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Abstract

The Dean problem of pressure-driven flow between finite-length concentric cylin-
ders is considered. The outer cylinder is at rest and the small-gap approximation
is used. In a similar procedure to that of Blennerhassett and Hall [8] in the context
of Taylor vortices, special end conditions are imposed in which the ends of the
cylinder move with the mean flow, allowing the use of a perturbation analysis from
a known basic flow. Difficulties specific to Dean flow (and more generally to non-
Taylor-vortex flow) require the use of a parameter a which measures the relative
strengths of the velocities due to rotation and the pressure gradient, to trace the
solution from Taylor to Dean flow. Asymptotic expansions are derived for axial
wavenumbers at a given Taylor number. The calculation of critical Taylor num-
ber for a given cylinder height is then carried out. Corresponding stream-function
contours clearly show features not evident in infinite flow.

1. Introduction

The centrifugal instability of flow between concentric cylinders has a rich history
of detailed investigation. Nevertheless, most theoretical analyses have concen-
trated on cylinders which were assumed to be infinitely long, allowing classical
Couette (or Poiseuille) flow to be an admissible solution. Experiments have in-
dicated that, for most cylindrical lengths, the ends are important in determining
the flow configuration (which may, or may not, be unique) and in fact may drive
the transition to a secondary steady state (see, for example Snyder and Lambert
[36], Burkhalter and Koschmieder [10], and the series of Benjamin [2], [3], [4] and
Benjamin and Mullin [5] [6]). Clearly an understanding of the effects of imposing

1Department of Applied Mathematics, University of Sydney, Sydney, N.S.W. 2006, Australia.
2School of Mathematics, University of New South Wales, P. O. Box 1, Kensington, N.S.W.,
2033, Australia.
© Copyright Australian Mathematical Society 1988, Serial-fee code 0334-2700/88

157
https://doi.org/10.1017/S0334270000006135 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006135


158 B. J. Kachoyan and P. J. Blennerhassett [2)

a finite regime is desirable. When the cylinders are of finite length, however, and
the end plates fixed, Couette (or Poiseuille) flow is no longer a solution to the
Navier-Stokes equations, with conditions of no slip on the boundaries, and all
velocity components must always have some dependence on the axial variable.

Thus, even at low Taylor numbers, there exists a slow axial circulation which
develops smoothly into classical Taylor vortex flow rather than the bifurcation
predicted for infinite cylinders. The experiments of Snyder and Lambert [36],
Cole [14] and Pfister and Rehberg [30], for example, show observations of axial
flows for T <TC, and the numerical work of Alziary de Roquefort and Grillaud [1]
shows similar behaviour. Smoothly developing cellular motion was also shown to
exist experimentally in convection in a box by, for example, Berge' [7]. Benjamin
[2] gave a qualitative theoretical discussion of the effects of a bounded domain
in general flows with particular reference to Taylor vortex flow.

Analytical work on cylinders of finite extent began with Blennerhassett and
Hall [8] who considered the narrow-gap linear stability problem for Taylor vor-
tices with a stationary outer cylinder. Ends were imposed on the cylinders,
which were assumed to move with the azimuthal velocity of the correspond-
ing infinite flow. These artificial end conditions remove the smooth transitions
which we have seen are normally associated with finite cylinders, and allow the
use of perturbation analyses from a known mean flow (Couette flow in [8]). It is
hoped that the essential features of finite-domain flow will be retained without
the necessity of a fully numerical solution at all values of Taylor number.

The bifurcations in [8] may be converted to a more realistic smooth transi-
tion by introducing small imperfections to the boundary conditions; a similar
phenomenon was found to occur in convection in a box by Hall and Walton [22]
and Daniels [15]. See also Reiss [32] for a description of the effects of imper-
fections in buckling problems. An alternative was proposed by Schaeffer [34].
He introduced boundary conditions with an adjustable parameter /? such that
0 = 0 corresponded to the conditions in [8] while /? = 1 represented fixed ends.
A perturbation for /? ^ 0 but /? <t; 1 from an analysis such as that of Hall [24]
would then result in the smooth development of a flow which, it would be hoped,
would be at least qualitatively the same as the true problem. This model is fur-
ther discussed in Benjamin and Mullin [5], and used quantitatively by Hall in
[23] and [24].

The critical Taylor number for instability is, of course, a function of cylinder
height L. In [8], it was found that solutions, even and odd in the axial variable
z, could be treated separately and lead to critical Taylor numbers, TCe(L) and
TCo(L), respectively. Furthermore, the curves of TCe and TCo interlace. Similar
results were found in the convection of a layer of fluid heated from below in a
two-dimensional box (Drazin [20], Daniels [16]).

https://doi.org/10.1017/S0334270000006135 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006135


[3] On the finite Dean problem: linear theory 159

In this paper, we shall study the corresponding approach to the Dean problem
[17] where the mean motion is pressure-driven Poiseuille flow. This type of flow
is intended to model flow in curved rectangular pipes, and flow in helically coiled
ducts with small pitch. Recent numerical and experimental work on this problem
has been carried out by, for example, Winters [38], Hille et al. [25], Joseph et al.
[27], Ghia and Sokhey [21], De Vriend [18] and Cheng et al. [13].

