<<{\,\\ Compositio Math. 140 (2004) 1176-1190

$ )
/// DOI: 10.1112/S0010437X04000521

N

Multiple zeta functions: the double sine function and
the signed double Poisson summation formula

Shin-ya Koyama and Nobushige Kurokawa

ABSTRACT

We construct multiple zeta functions as absolute tensor products of usual zeta functions.
The Euler product expression is established for the most basic case ((s,F,) ® ((s,Fy)
by using the signed double Poisson summation formula and the theory of the double sine
function.

1. Introduction

A zeta function is usually considered to be a meromorphic function, satisfying a functional equation,
with an Euler product expression over generalized primes. There should be an associated relation
between the two sets of important objects {zeros, poles} and {generalized primes}. Such a duality
is usually written as an explicit formula or a trace formula.

In this paper we try to study a new kind of zeta function constructed from ordinary zeta functions
using zeros and poles. We require that the zeros or poles of the new zeta function are sums of zeros
or poles of the original zeta functions. We call such a new zeta function a multiple zeta function.

We are interested in the ‘Euler product expression’ for this new zeta function for two reasons.
The first reason is the discovery itself of a new Euler product. The second reason is that, as in
the case of the usual zeta functions, we would obtain some information on zeros and poles of the
new zeta function via its Euler product. This might lead to a new result on zeros and poles of
the original zeta functions.

The problem is non-trivial even in the simplest case, constructed from the Hasse zeta functions
of two finite fields or from the Selberg zeta functions of two circles. In this paper, we use the theory
of multiple sine functions to obtain a neat Euler product for this case.

In a forthcoming paper, we will establish the Euler product for the ‘double Riemann zeta func-
tion’, constructed from two copies of the Riemann zeta function. For that case, the Euler product
can be obtained through an extension of our method based on the signed double explicit formula.

We now describe our results in more detail. Let

2j(s) = [T (s = )

peC

be ‘zeta functions’ expressed as a regularized product, where
m; :C—Z

denotes the multiplicity function for j = 1,...,r. (Later, we will specify the ‘zeta functions’ to
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MULTIPLE ZETA FUNCTIONS

be treated.) We define the absolute tensor product (Z; ® --- ® Z,.)(s) as

(Zl Q& ZT)(S) = H (3 — (Pl 4+t pr))m(l’hnwﬁr)

P1,--pr€C
with
1 Im(p;) 20 (j=1,...,7),
m(p1,....pr) =ma(pr) - -me(pr) x § (=1)""" Tm(p;) <0 (j=1,...,7),
0 otherwise.

This definition originates from [Kur92a]. We also refer to the excellent survey of Manin [Man95].
The notation of the regularized product is due to Deninger [Den92]; see [HKWO03] for the required
regularized products. The absolute tensor product was studied by Schréter [Sch96] under the name
of ‘Kurokawa tensor product’.

We are especially interested in the case of Hasse zeta functions Z;(s) = ((s,A;) for rings
A1, ..., Ar. We recall that the Hasse zeta function ((s, A) of a ring A is defined to be

¢(s,4) =1 = N(m)~)~

where m runs over maximal left ideals of A up to the following equivalence:
m; ~ my <= A/m; and A/mjy are isomorphic as left A-modules,

and N(m) = # End g mod(4/m) (see [Kur96] and [Fuk98]). For a commutative ring A, the above
function ((s, A) coincides with the usual Hasse zeta function

(s, 4) = [ = N@m)=)~",
when m runs over maximal ideals of A and N(m) = #(A/m).

For simplicity, we write
C(S)Al Q- AT) = C(Sv Al) - ® C(Sv AT)

Actually, as was explained by Manin [Man95], we expect that our multiple zeta function would be
the zeta function of the ‘absolute tensor product’

Al ®F1 e ®F1 ATJ

that is the tensor product over the (virtual) ‘one element field’ F; (see [KOWO03] for the absolute
mathematics over ‘Fy’). In any event, we note that ((s, 41 ® --- ® A,) has the following additive
structure on zeros and poles: if ((s, 4;) =0 or oo and Im(s;) (j =1,...,r) all have the same sign,
then ((s1 4+ + 8,41 ® - ® A,) =0 or co.

