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Abstract

Background. Neurodevelopmental conditions are crucial risk factors for catatonia in pediatric
and adult populations. Recent case reports and studies have identified an increasing number of
genetic abnormalities likely contributing to catatonia. Catatonia associated with genetic abnor-
malities is challenging in terms of identification, chronicity, and resistance to treatment. In
addition, understanding these genetic abnormalities through identifying rare single nucleotide
and copy number variants may offer valuable insights into the underlying pathophysiology.
Methods.We conducted a systematic review of all genetic abnormalities reported with catatonia
and performed a gene-set enrichment analysis. Our systematic literature search for relevant
articles published through July 15, 2024, using combinations of “catatonia,” “catatonic syndrome,”
“genetic,” and “genes” in PubMed, yielded 317 articles. Of these, 94 were included, covering 374
cases of catatonia and 78 distinct genetic abnormalities.
Results.This review discusses the clinical presentation of catatonia for each genetic disorder, the
treatment strategies, and the putative underlying mechanisms.
Conclusions. The review highlights that catatonia underpinned by genetic abnormalities
presents specific clinical and treatment-response features. Therefore, we propose genetic testing
guidelines for catatonia and advocate for systematically investigating catatonia in several genetic
diseases. Regarding the pathophysiology of catatonia, the gene ontology of biological processes
reveals significant enrichment of variants in synaptic and post-synaptic regulatory genes,
particularly within GABAergic neurons, reinforcing the implication of the excitatory/inhibitory
imbalance. Finally, genetic variants are enriched inmicroglial cells, highlighting the role of brain
inflammation in triggering catatonia. This comprehensive insight could pave the way for more
effective management strategies for this condition.

Introduction

Catatonia is a life-threatening psychomotor syndrome observed in psychiatric disorders, such
as psychotic or mood disorders, alongside other medical conditions [1]. It is common in adult
psychiatric wards, with a prevalence ranging from 9 to 30% [1]. In children and young adults,
prevalence varies from 0.6 to 17% [2]. Moreover, its prevalence among neurodevelopmental
disorders is increasingly recognized [3, 4], and imaging studies point to anomalies in brain
development (i.e. deviation of sulcation and gyrification indexes) [5, 6] as a critical risk factor
for its emergence in pediatric and adult populations [2]. By proxy, genetic anomalies reported
in neurodevelopmental conditions have also been identified in catatonia with neurodevelop-
mental features [7] and in pediatric populations [8]. In addition, these neurodevelopmentally
associated-catatonia tend to exhibit heightened complexity in identification, chronicity, and
resistance to treatment [2, 9, 10]. Indeed, besides the DSM-5 criteria for catatonia (i.e. catalepsy,
stupor, waxy flexibility, agitation, mutism, negativism, posturing, mannerisms, stereotypies,
grimacing and echophenomena [11]), the onset of incontinence, regression in acquisitions or
worsening of pre-existing symptoms such as stereotypies and self-injurious behaviors are
frequent features of neurodevelopmentally associated-catatonia [2]. Notably, the established
diagnostic tool for catatonia, the Bush-Francis Catatonia Rating Scale (BFCRS) [12], lacks
consideration of specific clinical signs often observed in these cases, such as functional
regression [2]. Within this neurodevelopmental context, the catatonic episodes tend to be
chronic, lasting more than 12 weeks [13] and show suboptimal response to first-line treat-
ments, lorazepam and electroconvulsive therapy (ECT) [9, 14], due to poor drug tolerance but
also because the physical condition limits access to ECT [15, 16]. Identifying and treating
catatonic episodes linked to genetic anomalies is, therefore, a significant healthcare problem
that needs to be addressed.
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In addition, genetic abnormalities offer valuable insights into the
underlying pathophysiology [3, 17]. Genome-wide association
studies (GWAS) conducted on schizophrenia, bipolar disorder,
and autism spectrum disorder have pinpointed various genetic
polymorphisms linked to these conditions [18]. Some of these genes
significantly influence neurotransmitter signaling, brain develop-
ment, and synaptic function. An initial GWAS study involving
119 catatonia patients failed to unveil any specific single nucleotide
polymorphism (SNPs) tied to catatonia [19], mainly due to the
limited sample size. Much can be gained by investigating the rare
variants that have been extensively reported in neurodevelopmen-
tal condition [20]. A 2018 literature review [21] and a recent genetic
study [7] highlighted a wide range of genetic abnormalities associ-
ated with catatonia with several variants implicated in the GABA/
glutamate pathway. Excitation/inhibition (E/I) imbalance is a
strong hypothesis in the pathophysiology of catatonia that is sup-
ported by the efficacy of GABAA agonists (such as lorazepam) and
neuroimaging studies [22, 23]. Moreover, emerging evidence sug-
gests an autoimmune facet to catatonia [24, 25], wherein genetic
elements associated with immune system dysregulation and dys-
immunity could contribute.