The linear analyses of this paper and [8] do not address themselves to the
question of the stability of solutions which bifurcate from the azimuthal flow.
Hence, any of the flow patterns described here are not necessarlty expected to
eventuate, but are demonstrations of the variety of solutions made possible by a
restriction of the domain. A weakly-nonlinear analysis will be given in a future
paper (Kachoyan [28]) which will investigate the growth of steady solutions and
which will include a comparison with the above previous work, especially that
of Winters [38].

The structure of this paper is as follows. In Section 2 we derive the system of
differential equations governing Taylor-Dean flow. Section 3 outlines the calcu-
lation and ordering of the complex axial wavenumbers and corresponding eigen-
functions needed to satisfy the end conditions. It is found that the wavenumbers
for the Dean problem are difficult to find directly and need to be traced from
the known Taylor-vortex results through the joint Taylor-Dean problem. For a
given Taylor number, we find asymptotic expressions for large wavenumbers in
Section 4. These expressions give a check on the numerical solutions. Moreover,
they indicate that care should be taken with the method in [8] (essentially an
extension of the Galerkin-type approach developed by Chandrasekhar [11], [12]
when the critical eigenfunctions are either not well approximated by sinusoids,
or have large high frequency components.

Section 5 describes the calculation of Taylor numbers T for instability at a
given cylinder length L. The curves of Taylor number against cylinder length
for solutions, even and odd in the axial variable z, are found to intertwine as
in [8]. Flow patterns not seen in the infinite cylinder case were reported by
Blennerhassett and Hall in [8] in their solution of the Taylor vortex problem.
Streamfunction contours revealed nonplanar vortex boundaries as well as weak
vortices near the ends of the cylinders and in the interior of the fluid. In addition,
adjacent co-rotating vortices were found at various values of {L,T). In Section
6, similar phenomena are found in the present linear stability calculation. By
considering the limit L -* oo, Blennerhassett and Hall in [8] showed that the
double-cell/weak-cell structures can be ascribed to a slow modulation of the main
flow caused by the distant boundaries. Their analysis is equally valid in the Dean
problem, and the asymptotic form of T at large L for the Dean problem is given
in Section 6.
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2. Formulation of equations

We consider a pair of concentric cylinders of inner radius Ri and outer radius
R2 (R? > Ri) and suppose the ends of the cylinders to be at z* = ±Ld where
d = Z?2 — Ri and where we have used the cylindrical polar coordinates (r*, 0, z*)
with the axis of the cylinders the z*-axis. The corresponding velocity distribu-
tions will be given by (U*,V, W*). We shall make the small-gap approximation
as in [8], so that

Motion is driven by the inner cylinder rotating with angular velocity fii and
by imposing a pressure gradient dP* /d6 = — up, where p is the density of the
fluid and K is a constant. A pressure distribution of this form is clearly unable
to be exactly realisable but is nevertheless a useful analytical approximation to
experimental conditions.

In the case of infinite-length cylinders, this configuration admits steady ax-
isymmetric flow with a velocity distribution of the form

U = 0, V = V0{x)=2a{l-x) + 6{l-a){x-x2), W = 0, (2.1)

where

a = VT/(VT + VD), VT = fti^i/2 and VD = 2

Here v is the kinematic viscosity, x = (r* —Ri)/d and the basic, steady azimuthal
flow V*{r*) has been scaled on VT + VD, the mean velocity around the cylinders.

For the stability calculation, we have scaled the velocities following Seminara
and Hall [33], that is,

(ir,V,W) = (^U,(VT + VD)V,-£iw). (2.2)

Note that a = 1 corresponds to Couette flow (which leads to Taylor vortices)
whereas a = 0 corresponds to Poiseuille flow (leading to Dean vortices) and
is thus similar to the parameter N used by Brewster et al. [9]. DiPrima [19]
used a parameter Q = 3VD/VT in the present notation. The formulation of
DiPrima, however, required the rescaling of the velocities in the Dean limit
Q —> oo(W —• 0). The use of a obviates such rescaling. A description of the
present formulation in the context of the infinite cylinder work of Brewster et
al. [9], DiPrima [19] and others, is given in Kachoyan [29].

The perturbation to this basic solution is made such that

U = u{x,z,t), V = V0{x) + v(x,z,t), W = w(x,z,t), (2.3)

where the perturbations (u,v,w) are assumed small compared with the basic
flow VQ. Neglecting products of the perturbation quantities and eliminating w
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using continuity, the resulting equations to be solved are

'u"TVoV" = ° md {wt ~y2) v + \uV°= °' (24)

where V2 = d2/dx2 + d2/dz2 is the Laplacian. Subscripted variables mean
partial differentiation, the dash refers to differentiation with respect to x, and T
is the Taylor number:

232R1). (2.5)

In an infinite cylinder the fluid velocity is given by (2.1). In a real flow between
cylinders of finite length, the velocity is approximately (2.1) away from the ends
provided the Taylor number is below critical. We choose conditions on the ends
\z\ = L so as to model the real flow by a purely azimuthal flow in \z\ < L.
There are several choices of end condition which achieve our aim but we follow
the method in [8], and assume the ends of the cylinder are moving with the flow
(2.1).