Such an additive structure was crucial in the study of Hasse zeta functions of positive character-
istic (congruence zeta functions) pursued by Grothendieck [Gro77] and Deligne [Del74], where Euler
products were important for restricting the region of zeros and poles and reaching the analogue of
the Riemann hypothesis.

We expect that our multiple zeta functions also have Euler products of the following form:
<(37A1)®~'.®<(S7A1”) = H H(ml,...,mr)(N(ml)_s7”’7N(ml)_s)'
(m17“"m’f)

Here the m; run over the maximal (left) ideals of A; and H(w,, . m,)(T1,...,T;) is a power series
in T1,...,T, of the constant term 1 with a possible degeneration at (mj,...,m,) when N(m;) =
N(m;) for some i # j. More generally, we expect that the multiple zeta function Z1(s) ®--- ® Z,(s)
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has an Euler product
Z1(s) @ ® Zy(s) = 11 Hippy(N(p1) ™% N (p,) ™)
(pl,...,pr)€P1><~~~><PT

when each zeta function Z;(s) has an Euler product

Zi(s) = 1] H)(N(p)™)

pEP;
and satisfies a functional equation; here H,Z(T ) is a power series in T and H,, . (T1,...,T;) is
a power series in (77,...,7,) with a possible degeneration at (p1,...,p,) when N(p;) = N(p;) for

some i # j.
In this paper we investigate

C(Sa Fp & Fq) = C(Sa Fp) & C(Sa Fq)

for primes p and g. We prove that it has a kind of Euler product expression in terms of the
polylogarithm
o0 a’:n
Lig(z) := Z oF
n=1
and its variations. Note that the original ‘Euler product’ is

Gy = (=) = i) = exp (S0 ) = expLiat)),
n=1
where
Hy(T)=(1-T)"" =exp <Z %) = exp(Liy (T)).

n=1
We use the following notation for two functions F(s) and G(s): F(s) = G(s) if there exists a
polynomial Q(s) satisfying F(s) = eQ®)G(s).
THEOREM 1. For distinct primes p and q, the following expression holds in Re(s) > 0:
C(5,Fp) © (5, Fg) = (1= p )2 (1= ¢7%)"/?

1 <X cot(mn(logp/logq)) _ 1 <X cot(mn(log g/logp)) _

n=1 n=1

Remark 1.1. We see that ((s, Fp) ® ((s, Fq) is essentially Hp7q(p_s, g~*) with
Hp oy (T1, To) = (1 — T1)2(1 — Tp)/?

) n n

1 o= cot(mn(logp/logq)),, , 1 o= cot(mn(logg/logp)), .,

><exp< Z T1+2—2.Z T3 ),
n=1 n=1

which is indeed a power series in T and T5 as we expected.

Remark 1.2. Recently, Akatsuka [Aka03] calculated ((s,F,)®((s,Fq) ®((s,F;) for distinct primes
p, ¢ and r. For ((s,F,,) ® --- @ ((s,Fp,.) see [KW04].

We prove Theorem 1 by showing a corresponding expression for the double sine function.
We recall the multiple sine functions studied in [Kur91l, Kur92a, Kur92b, KK03a], and we use
the multiple Hurwitz zeta function due to Barnes [Bar04]

[e.e]

CT(S7Z7£) - Z (nlwl+"'+nrwr+z)_s

ny,...,nyp=0
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for w = (w1, ...,w;). The definitions of the multiple gamma function and the multiple sine function

are as follows:
—1
)-(oee)
s=0 n>0

(50 = Tulese) Do+ 4 =200 = ([mew2) (- z>)(_1)H.

n>0 n->1

Ie) = o0 (G o)

When r = 2, we have w = (w1, w2) and
Sa(z, (wi,w2)) = Tz, (wi,ws)) ' Ta(w1 + wy — 2, (w1, ws)).
We say that a real number « is generic if and only if
lim ||mal//™ =1,
m—00
where we put ||z|| := min{|z — n|: n € Z} for x € R. For example:
1) if « € (QNR)\ Q, then « is generic;

2) let 2,y € QNR; if @« = logz/logy ¢ Q, then « is transcendental and generic [Bak75,
Theorem 3.1].

