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Monotonic series for fractions near π and their

convergents

STEPHEN K. LUCAS and AMRIK SINGH NIMBRAN 

We describe various methods to derive monotonic infinite series for
fractions near  and obtain a variety of series for the special case of its
convergents. These series immediately show that  is clearly different from
these fractions, replicating with series the results in Dalzell [1, 2] and Lucas
[3] that used integrals with non-negative integrands to represent the gaps
between  and fractions.
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1.  Introduction
Of all mathematical constants,  is the most interesting and best-known

transcendental number. Derived from a geometrical setting (ratio of the
circumference of a circle to its diameter), it appears in many contexts in
mathematics. Most early civilisations took 3 (a very crude approximation) as
the value of . Archimedes (287-212 BC) demonstrated geometrically that

. The fraction  has become almost synonymous with  in
the minds of laymen. The next famous fraction , good enough for most
practical purposes, was derived c. 470 by the Chinese mathematician Zu
Chongzhi (429-500) [4, pp. 82-84]. It was rediscovered in Europe by the
German mathematician Valentinus Otho in 1573 and by the Dutchman
Adriaen Anthoniszoon in 1585. Anthoniszoon first showed that

 and then averaged the numerators and denominators to
obtain the fraction for  [5, p.310, fn.7]. In 1767, the Swiss-German
mathematician J. H. Lambert proved by means of a continued fraction of the
tangent function and an argument of infinite descent that if  is a non-zero
rational number then  cannot be rational; since ,  cannot be
rational. It implies the irrationality of .
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Since the rational numbers are dense in the continuum of real numbers,

there are rational numbers as close as we wish to any irrational number. A
consequence of Dirichlet's approximation theorem [6, p. 34] states that for
any irrational number , there are infinitely many reduced fractions

 such that  . It was improved by Hurwitz to
. The source of best possible approximations of an irrational

number is its continued fraction [7]. The ‘best’ approximants are known as
convergents.
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The aim of this paper is to show how to represent the gap between
and a fraction by means of a monotonic series, extending the work of
Dalzell and Lucas. The first four convergents of  are: , , , .
Beukers [8] deals with the explicit construction of good rational
approximations to .
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The following series contain three well known convergents [9,
eqs(3.25)–(3.28)]:

∑
∞

n= 0

n22n

( ) =
1
2

(22 + 7π) ∑
∞

n= 0

n32n

( ) =
5
2

(22 + 7π) ∑
∞

n= 0

n42n

( ) = 355 + 113π,
2n
n

2n
n

2n
n

but the sign before the terms involving  is  and not  for measuring the
gap  and . Mathematical software (like WolframAlpha or
Mathematica) can evaluate such sums. For integer  we have:

π + −
22
7 − π 355

113 − π
m ≥ −1

∑
∞

n = 0

nm2n

( ) = r1 + r2π.
2n
n

with . But no value of  yields .r1, r2 ∈ � m 333 + 106π
 The serendipitous discovery by one of the present authors of (4) (see

later) led to the quest for such series. An inspection of existing formulae for
 revealed that such series do not occur naturally. We had to manipulate

certain series to obtain ‘tweaked’ series that measure the gap between  and
its convergents.

π

2.  A few alternating series for 22
7 − π

2.1 Euler's series. In a paper [10] presented to the St Petersburg Academy
on 25 April, 1737, Euler obtained a series made up of odd powers of odd
numbers which are not powers, the powers with odd exponents of the form

 being increased by one, and those with exponents of the form
 decreased by one, so that the denominators are mulitples of 4:
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⎪
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⎪

⎪

⎪

1
33 + 1 + 1

35 + 1 + 1
37 + 1 +…

− 1
53 − 1 − 1

55 − 1 − 1
57 − 1 −…

1
73 + 1 + 1

75 + 1 + 1
77 + 1 +…

1
113 + 1 + 1

115 + 1 + 1
117 + 1 +…

− 1
133 − 1 − 1

135 − 1 − 1
137 − 1 −…

+ 1
153 + 1 + 1

155 + 1 + 1
157 + 1 +…

…
As all the denominators are divisible by 4, he multiplied both sides by 4

and transposed 3 to the right and rewrote the series as

π = 3 +
1
7

−
1
31

+
1
61

+
1
86

+
1

333
+

1
547

−
1

549
−

1
781

+
1

844
−  … .

He commented: Quae series ideo notari meretur, quod eius duo primi
termini iam dent Archimedis proportionem peripharae circuli ad
diametrum. It translates as: “It merits to be noted that the two first terms of
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that series give Archimedes' ratio of the periphery of a circle to the
diameter.”