Thus we impose the conditions

U = 0, V = V0{x), W = 0 on \z\ = L,

and so by (2.3) the perturbations to the basic azimuthal flow must vanish at the
ends. Hence we have the homogeneous conditions

u = v = w = 0 on x = 0,1, — L < z < L

and
u — v — w = Q on z = ±L, 0 < x < 1. (2.6)

The end conditions we have adopted could not be easily realised physically.
However, we suggest that the purely azimuthal flow confined to \z\ = L is a
reasonable model of the real flow, and that its stability can provide some insight
to the experimental observations and numerical calculations on flows in finite
length containers.

We now seek a separated solution of the form (see [8])

u = u(x) exp(ikz) exp(iat) + c.c,
v = v(x) exp(ikz) exp(i<r£) + c.c, (2.7)

w = w(x) exp(ikz) exp(iat) + c.c,

where c.c. denotes complex conjugate and w(x) = ik-1 du/dx from continuity.
Substituting these into (2.4) gives

(D2 - k2 - ia)(D2 - k2)u - k2TVov = 0,

and
(D2 -k2- ia)v - iuVo' = 0,
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where D = d/dx. Since we are looking for neutrally stable disturbances, we set
£7 = 0 and arrive at

(D2 - k2)2u - k2TV0v = 0, (2.8a)

and
{D2 - k2)v - \uVl = 0, (2.8b)

with u = Du = v = 0 on x = 0,1.
The properties of this eigenvalue problem are discussed in [8]. Notably, for T

less than some critical value TCoo, there are no real eigenvalues k of (2.8), whereas
for each T > TCoo there are at least two distinct ones which define the neutral
curves of the infinite problem. For all values of T, however, there are an infinite
number of eigensolutions of (2.8) with possibly complex eigenvalues, denoted by
±A;n, n = 1,2,3,... . Thus the general solution of (2.8) is a linear combination
of all possible eigensolutions, and the imposition of boundary conditions (2.6)
will determine the unknown constants in the general solution. Sections 3 and 4
discuss the properties of the eigenvalues kn and in Section 5 the imposition of
boundary conditions is carried out.

3. Calculation of axial wavenumbers

We employ the method of solution of Chandrasekhar [11] in order to use it
for the finite-length calculations of Section 5. In that section, the considerable
time saving over a direct numerical approach assumes greater significance.

Thus, expanding the azimuthal eigenfunction vn(x), which corresponds to the
eigenvalues ±fcn, in a Fourier sine series automatically satisfying the boundary
conditions on v, we get

vn(x) = Yl Cpn SinP7TI. (3.1)
p=l

Using this series, (2.8a) is solved for the radial eigenfunction un(x) and the
un and vn are then substituted into (2.8b). The resultant equation is multiplied
by sin jnx for j = 1,2,..., and integrated from x — 0 to i = 1 to give an infinite
system of equations of the form

AnCn = 0, (3.2)

where Cn is the vector (Cin,C2ni • • • )
T- An is an infinite square matrix given

explicitly by Kachoyan [29].
It should be noted here that certain elements of the matrix An have poles,

which can be shown to be of order one, at An = 0, and 7m = 0, m = 1,2,3,...
where An = sinh2 kn — k% and -y£, = m27r2 + fc2, that is, at sinh kn = ±kn and
kn = mni, m = 1,2,3, This point will be discussed further later.
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The system (3.2) has a non-zero solution only if \An\ = 0, which gives
an eigenvalue problem determining the kn as functions of T. Since (2.8) is
real, the kn must be either real, purely imaginary, or occur in complex conju-
gate pairs. A comprehensive survey of kn for the Taylor vortex problem has
been given in [8]. They found that the eigenvalues kzn-2, fc3n-i, *3n (with
fc3n-2 = ^3n-i and Re(fc3n) = 0) corresponded to azimuthal velocity eigen-
functions v3n-2(x),... ,v3n(x) having n — 1 zeros in (0,1). Furthermore, these
velocity fields are dominated by the p = n term in the Fourier expansion (3.1).
The Dean problem is not as straightforward. Firstly, Reid [31] and Seminara and
Hall [33] have shown that the azimuthal velocity for neutrally stable modes has a
zero in (0,1). Thus, in general, the first three eigenfunctions vi(x),V2(x),V3(x),
in contrast to the Taylor vortex case, have one zero in (0,1) and are dominated
by p = 2 in the expansion (3.1).