THEOREM 2. Let wy and we be positive real numbers. Assume that w;/we and wo/wy are both
generic. Then the double sine function has the following expression in Im(z) > 0:

Sa(z, (wi,ws)) = exp ! ilcot Th2 ) e2mik(z/w1) 4 15 lcot L ) g2min(z/w2)
Y 2 k w1 2i Z=n wa

log( 27rz(z/w1)) 2 log( 27rz(z/w2))

n mz2 w1 n 1 + w9 + +3
_ _ [ Z _ _
2Qwiws 2 \wi;  we 12 W) w2

2 2
((5,Fp) ®((s,Fy) = S5 (is’ (%’ é))

by Proposition 4.1 below, Theorem 2 directly implies Theorem 1. Now the main step in proving
Theorem 2 (and hence Theorem 1) is to establish the following signed double Poisson summation
formula, which is a special case of signed multiple explicit formulae.

Since

THEOREM 3. Let H(t) be an odd function in L'(R) with H(t) = O(t~?) as |t| — oo, and put

= / H(t)e™ dt.

Assume that a/b and b/a are both generic and that the test function H(t) satisfies
H(z) = O(u®) (1.1)
as x — oo for some 0 < p < 1. Then we have

> a(=(5+5))+ <ZH(%> > (i)

k,n>0 n>0

_ _i_i cot <wk—bc‘> _n Zcot <w—> (nb) — ;a—bH’(O). (1.2)

n>0

1179

https://doi.org/10.1112/50010437X04000521 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000521

S. KovyaAMA AND N. KUROKAWA

We prove Theorem 3 in § 2 using a method that goes back to Cramér [Cral9] (see also [Den98,
Vor03]). Then we prove Theorem 2 by applying Theorem 3 in § 3. We show Theorem 1 from
Theorem 2 in § 4. Finally, we treat ((s,F,) ® ((s,Fp) in § 5. Our method of using the signed
multiple explicit formula is applicable to general multiple zeta functions. In fact, in a forthcoming
paper we will calculate the double Riemann zeta function ((s) ® ((s) using this method.

2. Signed double Poisson summation formula

In this section we prove Theorem 3.

LEMMA 2.1. Assume that « is generic. Then the power series
[ee]
Z cot(mna)z" (2.1)
n=1

converges absolutely in |z| < 1.

Proof. As « is generic, we have ||[na ™! = O(e"") as n — oo for any & > 0. Since cot(nz) ~ 1/(7z)
as x — 0, we have cot(mna) = O(e*") for any € > 0. O

Proof of Theorem 3. We use Cramér’s method from [Cral9]. Put Z,(s) = sinh(as/2) and Z,(s) =
sinh(bs/2). Let Dr be the region defined by

Dr = {8 eC ‘ |s| > a,|Re(s)| < a,0 < Im(s) < T}

with 0 < @ < min{27/a,27/b}. By Cauchy’s theorem for an odd function h which is regular in Dy,
we have

S hipt [ e 120 (611 25 (5,) dsy d (2.2)
(Pa + pb) 27”.)2 ons Jon, 81 T 82 7. 51 7 $2) sy as2, .