Note that the terms of above-noted series are irregular in sign and no
formula exists to represent its general term. Hence it is practically useless.
Further, since its terms alternate irregularly, it does not show
unambiguously that  is strictly less than .π 22

7

2.2  Dalzell's integral and rapid series
We refer here to the classic integral of Dalzell [1]:

π =
22
7

− ∫
 1

0

x4 (1 − x)4

1 + x2
dx,

whereby he established the famous inequality due to Archimedes. In a later
paper [2, eq(4)], he gave a rapid alternating series:

π =
22
7

− ∑
∞

n= 1
(1
4)n− 1⎡

⎢⎣
3(4n)!2

(8n + 1)!
+

(4n + 1)!2

(8n + 3)!
−

1
2

(4n + 2)!2

(8n + 5)!
−

(4n + 3)!2

(8n + 7)!
⎤
⎥⎦
.

We obtained an equivalent form with rate of convergence :1
1024

π =
1
45 ∑

∞

n = 0
(−1

4)n 1

( ) ( 3183
8n + 1

+
117

8n + 3
−

15
8n + 5

−
5

8n + 7)8n
4n

or

π
2

= ∑
∞

n = 0
(−1

4)n 820n3 + 1553n2 + 902n + 165

( ) (8n + 1) (8n + 3) (8n + 5) (8n + 7)
.

8n
4n

In addition, Dazell refined the earlier estimates by showing that

22
7

−
1

630
< π <

22
7

−
1

1260
;  

355
113

−
33
108

< π <
22
7

−
24
108

.

2.3  A similar series
We will now obtain a series of similar type (see [11]).

∑
∞

n= 0

1
bn(kn + c)

= bc/k ∑
∞

n= 0

1
kn + c ( 1

b1/k )kn+ c

= bc/k ∑
∞

n= 0

⎡⎢⎣
xkn+ c

kn + c
⎤⎥⎦

1/(b1/k)

0

= bc/k ∑
∞

n= 0
∫

1/(b1/k)

0
xkn+ c − 1dx = bc/k ∫

1/(b1/k)

0
∑
∞

n= 0

(xk)nxc − 1dx

= bc/k ∑
∞

n= 0
∫

1/(b1/k)

0

xc − 1

1 − xk
dx.

And on putting  in the integral on the right-hand side, we obtainb1/kx = y
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∑
∞

n = 0

1
bn (kn + c)

= b ∫
 1

0

yc − 1

b − yk
dy.

With ,  the last formula becomes becomesb = −4 k = 4

∑
∞

n = 0
(−1

4 )n 1
4n + c

= 4 ∫
 1

0

yc − 1

4 + y4
dy.

The corresponding indefinite integrals for , 2, 3 occur in [12, p. 86,
17.15.1, 2, 3], using which we get

c = 1

∑
∞

n = 0
(−1

4 )n
⎡⎢⎣

2
4n + 1

+
2

4n + 2
+

1
4n + 3

⎤⎥⎦ = π.

We observe that

∑
∞

n = 0
(−1

4 )n 1
4n + 6

= −4 ∑
∞

n = 1
(−1

4 )n 1
4n + 2

and

∑
∞

n = 0
(−1

4 )n 1
4n + 7

= −4 ∑
∞

n = 1
(−1

4 )n 1
4n + 3

,

so that

∑
∞

n = 0
(−1

4 )n
⎡⎢⎣

2
4n + 1

−
6

4n + 2
+

5
4n + 3

−
2

4n + 6
+

1
4n + 7

⎤⎥⎦

=
2
3

+ ∑
∞

n = 1
(−1

4 )n
⎡⎢⎣

2
4n + 1

+
2

4n + 2
+

1
4n + 3

⎤⎥⎦ = π −
8
3

.

This leads to

∑
∞

n= 1
(−1

4 )n
⎡⎢⎣

2
4n + 1

−
6

4n + 2
+

5
4n + 3

−
2

4n + 6
+

1
4n + 7

⎤⎥⎦ = π −
22
7

.