Secondly, there is no unique ordering of wavenumbers kn according to which
the Fourier coefficient Cpn is dominant in (3.1) until n becomes large (typically
> 12). To select an ordering which would give accurate results for a small
number of wavenumbers, we used the parameter a to trace the evolution of
the wavenumbers from the Taylor-vortex problem (a = 1) to the Dean problem
(a = 0). In this way it was found that the wavenumbers can be ordered in groups
of three according to the pattern given above. That is, a complex conjugate
pair of wavenumbers (with the possible exception of the first two wavenumbers,
which may be real) followed by a purely imaginary one. Within the confines of
this pattern, the separate sets of complex and purely imaginary wavenumbers are
ordered according to magnitude. It is shown in Section 4 that large wavenumbers
asymptotically follow this pattern.

The Fourier coefficients Cpn are found by back-substitution in (3.2) and using
CPn = CPn~ip- At this stage, the Cpn, p = 1,2,... are normalised with respect
to the largest Fourier coefficient at each n. Note that it is not only the accuracy
of the kn which is affected by the order of truncation of the determinant \An\,
but also the number of roots which can be found. For example, truncation of
| A n I to fourth order is equivalent to considering the first four Fourier coefficients
of v(x) and so, in general, we are then only able to find the first twelve roots
(wavenumbers) of \An\. As a result, we do not get uniform accuracy for the
wavenumbers kn: at a given truncation of |i4n| the accuracy decreases as n
increases. Similarly, at each wavenumber, their corresponding Fourier coefficients
Cpn become progressively less accurate as p increases.

For the Dean problem, taking six terms in the series (3.1) for vn(x), we obtain
at least three significant figures in the eighteen wavenumbers it is possible to find.
Their corresponding Fourier coefficients then range from three significant figures
at low wavenumbers to only one significant figure at high wavenumbers. It is
expected that the final solution will be dominated by the first wavenumbers and
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this will compensate for the loss of accuracy at higher wavenumbers. In all these
results we gain, in general, one significant figure for each extra pair of terms used
in (3.1).

It should be noted that the Taylor vortex problem is generally more accurate
by one significant figure or more for a given truncation of (3.1). Presumably this
is due to the abovementioned ordering of dominant Fourier coefficients present
in Taylor vortices.

To verify that all roots of \An | were found, the MSL subroutine ZCOUNT was
used. This routine calculates the number of zeros minus the number of poles of
a function in a user supplied closed contour (actually a polygon) in the complex
plane. As the locations of the poles of \An\ were known, the number of zeros
of |An|, in a given region, could be found. The computations with ZCOUNT
confirmed that we had located all the required zeros of \An\.

TABLE 1. Wavenumbers kn and the dominant Fourier coefficient (F.C.) of their respective
azimuthal velocity fields for the Dean problem at T = 6000.

F.C.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

2.780
5.471
1.700i

5.038 + 7.931i
5.038 - 7.931i

7.832i
4.728 + 10.314i
4.728 - 10.314t

11.239i
4.478 + 13.683i
4.478 - 13.683t

13.738t
4.396 + 16.934i
4.396 - 16.934i

16.745t
4.162 + 20.561i
4.162 - 20.561t

19.863t

2
2
2
1
1
3
2
2
1
3
3
2
4
4
4
5
5
6

Table 1 shows a list of wavenumbers for the Dean problem at T = 6000 along
with their dominant Fourier coefficient in (3.1). A sample of wavenumbers and
the Fourier coefficients of their velocity fields is shown in Table 2 for the Taylor
vortex and Dean problems. These tables were calculated using six terms in (3.1).
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TABLE 2. Sample wavenumbers kn and the Fourier coefficients Cpn of their respective
azimuthal velocity fields, at typical values of the Taylor number for the Taylor vortex and
Dean problems using six terms in (3.1).

n
1

3

7

Taylor
a = 1, T = 2000

kn Cpn X 103

2.179 1000.
17.61

-23.75
-0.879
-2.023
-0.126

7.241t 1000.
-553.5
286.8

-23.35
4.980

-0.870
3.248 + 9.501i -75.52 - 125.8i 4

-94.36 + 54.54t
1000.

39.46 + 51.41t
-76.57 -65.52t
-0.85 - 1.75i

a -

kn
2.780

1.700i

Dean
= 0, T = 6000

CPn X 103

-674.2
1000.

-104.9
-42.71
9.419

-7.750
817.7
1000.
56.12

-41.07
-4.944
-6.078

.728 + 10.314i 246.0 - 689.3i
1000.

676.6 - 603.9i
67.75 +87. lOt

-25.84 - 69.89i
-18.50-10.32t

The numerical results in this section were checked using a direct Runge-Kutta
shooting approach to integrate numerically the governing differential equations.
The Fourier coefficients of the eigenfunctions may then be checked using a Fast
Fourier Transform algorithm (see, for example, Singleton [35]) with agreement
at least to the significant figures quoted above being obtained.