0<Im(pa)
Im(py)<T

where p, and p, denote the zeros of Z,(s) and Z,(s), respectively, and the integrals along 0D are
taken counter-clockwise. Considering the limits as 7' — oo of both sides of (2.2), we have

Z/
Z h(pa + pb) 27‘1’2 / / (s1+ s2) (81)71)(82) dsy dss, (2.3)
Im(pa ), Im(pp) >0 obJob

where
D = {8 eC ‘ |Re(s)| < a,|s| > a,Im(s) > O}.
We decompose 0D = C7 U Cy U C3 with
Ch = {S € 0D ‘ Re(s) = —a}, Cy = {s € 0D ‘ |s] :a}, Cs = {s € 0D ‘ Re(s) = a}.

We compute each double integral I;; = (1/(2mi)?) [ fc in (

First we treat the 1ntegral along the vertical lines:

Z! 7!
Is3 = (2n)2 / / h(2a+ it +t2))Z (a+zt1)72(a+it2)dt1 dts. (2.4)
Note that
Z/
7, (Oé +Zt1 _ 2 + aze—ka a+ity)
1180
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and
/

Zb - _ b S —nb(a+titz)
Z(a+2t2)—§+b26 2),

n=1
We define
H,(t) = h(2a + it).

Then (2.4) can be written as

Z €k nab/ / H —ka a+zt1) —nb(a+i(t—t1)) dty dt,

k n=0
where we put
i k=n=0,
€k = % k=0n#0ork+#0,n=0,
1 otherwise.
Thus
H —zkat —mbt
Z ek ne—(ka+nb / ) dt
k o —i(ka — nb)
ka;énb
a_b Z e —2kaa ootH ¢ —ikat dt 2.5
2 ke,n€ alt)e . (2.5)
k>0 0
ka=nb
Similarly, we compute
H zkat _ inbt
Z €k ne (ka+nb)a / ) dt
ke, >0 k:a —nb)
ka;énb
ab o ,
— 5 Y kne F / tH o (—t)et et dt. (2.6)
k,n>0 0
ka=nb

By (2.5) and (2.6) we have

ab 3 © H (t)(e—z'kat o e—z’nbt)
I Jan — —— (ka—l—nb)a/ [e3 dt
s = k%() Ehn€ e —i(ka — nb)
kanb
b .
a Z k€ 2kaa/ tHa(t)e—zkat dt.
k ,n=0
ka nb
iab e—(ka—l—nb)a N N
=42 2 Sy (Haloka) = Ho(=nb))
kn>0
ka#nb
ab —_
+ 1 > ekne FLHL () (—ka).
k,n>0
ka=nb

The assumption that a/b is generic implies that the second sum consists of only one term with
k=n=0.
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Next we calculate I13. Since h(i(t1 + t2)) = Ho(t1 + t2) and Z/,/Z, is an odd function, we have

! Z,
it +12)) t to) dt; dt
(2mi)? // (t1 +12) Z( a+11)Zb(a+12) 1 dty
zkat —inbt 0o
= (ka+nb)a —e ) ab /
An? “hn dt + tHo(t) dt. o7
47T2 (k n%é:(o 0) e / ka + nb) 1672 J, o(t) (2.7)
Similarly,
ab —ikat __ einbt) ab 0o
o= g we” (et / dt / tHo(t) dt. 2.
T e > ekme” ]m+ 7 -2 - o5

(k,n)#(0,0)
Therefore, (2.7) and (2.8) lead to

iab e~ (katnba __ ~ iab —~
I+ I3 = -2 N (Ho(ka) — Ho(—nb)) — ~2_H, (0).
13 + 431 12 Z Ek, (ka—i—nb)( o(ka) o(—nb)) 1672 0 (0)
(k,n)#(0,0)
Letting o« — 0 gives
) iab flz)(ka)ka - E)(nb)nb iab —~
ilino(fu + I3z + 113+ I31) = 52 Z Ek,n 202 — 212 - @HO (0), (2.9)

(k,n)#(0,0)

since I%, = itHy(t).
Next we treat Iy := Is1 + Io9 + I23. We compute

1 1 Z! Z
= 2—7m <2—7T2 . h(s1 + s2)=* 7, % (s1) d81> 7[)(82) dsa

=5 /@Zh pa + 52) (82)d82,

where p, runs through the zeros of Z,(s) with Im(p) > 0. Putting sy = ae'®, we reach
, I 1
lim Iy = o / S hlpa)db = —5 > hipa). (2.10)
Pa Pa
We similarly deal with If := I1 + Iso + I3 to obtain
1
i 1= 45 bl 2