Hence, characterizing genetic abnormalities may provide valu-
able insights into catatonia’s underlying mechanisms and pave the
way formore effectivemanagement strategies for these challenging,

treatment-resistant catatonic episodes. In this systematic review, we
aim to update the subject with a systematic review of all the genetic
abnormalities reported as leading to catatonia in light of the
increasing number of case reports over the last years and to perform
a gene enrichment analysis to refine our understanding of the
pathophysiology.

Methods

A systematic literature search was conducted for articles, including
case reports, describing subjects with catatonia and genetic abnor-
malities. We applied the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guideline [26] and declared
the review in Prospero (ID: CRD42024526691). We used PubMed
and followed up on the references cited in the papers that were thus
identified. The following keywords were used: (catatonia or cata-
tonic syndrome) and (genes or genetic or variants or mutations).
All relevant articles published up to July 15, 2024, were included
(Figure 1). The database search was done on 15 July 2024. Papers
were included in the systematic review if (a) they were published in
an English-language peer-reviewed journal; (b) the study enrolled
patients with catatonia; (c) the study described one or more cases of
patients with catatonia and genetic anomalies.We excluded reviews
and case series that did not provide data on individual patients.

Records identified from:
Pubmed (n = 317)

Identification of studies via databases

Records removed before screening:
Records removed for other reasons (n = 47) no original data

Records screened (n = 270) Records excluded
(n = 147)

Reports assessed for eligibility
(n = 123) Reports excluded:

Periodic catatonia (n = 29)

Studies included in review
(n = 94)

Sc
re

en
in

g
In

cl
ud

ed
Id

en
tif

ic
at

io
n

Figure 1. Flow chart.
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Articles in line withWernicke–Kleist–Leonhard catatonia (N = 29)
were also excluded from the analysis as the definition does not fit
the DSM-5 catatonia criteria [11]. Following PRISMA guidelines,
two different reviewers (MM and WG) searched, selected, and
included articles. In case of disagreement, the other authors had
to make the decision.

For each report, we collected the following information: age,
underlying pathology, episode characteristics, treatment used, and
the catatonia diagnostic scale (Table 1). All data were extracted
on 20 July 2024.

We used the PhenoGram software [27] (http://visualization.
ritchielab.org/phenograms/plot) to represent graphically the gen-
etic abnormalities linked to catatonia (Figure 2).We used the String
software (http://string-db.org) for a map of interaction (Figure 3)
and theMetascape software [28] (https://metascape.org) to identify
the biological processes and the cell type enrichment (Figure 4).

Results

Ninety-four articles met the criteria for our systematic review
(Figure 1). This corresponds to 374 cases of catatonic syndrome
and 78 different genetic abnormalities, as described in Table 1 and
Figure 2. Below, we extensively describe the conditions where
multiple cases of catatonia have been reported

Down syndrome: trisomy 21

Patients with trisomy 21, or Down’s syndrome, which has an
incidence of 1 in 800 births [29], are at risk of developing a
catatonic syndrome. The risk of having a catatonic episode, which
is often chronic, occurs during adolescence and is generally
accompanied by behavioral regression [30, 31]. This behavioral
regression, known as Down syndrome regression disorder, has
been increasingly described in the literature in recent years, and a
recent international experts consensus has established diagnostic
criteria, including a criterion for catatonia [32]. Some studies
highlight the effectiveness of immunomodulatory treatments, e.-
g. intravenous immunoglobulin (IVIg) infusions, which are effect-
ive in 85% of cases [33, 34]. This robust IVIg response rate is
intricately linked to the well-documented autoimmune context
inherent to Down syndrome [35]. Patients with Down syndrome
regression disorder exhibit a heightened prevalence of auto-
immune conditions compared to those with Down syndrome
without regression, as evidenced by elevated inflammatory mark-
ers in their bloodstream [36]. A recent study has detected 365 auto-
antibodies in the plasma of individuals with Down syndrome,
some targeting the central nervous and immune system [35]. This
increased vulnerability to catatonia in these patients reinforces the
hypothesis of brain inflammation as a potential causative factor in
catatonia [24, 25].