4. Large wavenumber expansions at constant T

This section examines the behaviour of the eigenvalues kn of (2.8) as n —> oo
for constant T. In the previous section, it was seen that for n > 3, the kn are
either purely imaginary or come in complex conjugate pairs. Considering first
the purely imaginary wavenumbers, we let k = ik for convenience and write (2.8)
as

(£>2 + k2)2u = -k2TV0{x)v, (D2 + k2)v = (1/2)UV0'(I) , (4.1)

where we recall that

u = Du = v = 0 on i = 0,1 and V0(x) = 2a(l - x) + 6(1 - a){x - x2).

We now fix T and look for solutions for large k. At this stage, there is no
natural parameter for an expansion of k and no a priori information on the
relationship between the size of kn and n. To overcome these difficulties we
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introduce an artificial parameter K, assumed large, and let

k = Ka, where a2 = a^ + K~2a2 + K~Aa^ + • • • . (4.2)

The velocities are expanded as

v — Ao sinKCIOX + rc"1 Ai(x) cosKaox + /c~2>l2(a;)sin/caox + . . . ,

and

u = BQ{x)sinKaox + K~1BX(X)COSKaox + K~2B2{X)sinKaox + ... , (4.3)

where Ao is a constant and BQ,A\,BI,. .. will be polynomials. Being free to
normalise the velocities, we choose Ao = 1 without loss of generality.

The boundary conditions on v immediately give us

sin/cao = 0, or /cao = mr, n = 1,2,.... (4.4)

Substituting the expansions (4.2) and (4.3) into the governing equations (4.1)
we arrive at the following system of equations

-4B'O' = - TV0, (4.5a)

- 2 ^ 0 0 = (1/2)VO'BO - a2, (4.5b)

-4Bi'ag + 4B'0"a0 = - TagV0^i, (4.5c)

2a0A'2 + A'i = (1 /2 )^ ! , (4.5d)

-4alB'^ = - V0TalA2, (4.5e)

-2aoA'3 + A'i + a4 = (1/2)VO'B2, (4.5f)

with Ai = A3 = Bo = Bi = B'x + a0B2 = 0 at x = 0,1.
Integrating (4.5a) and (4.5b) to find a2 gives

B0{x) = - (1 - a)(t/8){x4 - 2x3 + x) - a(T/12){x3 - 3z2 + 2x),

and

- a)2(6x6 - 18x5 + 9x4 + 12x3 - 9x2)

+ a( l - a)(6x5 - 24z4 + 28x3 - 9x2) + a2(x4 - 4x3 + 4x2)] - a2x

where Ai(l) = 0 gives

o2 = (T/48)(a(l - a) + a2) = aT/48.

For the Dean problem, this term is identically zero and (4.5f) must be solved
to find 04. This integration is still quite straightforward, but rather tedious
as the order of the polynomials involved increases rapidly, and the coefficients
need to be determined exactly as there is much cancellation in the calculation
of 04. We thus make use of the algebraic manipulation package MACSYMA
implemented on a VAX 11/750. The results were checked by hand for the Dean
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problem up to and including A2{x). The polynomials for the Dean problem are
given in Appendix A and the bounary conditions on A3 (x) give

a4 = 31T2/(49280a-2).

Thus, for a ^ 0,

* § n = n V + 2 | + ...> (4.6)

while for a = 0,

It can be seen from (4.6) and (4.7) that the first-order approximations to
the purely imaginary fcn for large n are the poles of \An\ discussed in Section
3. For a / 0 , this is tempered by the next term in the series being O(l). For
a — 0, problems may arise for large n, but due to the relatively large values
of T (> 5000), they will not be expected to affect the numerical solution until
n » 1 0 .

Note also that this expansion confirms the ordering in [8], at least for large
wavenumbers. That is, since for large n, vn(x) ~ sinnvrz, the nth purely imag-
inary wavenumber will be dominated by the nth term in the Fourier expansion
(3.1). A comparison of the results of Section 3 and the expansions (4.6) and
(4.7) is given in Table 3 for a = 0,1.

TABLE 3. Comparison of values of wavenumber kn at typical Taylor numbers with those
given by the asymptotic expansions (4.6) and (4.7).

J Taylor Dean
' a = 1, T = 2000 a = 0, T = 6000

in kzn (numerical) fc3n (asymptotic) fc3n (numerical) kzn (asymptotic)
\2 9.402i 9.008i 7.832i 24.76H
\i 14.384i 14.127i 13.738i 11.975*
16 20.0801 19.924J 19.863J 20.47OJ

We use similar expansions to (4.2) and (4.3) to find the complex wavenumbers
fc3n-i, fc3n_2, n = 2 ,3 , . . . , namely

k = na, o2 = OQ + K~7a2 + ... , (4.8)

where now

U(x) = U0(x) + K~2U2{x) + ... ,

v(x) = K~2V2(X) + . . . , (4.9)

and the ao, 02, • • • may be complex. Substituting (4.8) and (4.9) into (4.8) gives
at leading order