The integral Is2, which appears in both (2.10) and (2.11), tends to 0 as a — 0. Thus, taking (2.9),
(2.10) and (2.11) into account, (2.3) equals

iab E)(ka)ka - ﬁ;)(nb)nb iab ~/
"~ on2? Z “hon k2a? — n2b? @ ) Z Ho 27T 2 Z Ho (27T )
(k,n)#£(0,0) 2150 2050
Theorem 3 now follows from the formulae
2ka 1 T ka 2nb 1 T nb
D e a5 (”7) I Db R et <”z> . O
n>0 k>0

Remark 2.2. When we apply calculations of the above type, in the style of Cramér [Cral9], to zeta
functions Z;(s) and Z3(s) that have Euler products with functional equations instead of sinh(as/2)
and sinh(bs/2), we obtain the signed double explicit formula.

1182

https://doi.org/10.1112/50010437X04000521 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04000521

MULTIPLE ZETA FUNCTIONS

3. Expression of the double sine function
We prove Theorem 2 from Theorem 3.

LEMMA 3.1. We have
d? , > 1
= Joo(l — 9% = — - -
dz? og(1 — &) Z (z —2mn/a)?
n=-—o0o

Proof. Since

log(1 — €%*) = —% + % + log <2sm %)

and

QSln——azH <1— (%)>

we have

[e.e]

d2 zaz — 1 - 1 1 -
10801 =) =~ =3 (g * raar) = X G mr

n=1 n=-—00

Proof of Theorem 2. Apply the odd function
1 1
(z—1)2 (2+1)?

with z € C, Im(z) > 0, to our summation formula (1.2). As we have

H(t) =

H(z) = / H(t)e™t dt = 2mi Resy—.(H (t)e™") = —2rze'®

condition (1.1) is satisfied. Since H'(0) = —2, if we put

1
=2 < z —2m( k/a—l—n/b)) ; (z+27r(k/a+n/b))2>

kn>1

1

k> n>0

the summation formula (1.2) gives

o i ka 2 ikaz [ nb 2 inbz iab
—2Zcot<7rb>k:ae —I—Zz:cot(ﬂa)nbe —1-47r

k>0 n>0

; 1 1 nb\ 1ab
Z cot ikaz Z cot e inbz =
dz2<222 O( >e +222 CO( a>e >+47T

>0
Now we have (see [KK03a])

z H, Py(—z/(nqwy + nawo))

cote1ztegz? _Mm220

H Py(z/(njw1 + nows))

ni,n2=1

So(z,wi,wp) =€

1 1 1 1 1
i) 2 < (z — 27r (k/a)? (2 + 27r(k:/a))2> 3 2 ((z —2n(n/b))? (2 + 27T(n/b))2> ’

(3.1)

(3.2)

for Py(u) := (1 — u) exp(u + u?/2). Hence, setting ny = k, ng = n, w1 = 27/a and wy = 27/b, we
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have

d? 1 1 1
| = —— — —
dz 2 08 52( (wh W2)) 22 Z <(Z + njwi + HQWQ)2 (Z — (mwl + n2w2))2>

nl,n2>l
:F(z)—%k; m_%g—;mH@
=3 < Z—Co ( > gikaz | 212';;0%6% (W%b> pinb:
+t3 log(l — ') + 3 log(l - eib2)> +2¢y + Z‘—b (3.3)

where we have used (3.1) and Lemma 3.1. So, if we put

k .
E(Z) = log 52( (Wl,LUQ <21 Z k < LUQ> e27l'lkz/w1

i l Wy 2minz /w2 - _(2mi/wr)z 1 o (27i/we)z
+ ,chot <7r >e —|—2log(1 e )+2log(1 e ) ), (3.4)

it follows that d?E(z)/dz? is constant and that E(z) is a polynomial of degree 2.