Fortuitously, collecting the terms leaves only a constant in the numerator
resulting in a neat expression:

π =
22
7

− ∑
∞

n= 1
(−1

4 )n 30
(4n + 1)(4n + 2)(4n + 3)(4n + 6)(4n + 7)

, (1)

which can be transformed into a series that consists of only positive terms:

π =
22
7

− ∑
∞

n= 1

30(768n3 + 1984n2 + 836n + 87)
16n(16n2 − 1)(64n2 − 1)(64n2 − 9)(4n + 3)(8n + 7), (2)

clearly showing that . Its rate of convergence equals .π < 22
7

1
16
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2.4  A slower series
The next series is comparatively slower:

π =
22
7

− ∑
∞

n= 2

(−1)n 24
(2n + 1)(2n + 2)(2n + 3)(2n + 4)(2n + 5)

. (3)

It comes from

∑
∞

n = 1

(−1)n − 1

(2n − 1) 2n (2n + 1) (2n + 2) (2n + 3)
=

10 − 3π
72

,

whose derivation is explained in [13, eq(3)] where it was converted into this
continued fraction:

6
10 − 3π

= 10 +
1 × 5

10 +
3 × 7

10 +
5 × 9

10 +
7 × 11
10 +…

.

Equation (3) can be converted into a series with positive terms only:

π =
22
7

− ∑
∞

k =1

240
(4k + 1)(4k + 2)(4k + 3)(4k + 5)(4k + 6)(4k + 7)

.

3.  Using cotangent series to derive series for ±π ∓ p
q

The series (3) was a sequel to the following series discovered by using
the cotangent series, but was published in [14] without derivation:

π =
22
7

− ∑
∞

n = 2

60
(4n2 − 1) (16n2 − 1) (16n2 − 9). (4)

Note that the sum begins with . The first term was extracted to get the
convergent . Though the series converges slowly, it is simple and elegant.

n = 2
22
7

We now explain a method to derive (4) and many more such series. We
begin with the Fourier series [15, p. 62] for  cos (μx)

cos(μx) =
2μ sin (μx)

π
⎡
⎢
⎣

1
2μ2

− ∑
∞

n= 1

(−1)n− 1 cos(nx)
μ2 − n2

⎤
⎥
⎦
,  − π ≤ x ≤ π,

where  is a fraction.μ
Setting  in the preceding Fourier series results in the series

expansion for the cotangent function:  
x = π

π cot (μπ) =
1
μ

− ∑
∞

n = 1

2μ
n2 − μ2

.

Special cases with  and  areμ = 1
2, 1

4
3
4

∑
∞

n= 1

1
4n2 − 1

=
1
2

;  ∑
∞

n= 1

1
16n2 − 1

=
1
2

−
π
8

and ∑
∞

n= 1

1
16n2 − 9

=
1
18

+
π
24

.
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We find after trial that no combination of these sums lead to (4). So let
us extract the first terms for each thereby getting

∑
∞

n= 2

1
4n2 − 1

=
1
6

;  ∑
∞

n= 2

1
16n2 − 1

=
13
30

−
π
8

and ∑
∞

n= 2

1
16n2 − 9

=
π
24

−
11
126

.

Combining them gives

∑
∞

n= 2

a
4n2 − 1

+
b

16n2 − 1
+

c
16n2 − 9

= ( c
24

−
b
8)π + (a

6
+

13b
30

−
11c
126).

Choosing  and  givesc =
210k − 35a − 728

12
b =

210k − 35a − 440
36

π = k − ∑
∞

n= 2

2
⎡
⎢⎢
⎣

⎤
⎥⎥
⎦

9(4n2 − 1)(16n2 − 1)(16n2 − 9) .  (5)

32(a + 210k − 656)n4 − 10(23a + 294k − 832)n2

−3(4a − 105k + 256)

We may now assign any fractional value to  and choose suitable parameters
to get a series for the fraction. With , the equation (5) becomes

k
k = 22 / 7

π =
22
7

− ∑
∞

n = 2

4 [16 (a + 4) n4 − 115 (a + 4) n2 − 3 (2a − 37)]
9 (4n2 − 1) (16n2 − 1) (16n2 − 9) .

Setting  gives (4). The choice  also yields another series
of (4) type but it is not as simple-looking.

a = −4 a = −7 / 2

3.1  A series and integral for π − 333
106

The next convergent in the continued fraction of  is 333/106, which is
so close to  that we need to pull one more term off our original cotangent
series, leading to

π
π

π =
333
106

+ ∑
∞

n = 3

3 (1136n2 − 7349)
371 (4n2 − 1) (16n2 − 1) (16n2 − 9). (6)

As the sum starts with , all terms are positive, . We
have this corresponding integral formula from Lucas [3]

n = 3 π > 333 / 106

π =
333
106

+ ∫
 1

0

x5 (1 − x)6 (197 + 462x2)
530 (1 + x2) dx.

3.2  A series and integral for 355
113 − π

We found that for the next convergent we need to extract the first eight
terms and the sum formula, unavoidably cumbersome, begins with .n = 9

π =
355
113

− ∑
∞

n= 9

2(39925136n2 + 259704581471)
113 × 76608285(4n2 − 1)(16n2 − 1)(16n2 − 9). (7)

It may be compared with the following result from Lucas [3]:
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π =
355
113

− ∫
 1

0

x8 (1 − x)8 (25 + 816x2)
3164 (1 + x2) dx.