{D2 - K2al)u0 = 0, (4.10)
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with u0 = DUQ = 0 at x = 0,1, and where we have assumed D = d/dx
to be of order «;. The eigenvalue problem (4.10) is the well-known Faddle-
Papcovicz problem (see Hillman and Salzer [26]) which leads to the eigenrelation
sinh2 /coo = [KOQ)2. TO first order, then, the eigenvalues k are the solutions of

sinhfc = fc and sinhk = — k. (4-11)

The nth solutions of (4.11), for n large, may in turn be written as

kn = log(4rc +l)ir + i(2nir + TT/2),

and
kn = log(4n - 1)TT - i(2nn - TT/2)

respectively.
From (4.11), the wavenumbers again asymptote to poles of \An\; however no

difficulty was experienced in locating the required kn from the zeros of |An|. In
Table 4 we compare some results of Section 3 with the roots of (4.11).

TABLE 4. Comparison of values of wavenumber kn obtained for the Dean problem at
T = 5162 using twenty terms in (3.1) with the zeros, Zm and z^ respectively, of sinhz = z
and sinh z = —z.

1

I n
i 2
1 3
i 4
1 5
1 19

l 2 0

fc3n-2
4.902 + 7.827i
4.522 + 10.355i
4.326 + 13.676i
4.279 + 16.902t
4.893 + 61.208i
4.862 + 64.279i

m

1
2
2
3

10
10

2.769 + 7.498t

3.352 + 13.900i

4.860 + 64.327i

*m 1

3.103 + 10.712i i

3.551 + 17.073i '
4.810 + 61.183i [

5. Calculation of T as a function of L

Having found the complex eigenvalues kn of (2.8), we may write the neutrally
stable solution as (cf. (2.7))

u{x, z) = ^2 Pnun(x) exp{iknz) + ex.,
n= l
oo

v(x, z) = ^2 (3nvn{x) exp(iknz) + ex.,
n = l
oo

w{x, z) = ^2 0nWn(x) exp(iknz) + ex.,
n= l

where the 0n are unknown constants.

(5.1)
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Due to the symmetry of the domain of the problem and the dependence on
the square of the eigenvalues fc2 in (2.8), (5.1) can be separated into solutions
which are either even or odd functions of z (u, v odd, w even and u, v even, w
odd, respectively). A similar separation was made in [8] and can be made in
several other stability problems in finite domains (see, for example, Drazin [20]
for even and odd solutions to convection in a box). For the odd solutions, for
example, we then write

oo

U(X, Z) = ^ PnUn{x) COS knZ,
f l = l

oo

v(x, z) = ^2 0nvn{x) cos knz, (5.2)
n=l

oo
w(x, z)= -^2 PnWn(x) sin knz,

n=l

with wn(x) = k~1dun/dx from continuity.
Solutions with w odd in z (corresponding to an even number of vortices)

are those which have been generally associated with Taylor vortex experiments,
although more recently, even solutions have been observed (see, for example,
Benjamin [3]). Note that Stuart and DiPrima [37] called the even solutions
those whose radial and azimuthal velocity components are even in z; that is, u,
v even and w odd in z.

It remains now to satisfy the boundary conditions (2.5) at the ends, z = ±L.
From (5.2) these give

n=l

Pnvn (x) cos knL = 0, (5.3)
n=l
oo

n = l

for all x in (0,1), where vn(x) is given by (3.1) and un(x) by (3.2).
Following [8], (5.3) is to be satisfied in a Galerkin sense. We thus multiply

(5.3) by sin jnx for j = 1,2,... and integrate from x = 0 to x = 1 to give an
infinite set of equations of the form

B/? = 0, (5.4)
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where /? = (/?i,/?2, • • • )T> and B is an infinite square matrix whose elements in
the nth column and Zj — 2, Zj — 1, 3jth rows are

zj-2,n = cos(fcnL) / unsmJTTxdx
Jo

zj-\,n = cos(knL) /
Jo (5.5)

u'nsmJTrxdxf1 /
Jo
If1

JK Jo
cosj7nrdz.

The terms in (5.5) are given explicitly in Appendix B.
For the even solution, B is as above, but with cos(A;nL) replaced by sin(fcnX)

and — sin(fcnL) replaced by cos(knL).
Ensuring that (5.4) has a nonzero solution requires

|B| = 0 (5.6)

which serves as an eigenvalue relation of the form f(T, L) = 0. It is numerically
more economical to fix T, obtaining the kn using the solvability condition on
(3.2), and then find the value of L which satisfies (5.6). Backsubstitution in
(5.4) enables us to find (3 which in turn determines the velocity fields u(x, z),
v(x,z), w(x,z) and the corresponding streamfunctions. The eigenvectors /? are
normalised such that /?i = 1 and the eigenfunctions normalised such that the
largest Fourier coefficient in (3.1) is 1.