Thus, we put E(z) = a + 2 + vz? and compute a, 8 and v. We first calculate $ and v by
considering

E(z +w) — E(2) = (Bwi + yw?) + 2ywi 2. (3.5)
It follows from (3.4) that (3.5) equals

Sa(z 4w, (wi,w2)) 1 1 nwt\ , ori i
1 ) ) - Z cot Tl Tinwi /wa 1 Tinz/wa
o8 Sa(z, (wi,w2)) 2i HZ: n T wo (e Je

_ %log(l _ e(27rz’/w2)(z+w1)) + %log(l o e(2m‘/w2)2)'

The sum over n is computed as

1 l cot < nwl) (627rmw1/w2 . 1)62m'nz/w2 _ _% Z 1(1 + e27rinw1/w2)e27rinz/w2
0

ZZ w2 n>0

= %log(l _ e(27rz’/w2)(z+w1)) + %log(l . e(?wi/wg)z)'

We use formula (2.4) from [KKO03a] to obtain

A

1
= S1(z,wo) ! = <2 sin —>

SQ(Z + wi, (wl, wg))
SQ(Zﬂ (whw?))

w2

Hence, (3.5) is equal to

—log <2 sin ﬂ—) + log(1 e(%i/“’?)z) = —log <2 sin E) + log <—2@e(m/“2) sin E)
w9 w2 w2

oW
2wy
Therefore, we have
Bwi + ywi = -~ and 2w = U
2 w2
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We thus obtain

w1 w2

Next we deal with « by considering

E(z)—kE(z—l—%)+E(z+%>+E<z+w1;w2>—E(Qz). (3.6)
The constant term of (3.6) is
w + wy)? ] w
3o+ Blw +wa) + —l+ﬂ+u =3a- (22424 3). (3.7)
4 4 4 4 \w1  w

On the other hand, we compute (3.6) by using (3.4). We write (3.6) as Z?:o A;, where

Sg(z, ((JJl,(JJQ))SQ(Z + w1/2, (wl, WQ))SQ(Z + WQ/Z, (wl, WQ))SQ(Z + (w1 + WQ)/2, (wl,WQ))

AO = log S (2 ( )) ’
2042, (W1, W
Al _ _% COt(W(k:2/w1)) <627:dlfz n eQﬂk (z_,_%) n eQSik (z+w—22) . QQZk (#i-%) B 642?2> |
1
k>0
A2 — _i Z Cot(ﬂ-(nw:[/WQ)) 6_27:2"_Z 4 e?z;n (Z+m—22) i 623;" (Z+%) + e%(zﬁ_%ﬁ) B e47;i;lz 7
2 n>0 n
1 (1 — eiiliz) (1 — e%ﬂli(z—i_%)) (1 — e%ﬂli(z—i_w%)) <1 — e%:rli(z'f‘wlgw))
Az = —ilog 1 - 7
1 (1 - G%Z) (1 - e%i(“g_l)) (1 - ei—?(“%) (1 - ei—’;i(w—“l;“?))
Av=—3 log dmi
2 1—ew2

Formula (2.5) from [KKO03a] gives Ay = 0. Next, A; is computed as follows:

1 1 k 2mikz 2mik wy 1 1 k Amikz
Al = —— — cot <7Tﬂ> (26 w1 4 e w1 (=+ 22)) + — — cot <7Tﬂ> e w1
1 w

2 k 1 22 k w1
E>0 k>
even
1 1 2kwsg 2mikwy kwo Amikz
= —— —(cot |7 14+e «1 —cot | m—— e “1
21 k w1 w1
k>0
1 1 2mikwy  4wikz
e —5 Ee w1 e v
k>0

= 1log (1 - e%(w%)) .
2
Here we have used the identity
cot 20(1 + %) — cot § = i
with 6 = m(kwa/wy). Similarly, Ay is calculated as
Ap = %log (1-e= 3,