4.  Using logarithmic series
  Integrating the Maclaurin series for  with  leads toln (1 − xd) d > 0

∑
∞

n = 1

1
n (nd + 1)

= − ∫
 1

0
ln (1 − xd) dx.

Since for natural numbers  and  we havep q

∑
∞

n = 1

1
n (pd + q)

= ∑
∞

n = 1

1
q

n {(p / q) n + 1} = −
1
q ∫

 1

0
ln (1 − xp/q) dx,

we can evaluate the integrals to form sums. Using the notation 

S(p,q) ≡ ∑
∞

n = 1

1
n (pn + q)

,

a few of the simplest results with coprime  arep, q

S(1,1) = 1, S(2,1) = 2 − 2 ln (2) ,
S(3,1) = 3 − 3

2 ln (3) − 3
6 π, S(3,2) = 3

4 − 3
4 ln (3) + 3

12 π,
S(4,1) = 4 − 3 ln (2) − 1

2π, S(4,3) = 4
9 − ln (2) + 1

6π,
S(6,1) = 6 − 2 ln (2) − 3

2 ln (3) − 3
2 π, S(6,5) = 3

8 − 3
8 ln (3) + 3

24π.

Some of these can be combined as

∑
∞

n = 1

a
n (n + 1)

+
b

n (2n + 1)
−

3 + b
3n (4n + 1)

+
3 − b

n (4n + 3)

=
9a + 2b − 24

9
+ π,

or

π =
24 − 9a − 2b

9
+

∑
∞

n = 1

⎡
⎢⎢
⎣

⎤
⎥⎥
⎦

3n (n + 1) (2n + 1) (4n + 1) (4n + 3) .

(96a + 16b + 48) n3 + (144a + 36b + 72) n2 +
(66a + 23b + 24) n + 9a + 3b

With ,b = −3
2 (1 + 3a)

π = 3 + ∑
∞

n = 1

(16 + 16a) n3 + (12 − 12a) n2 − (7 + 25a) n − 3a − 3
2n (n + 1) (2n + 1) (4n + 1) (4n + 3)

.

Good choices of  eliminate the  term, or form a numerator with a
common factor with the denominator that can be eliminated. We then get a

a n3

https://doi.org/10.1017/mag.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2022.70


MONOTONIC SERIES FOR FRACTIONS NEAR Π 307

number of series including

π = 3 + ∑
∞

n = 1

3
(n + 1) (2n + 1) (4n + 1)

,

the one described in [14].
Extracting terms and cancelling the cubic term in the numerator, we get

π =
22
7

−
3
71 ∑

∞

n = 1

8n2 + 292n + 143
4n (n + 1) (2n + 1) (4n + 1) (4n + 3)

. (8)

5.  Series via binomial expansions
5.1 Binomial coefficient in numerator

Euler got a series (with rate of convergence ) by using the expansion of
the arcsin function:

1
4

π = 3 + ∑
∞

n = 1

( )
(2n + 1) 24n.

2n
n

We obtained a series for  comprising more factors in the denominator:22
7

π =
22
7

− ∑
∞

n= 2

8(6n3 + 23n2 − 6n − 47)( )
(2n + 1)(2n + 2)(2n + 3)(2n + 4)(2n + 5)24n. (9)

2n
n

Recall the binomial series (−1 < x ≤ 1)

(1 + x)−1
2 = 1 −

1
2

x +
1 × 3
2 × 4

x2 −
1 × 3 × 5
2 × 4 × 6

x3 +  … .

Replacing  by , and multiplying by  leads tox −ym yr

yr

1 − ym
= ∑

∞

n = 0

( ) ymn + r

4n . (10)

2n
n

Integrating (10) with respect to  on , the sum replaces  by

. With  and , we get different sums involving

and/or  corresponding to various values of  which may be suitably be
combined to get desired result.

y [0, t] xmn + r

tmn + r + 1

mn + r + 1
m = 2 t = 1

2 π

3 r

Now to establish the sum noted above, take the partial fraction
decomposition of

6n3 + 23n2 − 6n − 47
(2n + 1) (2n + 2) (2n + 3) (2n + 4) (2n + 5)

which is
2

n + 1
−

3
4 (n + 2)

−
13

8 (2n + 1)
−

13
8 (2n + 3)