6. Results and discussion

By truncating the series (3.1) for vn(x) at p = N say, we restrict ourselves to
3iV wavenumbers and (5.6) will involve the zeros of a 3./V x 3./V determinant. It
is found that iV = 4 is sufficient to give at least three significant figures in the
value of L for the Taylor problem and two for the Dean problem. One significant
figure is gained, in general, for every subsequent pair of terms in (3.1) used.
The curves of T against L were obtained by choosing a value of T, and then
stepping through the values of L until a zero of |B| was bracketed. Miiller's
algorithm was then applied with termination when the root was known to a
relative error of 10~8. We may continue to step through the values of L at this
stage enabling us to calculate simultaneously higher modes at a given Taylor
number. The T vs L results obtained, as outlined above, were compared with
results based on eigensolutions of (2.8) found by direct numerical solution. In
all cases good agreement between the results of the two methods was obtained.
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11 r i

171

T x 10"

Tca

FIGURE 1. Critical Taylor numbers for the first three even and odd modes:
mode; even mode; + asymptotic solution.

odd

We note in passing that the Fourier series method was about 40 times faster
than the direct numerical method. The results of our calculations for the Taylor
vortex problem were also checked against the results in [8], with agreement to
the accuracy stated above. Figure 1 shows the curves of T against L for the first
three even and odd modes for the Dean problem Q = 0. These neutral curves
show interlacing similar to the Taylor vortex solutions.

In the limit L —> oo, Blennerhassett and Hall [8] found T could be expanded

as
(6.1)
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with

and

= (1/4)MV, M = 1,2,3,...

(6.2)

(6.3)

where (kCoo, TCoo) is the minimum point on the neutral curve (see, for example,
Kachoyan [29] or Seminara and Hall [33]). The corresponding axial velocities in
the interior of the region are, at first order, proportional to terms such as, for
the odd mode and M = 2n - 1, n — 1,2,3,..., sin(kCooz) cos(|Mirz/L).

Evaluating (6.2) numerically for the Dean problem we obtain

T = 5161.8 + 1095.8M2/,-2 + . . . , M = l ,2 , . . . (6.4)

Values of T for various values of L using (6.4) are also plotted in Figure 1.

TABLE 5. Typical values of pncos(knL) for the Dean problem. T = 5600, L = 1.597.
Numbers in brackets denote multiplication by those powers of 10. These results are for the
odd solution.

n

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0ncos(knL)
0.1766

-0.1792
0.1177

-8.036(-2) + 7.945(-2)i
-8.036(-2) - 7.945(-2)i
-1.578(-2)

2.772(-3) + 1.337(-2)t
2.772(-3) - 1.337(-2)i
2.870(-2)
1.193(-2)+6.971(-3)i
1.193(-2)-6.971(-3)t

-2.136(-2)
1.235(-3) - 6.445(-3)i
1.235(-3) + 6.445(-3)i
9.904(-4)
5.332(-4) - 9.634(-5)i
5.332(-4) + 9.634(-5)i
2.003(-3)

Sample values of the eigenvectors /? are shown in Table 5. The accuracy of
each /?„ decreases as n increases, in some cases dramatically. In fact, when using
six terms in (3.1), /?ig say, is in general only order of magnitude correct. The
first few 0n's, however, (about 9) are correct to three significant figures and it is
expected that these will dominate the expansion (5.1). We note that the decay
/?„ -+ 0 as n —» oo is much more pronounced in Taylor vortex flow than Dean
flow.

Notwithstanding the above difficulties, it was possible to obtain the stream-
function to 2 — 3 significant figures using six terms in (3.1). As found previously,
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= 0

z = L

(a)

= 0

= 0

z = L (b)

2 = 0

= 0

= 1

= 1

z = L

(c)

(d)

FIGURE 2. Streamfunction contours for (a) first even mode, T = 5600, L = 1.681; (b)
second even mode, T = 5600, L = 3.188; (c) third odd mode, T = 6600, L = 2.783; (d) third
odd mode, T = 6000, L = 3.582.
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one figure is gained per extra pair of terms in (3.1) used. Some streamfunction
contours for the finite Dean problem are shown in Figure 2. In the case of in-
finite cylinders, the axial velocity is proportional to cos(kCooz), say, and hence
the cell boundaries are equally spaced planes z ^constant. The nature of the
eigenvalues of (2.8) and the form of the solution (5.1) clearly shows that we
cannot expect planar cell boundaries for the flow in the finite domain. Indeed
Figure 2 shows that the cell boundaries can be quite convoluted. Figure 2a is
typical of the streamfunction pattern obtained along the lowest even mode neu-
tral curve in Figure 1. The streamfunction pattern for the lowest odd mode
disturbance is similar to that of Figure 2a, but of course the plane z = 0 is
now a cell boundary. As L becomes large, the cells away from the ends of
the cylinder become more uniform in size, with cell boundaries becoming closer
to planes of the form z =constant, i.e. the flow pattern is becoming more like
that associated with infinite cylinders. In fact for every large L, the axial ve-
locity has the form cos(7T2:/2L) cos(kCooz) + o(l) for the lowest even mode, and
cos(7T2/2L)sin(fcCoo^) + o(l) for the lowest odd mode, as in [8]. The weak end
cells in Figure 2a appear to be the mechanism by which the number of cells in
the flow changes as the length is increased. Increasing L from the value appro-
priate to Figure 2a causes the end cell to increase in strength and size until it is
roughly the same size as the cells in the interior of the flow. Further increases
in L cause the birth of a new weak cell at the ends, with this new cell usually
appearing in the corners.