The remaining terms are easily computed as

ﬂ( 1 Y2 w1

Agz—%log(l—e“’l ? 2)>, A4:—%log(1—e%(z+2)>.
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Hence we have deduced that (3.6) is equal to Z?zo A; = 0. Therefore, its constant term (3.7)

vanishes, which leads to

a=T (222 3). O
12 5 0%

Remark 3.2. The referee indicated that the method used above to prove Theorem 2 may be modified

as follows. Let R(z) be the quotient of the left-hand side by the right-hand side in Theorem 2.
Using the formulae
Sa(z, (w1,w2)) . T2 Sa(z, (w1,w2)) Tz

= 2sin —, = 2sin —
Sa(z + wi, (Wi, w2)) wy' Sa(z + we, (w1,w2)) wi

and exponential expressions for trigonometric functions, we see that R(z) is both wi-periodic and
wo-periodic. Hence R(z) is constant, since wq/wo is an irrational real number. To calculate the
constant function R(z) one uses the natural branch of log R(z) and evaluates

3log R(z) = Z log R(z +w) — log R(2z),
weT

where T' = {0,w1/2,w3/2, (w1 + w2)/2}. For this, one applies the following functional equation for
the natural branch of log S2(z, (w1, w2)) in the strip 0 < Re(z) < w1 + wa:

D log Sa(z + w, (wi,wa)) = log S2(22, (wi,ws)),

weT
which is immediate from the corresponding functional equation for the double Hurwitz zeta function.
Remark 3.3. The condition that we/w; and w; /ws are generic is similar to the ‘diophantine condition’

used by Connes [Con85] to calculate cohomologies for (irrational rotational) non-commutative tori.
The problem belongs to the category of so-called ‘small denominator problems’.

Remark 3.4. We easily see that

>omif1 1 T [we  wi
L T w2 Wi g e
2wiwy 2 <w1 i w2> ar ( o, T > miC2(0, 2, (w1, w2)),

Tz

which is a multiple Bernoulli polynomial of Barnes [Bar04].

Remark 3.5. The formula of Theorem 2 is valid for more general situations. For example, it holds
for arg(wg) < arg(z) < arg(wi) + 7 when 0 < arg(w;) < arg(wz) < m. We refer to [KW04] where
Sy(z; (w1, ..., wy)) is also treated.

4. The product {(s,F,) ® ((s,Fq) for distinct primes p and g

We first describe a convenient form of the absolute tensor product of some zeta functions. Let Z;
(7 = 1,2) be meromorphic functions of order p;. We put the Hadamard product as

m;(p)
Zi(s) = 14O B, (%) , (4.1)
peC

where P.(u) := (1 — u)exp(u + u?/2 + --+ + u"/r), m; denotes the multiplicity function with
kj :=m;(0), and Q; is a polynomial with deg@; < ;. Here the product over p € C means

' s\ (P)
dm T1 5, (5)

0<|p|<R

Assume, moreover, that Z; is one of the following: the Riemann zeta function, the Hasse zeta
function of a finite field, the Selberg zeta function of a circle and the Selberg zeta function of
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a Riemann surface. Then, by [HKWO03] and [KKSWO03|, the absolute tensor product originally
constructed as a regularized product turns out to be the following Hadamard product:

m(p17p2)

/ S

(Z1 @ Z2)(s) = sM1hz Q) I | Pyt o < > ) (4.2)
p1+ p2

p1,p2€C

where Q(s) is a polynomial with deg @ < p1 + po and

1 if Im(py),Im(pz) = 0,

m(p1, p2) = mi(p1)ma(p2) x ¢ =1 if Tm(p1),Im(p2) <0,
0 otherwise.

See [HKWO03] regarding the existence of the (re-)regularized product for multiple zeta functions and
[KKSWO03] for its relation to the Hadamard product. Our restriction to four specific zeta functions
can be weakened considerably by the method of [HKWO03]. It is worthwhile consulting [I1101, I1102]
for a study of regularized products.