+
3

4 (2n + 5)
.
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On integrating the two sides of (10) for different values of , we obtain:r

r = 0 ⇒ ∑
∞

n = 0

( )
(2n + 1) 24n =

π
3

,
2n
n

r = 1 ⇒ ∑
∞

n = 0

( )
(n + 1) 24n = 8 − 4 3,

2n
n

r = 2 ⇒ ∑
∞

n = 0

( )
(2n + 3) 24n =

2π
3

− 3,
2n
n

r = 3 ⇒ ∑
∞

n = 0

( )
(n + 2) 24n =

64
3

− 12 3,
2n
n

r = 4 ⇒ ∑
∞

n = 0

( )
(2n + 5) 24n = 2π −

7 3
2

.
2n
n

Their combination followed by extraction of the two terms for
and  yields (9).

n = 0
n = 1

5.2  Binomial coefficient in denominator

Starting with the Maclaurin series for , putting  and

shifting index, lead to series such as

2x arcsin (x)
1 − x2

x = 1
2

π =
22
7

−
1

120 ∑
∞

n = 6

2n (n + 242)
(2n + 1) (2n + 3) ( ). (11)2n

n

Concluding remarks
We have derived a number of series for , ,  and

. These are just a few examples from some classes of formulas.
There are also other classes and each class has numerous formulas,
admittedly of increasing complexity. These include those derived by using
an infinite series for cosecant, and by means of the digamma function. It is
an open question whether formulas more neat and elegant than those
presented here exist, and if so how to find them.

π − 3 22
7 − π π − 333

106
355
113 − π

Acknowledgement
The authors thank the anonymous referee for the useful comments that

led to improvements in this presentation.

References
1. D. P. Dalzell, On 22/7, J. London Math. Soc. 19 (1944) pp. 133–134.
2. D. P. Dalzell, On 22/7 and 355/113, Eureka: The Archimedian’s

Journal 34 (1971) pp. 10–13.

https://doi.org/10.1017/mag.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2022.70


MONOTONIC SERIES FOR FRACTIONS NEAR Π 309

3. S. K. Lucas, Approximations to  derived from integrals with
nonnegative integrands, Am. Math. Monthly 116(2) (2009) pp. 166–172.

π

4. Li Yan and Du Shiran, Chinese mathematics: a concise history,
translated by J. N. Crossley and A. W. -C. Lun, Oxford University Press
(1987).

5. D. E. Smith, History of Mathematics, Volume II: Special topics of
Elementary Mathematics, Dover (1958).

6. W. M. Schmidt, Diophantine Approximations and Diophantine
Equations, Springer-Verlag (1991).

7. C. D. Olds, Continued Fractions, Random House (1963).
8. F. Beukers, A rational approach to , Nieuw Archief voor Wiskunde,

(December 2000) available at
π

http://www.nieuwarchief.nl/serie5/pdf/naw5-2000-01-4-372.pdf
9. T. Sherman, Summations of Glaisher- and Apéry-like Series (2000)

available at 
https://www.math.arizona.edu/~ura-reports/001/sherman.travis/
orig_series.pdf

10. L. Euler, Variae observationes circa series infinitas, Commentarii
academiae scientarum Petropolitanae 9 (1737), 1744, pp. 160-188. E72.
http://eulerarchive.maa.org/

11. A. S. Nimbran, Taylor series for arctan and BBP-type formulas for ,
Mathematics Student 84(3-4) July-December (2015) pp. 39-52.

π

12. M. R. Spiegel, S. Lipschutz and J. Liu, Mathematical handbook of
formulas and tables (3rd edn.), Schaum's Ouline Series, McGraw-Hill,
(2009).

13. A. S. Nimbran and P. Levrie, Some continued fractions for  and ,
Indian J. Pure Appl. Math. 48(2) (June 2017) pp. 187-204.

π G

14. A. S. Nimbran, Euler’s constant, harmonic series and related infinite
sums, Mathematics Student, 82(1-4) (2013) pp. 177-182.

15. R. Bhatia, Fourier Series, Mathematical Association of America,
Washington (2005).

STEPHEN K. LUCAS
Department of Mathematics and Statistics,

 James Madison University,
Harrisonburg, VA 22807, USA

e-mail: lucassk@jmu.edu
AMRIK SINGH NIMBRAN

B3/304, Palm Grove Heights, Ardee City,
Gurugram, Haryana, India 122003

e-mail: amrikn622@gmail.com
10.1017/mag.2022.70 ©  The Authors, 2022. Published by Cambridge University Press 
on behalf of The Mathematical Association. This is an Open Access article, distributed 
under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/) which permits unrestricted re-use, distribution, and reproduction in 
any medium, provided the original work is properly cited.

https://doi.org/10.1017/mag.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2022.70



