theorem 5.2 which shows that the vector x(A) = (x,(A)),ey is a solution of the
problem (19). We shall use the notation

H, (A) = «,(*, (A)). (34)

It follows from Corollary 5.3 that the numbers uj (JC, (A)) depend only on the model S
and the mapping £& and coincide for all equilibria, hence the notation is appropriate.

We shall consider in this section the function

<p(A) = max ] P kj log u} (*,) = ^ kj log u} (A), (35)
j€J jeJ

where tf =

PROPOSITION 6.1. The function <p is continuously differentiable and

where (Uj (A)) is defined by (34).

PROOF. First we check that the function <p is directionally differentiable, that is, for
all [i there exists a directional derivative^' (A, /A) = lim,->+0(l / t)(<p(A+t fi) — (p(A)).
Since <p is a maximum of linear functions (with respect to A) we can apply well-known
results about directional differentiability of a maximum function (see, for example,
[3]) which show that the directional derivative <p'(A, fi) does exist and

<p'(A, ix) = max Y ] /Xj log u} (Xj (A)),

where R(A) consists of all vectors x(A) which maximize the function (A,x)

£,e ^j UJ (*/) o v e r m e s e t K- It follows from Corollary 5.3 that all solutions of this
maximization problem have the same value «y (xj (A)) = H, (A). So
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The function <p is convex (more precisely, sublinear) as the maximum of linear func-
tions A —> J^jej ^juj(xj)- It is well known (see, for example, [10, Theorems 25.2
and 25.4]) that linearity of the directional derivative (p'(A, /x) of a convex function
with respect to fx implies continuous differentiability of this function. If /x =
with \ij = 1 and fik = 0 for k ^ j then we have

— = log My (A).
ak

Thus Vcp(A) = (log uj (A))jeJ.

COROLLARY 6.1. The equilibrium utility «>(A) is a continuous function of the
budgets A.

COROLLARY 6.2. The function (p satisfies the differential equality

PROPOSITION 6.2. Assume that the functions Uj (A) defined by (34) are differen-
tiable for all j € J. Then these functions satisfy the system of differential equations
given by

"(A) = ° (*e7)- (36)

PROOF. This follows easily by applying Proposition 6.1 and the fact that <p(A) =

REMARK 6.1. Note that the system (36) does not depend on the production sets Yj
nor on the restriction of exchange mapping SS.

We can express the system (36) in terms of rates of growth.

DEFINITION 6.1. The number)/, is called the rate of growth of the agent j inamodel
S = {I, J, (YJ)JZJ, (Uj)jej, (Xj)jej} if there exists an equilibrium ((y,x), (g,f)) of
this model such that

_
Yj —

Rates of growth of models with fixed budgets play an important role in applications
of these models to economic dynamics (see [7]).
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We have

max uj (xj) = A. max M, (x,) = kj - '_ = kj Yj •
_*j>0 *j>0 [fj,Xj]

Thus

(37)

Since Uj (xj) = H, (A) does not depend on a choice of equilibrium it follows that rates
of growth depend on the model only and so they coincide for all equilibria.

Using rates of growth we can represent the system (36) in the form

±AM.(A ) = 0 (keJ).

7. Conclusion and further research

The results we have obtained can be applied in the study of special types of
equilibrium models with fixed budgets which arise in the theory of von Neumann-
type economic dynamics, in particular in the theory of models of reproduction ([7]).
There are very few results concerning these models with the added complication of
restrictions on exchange. Special mechanisms for the construction of trajectories for
these models can be developed using models with fixed budgets where both utility
functions and budgets are parameters of the models. Applying Theorems 5.1 and 5.2
it should be possible to study which parameter values guarantee the construction of
efficient, or at least almost efficient, trajectories. We will, in future research, apply the
results in this paper to the study of special types of models of reproduction with public
goods and restrictions on exchange, in particular where the restriction is achieved by
fixed price structures or by direct distribution of part of the totality of produced goods.
We believe also that models with fixed budgets will be useful in the study of special
equilibrium models with non-fixed budgets.
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