Here we compute this absolute tensor product for Hasse zeta functions of finite fields,
Z1(s) = (s, Fp) = (1 =p~*)7", Zals) =C(s,Fg) = (1 —¢~*) 7,
with p, ¢ primes.
PROPOSITION 4.1. The absolute tensor product of Hasse zeta functions for finite prime fields is
given as
C(s,Fp) @ ((s,Fy) =257 <z’s, <%, %)) .

Proof. We easily compute the Hadamard product (4.1) for the Hasse zeta function, which is given
by

C(s,Fp) 2 571 ﬁ' P <m>_l.

n=—0oo

Thus, by (4.2),

k,n=0

’ s Mg n
F F,) = P
C(5,Fp) (s, Fy) Sklnlz 2 <(27ri/logp)k + (27i/log q)n>
with
1 ifkn>0,
211 211 .
Mpgpi=m|—~k —n|]=<¢-1 ifkn<0,
’ logp "loggqg
0 otherwise.
Hence
oo, s
H P . .
(2mi/log p)k + (2mi/log q)n

C(s,Fp) ®((s,Fyg) = s

H P <_ (2mi/log p)k + (27i/log q)n>

kn=1
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We use the r = 2 case of the formula of Proposition 2.4 from [KK03al:

[T Pa(—2/(wik +won))

kn=0
52(27 (w17w2)) =z noo :
[ P2/ (wik + wan))
kn=1
Putting z = is and w = (w1,ws) = (27 /log p, 27 /log q), we reach the proposition. O

Proof of Theorem 1. We take (wi,ws) = (27 /logp, 27 /logq) in Theorem 2. As remarked in § 1,
w1/we = (log q)/(log p) is generic, since p and ¢ are distinct primes. Thus Proposition 4.1 gives the
assertion of Theorem 1. O

Remark 4.2. By the same proof, Theorem 1 is also valid when p and ¢ are powers of distinct primes.

5. The product ¢(s,Fp) ® ¢(s,Fp)
In this section we treat ((s,F,) ® ((s,F)) for a prime number p.

THEOREM 4. Let p be a prime number. Then for Re(s) > 0 we have

G,y (5 Fy) = (1= o)t isoen/2r ey (22D, (5.1)

We prove Theorem 4 from the following result.

THEOREM 5. Let w > 0. Then for Im(z) > 0 we have

Sa(z, (w,w)) = exp Lt Lig(e?™/%) 4 i 2—2 _Z . > (1 — e2riz/wyl=2/w
T 271 22 w12 ’
Proof. We recall the formulae of the double sine function:
Sa(z, (w,w)) = So (g, (1, 1)) [KK03a, Theorem 2.1(c)]

-1
- (3) S (3) [KKO03a, Example 3.6].
w w
Here S,(z) (r = 1,2) are the primitive multiple sine functions [KK03a]. We have by definition
S1(z) = 2sinwz
and the expression [KKO03a, Theorem 2.8, (2.12)]
_ 1 : 2miz 2miz i 2 i
Sa(z) = exp <2m’ Lig(e“™*) 4+ zlog(1 — e“™%) 5 + 1
for Im(z) > 0. Then an easy calculation gives Theorem 5. O

Remark 5.1. As in Remark 3.4, we see that

2
5
i <2—w2 Iy E) = iGo(0, 2. ()
is again a multiple Bernoulli polynomial.

Proof of Theorem 4. Let z =is and w = 27 /log p in Theorem 5. U
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Remark 5.2. Theorems 4 and 5 can alternatively be proved in the same manner as Theorems 1
and 2. The Euler product (5.1) is deeply related to the generalized Kummer’s formula for the
double gamma function obtained in [KK03c].

Remark 5.3. For the case of powers of the same prime p, the calculation of the tensor product
C(s,F, 1) ®((s,F,), a generalization of Theorem 4, is described in [KKO03b].
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