The higher neutral curves are a feature not present in the infinite cylinder
case. Figures 2b, c and d show streamfunction contours for some higher modes
and it is seen that quite different flow patterns are possible. A "double cell" is
shown in Figure 2c and in Figure 2d there is a "weak cell" away from the ends
of the cylinder. The origin of these structures is best explained in terms of the
large L limit as in [8]. In this limit the axial velocity, say, has the form

or
cos((2n -I- l)irz/2L) \ J cos(fcCooz)

sm(mrz/L) J \ sin(fcCoo z)J I sir

The weak cell and double cell structures are produced by the interaction of
the zeros of the modulation and the zeros of the infinite cylinder solution (see
[8] for further details).

Experimental observations and computations on the finite Dean problem in-
dicate that flow patterns corresponding to the higher modes described above
are not observed. This is also true of the Taylor problem. However, weak end
cells and flows with an odd number of vortices have been observed in the Taylor
experiments (Benjamin [3]) and we suspect that they could exist for the Dean
problem.
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Of our results, it is the lowest-mode neutral curve which is important for
comparison with experiment. It is this curve which defines the Taylor number Tc

at which a purely azimuthal flow first becomes unstable to perturbations with a
vortex structure. In an experiment, where the ends of the cylinder are stationary
rigid boundaries, any vortices present for T <TC will be confined mainly to the
ends, driven by the imbalance in centripetal pressure gradients. Over most of the
length of the cylinder the flow will be approximately azimuthal. For T slightly
greater than Tc, we predict that the whole length of the cylinder will be filled
with vortices. A nonlinear analysis is required to predict the strength of the
resultant vortices for T >TC. The higher modes in this linear theory may then
have some effect on secondary bifurcations from the vortex flow. However, it is
our conjecture that flow patterns as in Figure 2c, d would all be unstable, and
hence not experimentally observable.

The nonlinear analysis for the resultant vortex flow is presented elsewhere
(Kachoyan [28]). We note that the critical Taylor numbers Tc found here are
consistent with the results of Winters [38], who solved the full equations nu-
merically. Winters also used bifurcation detection and continuation methods to
follow the solution branches as the parameters were changed, and the results of
Kachoyan [28] agree qualitatively with the numerical work of Winters. This and
other aspects of the nonlinear problem are discussed in detail in Kachoyan [28].

Acknowledgement

The majority of this work was supported by the Commonwealth Postgraduate
Awards Scheme at the University of New South Wales.

Appendix A

The polynomials of Section 4 are

3T / 3 5 7 6 x7 9 8 x9 xio

+ 8 V 20* + 30* " 42 " 56* +~9~lb

31Tx2 / 31T\ 3 39 4 39 5

1480 + ( 1 3 + 3360

E. (L* _ L
8 \,40 35

.123 8 _19 9 _ 109 xll _ x ^
560 504 840 15 90
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2
T3x16 T3x15 99T3x14 211T3i13 67T3x12

+ + +614400 + 76800

2 7 T 3 i u

2609152 5591040 + 1720320

13T2x9 117T2x8

104800 143360 81920

31T3x7 65r2x7 3 i r 3 x 6

+ 1505280 + 896 ~ 614400

9T2x5 3T2x4 317T3x

1280 2560

13T2x6 93T3i5

320 2867200

T2x 31T2 T
1280 256 111820800 + 10752 53760

3ao 3 W -
T3a:17 8699T3x16 4439T3x15 449T3x14

+ +
204800 521830400

2603r3x13 529T3x12

195686400 + 52183040

61T2xn 9T3x10

+ +37273600 + 5734400 57344 + 7040 + 819200

61T2x10 31T3x9 361T2x9 1829T3x8 2 i r 2 x 8

+ +1280 2257920 3840 40140800 320

31T3x7 207T2x7 93T3x6

627200 8960

317T3x3 r 2 x 3

55910400 + 5376 + 8

93T2x 3Tx
35840 + 4

+
9T2x5 39Tx4

5734400 + 512 512 16

39r3 317r3x2 129T2x2 51Tx2

+ 74547200 35840 I6

Appendix B

The elements in the nth column and 3j — 2, 3j - 1, 3jth rows of the matrix
B in (5.5) are given by

p = i

3 j - l , n = CJn COS knL,
oo

B3 j , n = Tk sin knL J2 Cpn{Kpjkl [A{
2
p) (1 + ( -1) J + 1 cosh kn)

P=i
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where
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p + j odd;

p + j even,

p + j odd;

and all other quantities are as given by Kachoyan [29] with a = 0.
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