Phelan-McDermid syndrome: SHANK3 gene

Phelan-McDermid syndrome is a rare condition characterized by
deletion or mutation within the SHANK3 gene in chromosome
region 22q13.33. The prevalence of this syndrome is currently
unknown. However, it is estimated that approximately 0.5% to
1% of ASD cases with intellectual disability are caused by PMS
[16]. The prevalence of catatonia within this syndrome reaches 53%
[37]. Fifty-one cases of Phelan-McDermid syndromewith catatonia
have been reported in the literature see Table 1. Haploinsufficiency

of SHANK3 appears to be a risk factor for catatonic syndrome
[38]. SHANK3 encodes a scaffolding protein of the postsynaptic
density of glutamatergic excitatory synapses. Deficiency of this
protein causes hypofunction of NMDA receptors (NMDAR)
[39]. The Phelan-McDermid syndrome with catatonia model fur-
ther supports the overarching hypothesis of glutamatergic system
hypofunctionality in catatonia, a concept advanced by several
authors, especially concerning the intricate balance between GABA
and glutamate neurotransmitters [23]. Furthermore, it is essential
to note that all episodes of catatonia noted within Phelan-
McDermid syndrome exhibit a chronic course (>12 weeks) and
limited response to conventional therapeutic approaches. In this
syndrome, benzodiazepines such as lorazepam can increase impul-
sivity, psychomotor excitation, confusion, and insomnia, limiting
the use of this treatment [16]. Several alternative treatments have
been tried in Phelan-McDermid syndrome with catatonia, such as
lithium [40] and transcranial direct current stimulation (tDCS) in 4
patients with good efficacy and safety [41]. tDCS is postulated to
enhance glutamatergic synaptic function through the induction of
sustained long-term potentiation, thereby fostering metaplasticity
that can persist for weeks [42].

Di George syndrome: 22q11.2 deletion

Di George syndrome, also known as 22q11.2 deletion syndrome,
occurs in approximately 1 in 4,000 births, and is characterized by a
deletion of variable size in the 22q11.2 region [43]. A total of
21 cases of 22q11.2 deletion syndrome is reported in the literature
(Table 1) is most likely underestimated, given the well-known
prevalence of psychotic and mood disorders among 22q11 dele-
tion syndrome [44], as well as variousmotor abnormalities [45]. A
less expected case of catatonia has been described in a 22q11.2
duplication [38]. Themanagement of catatonic syndrome in these
patients appears to be challenging. In Butcher and colleagues’ case
series, few patients were treated with the specific treatment for
catatonic syndrome, i.e. lorazepam and ECT, and the efficacy was
variable. Two were unsuccessfully treated with IVIg for suspected
encephalitis, and four patients had a poor outcome, including
malignant catatonia [21]. The other case report shows a good
response to ECT but highlights the difficulty of diagnosing cata-
tonia with BFCRS in these patients with 22q11.2 deletion syn-
drome [46]. The 22q11.2 region involves about 90 genes,
including 46 protein-coding genes, pseudogenes, non-coding
RNAs, and microRNAs [47], in particular, the PRODH gene,
which encodes a mitochondrial enzyme involved in balancing
GABA/glutamate transmission [21, 48]. A case of catatonia asso-
ciated with a missense mutation in the PRODH gene has been
reported in the literature [8] (Table 1). This gene may be essential
in developing catatonic symptoms in patients with 22q11.2 dele-
tion syndrome. In addition, immune dysregulation has been
highlighted in this syndrome, which appears to be associated with
neuropsychiatric manifestations with elevated levels of pro-
inflammatory cytokines, complement activity, increased neutro-
phils, and blood-brain barrier dysfunction [25]. This underlying
neuroinflammation presents an additional avenue of risk for
catatonia development, potentially synergizing with the influence
of the PRODH gene.

Kleefstra syndrome: EHMT1 gene

Kleefstra syndrome emerges from the haploinsufficiency of
EHMT1 due to either a deletion at 9q34.3 or pathogenic variants

European Psychiatry 3

http://visualization.ritchielab.org/phenograms/plot
http://visualization.ritchielab.org/phenograms/plot
http://string-db.org
https://metascape.org


Table 1. Genetic abnormalities reported in catatonia

Genetic anomaly Genes implicated Catatonia case Age Scale Treatment References

21 Trisomy (Down syndrome) Multiple 142 cases adolescence / Lorazepam and ECT in
some cases. tDCS in 2
cases. IVIg effective

[7, 8, 31, 33, 38,
110–122]

22q11.2 deletion (DiGeorge
syndrome) and 1 duplication

Multiple 21 cases / / Lorazepam and ECT in
some cases. 2 were
unsuccessfully treated
with IVIg

[21, 38, 46, 114,
123]

22q13.3 deletion or mutation
(Phelan Mc-Dermid
syndrome)

SHANK 3 51 cases adolescence / Lorazepam not tolerated
Lithium in some cases
ECT in some cases
tDCS in 4 cases

[7, 8, 37, 38, 40,
41, 124–133]

15q11-q13 (Prader-Willi
syndrome)

Multiple 9 cases / BFCRS Lorazepam + ECT [55, 56, 134, 135]

Huntington disease CAG repeat HTT 6 cases mood disorder
or psychosis

57; 20; 26;
62; 38; 16

BFCRS; PCRS ECT effective [8, 59, 136–138]

Kleefstra syndrome EHMT1 6 cases 18, / PCRS ; / / [8, 49]

Heterozygous pathogenic
variant

GABRB2 1 case ASD ID and
chronic catatonia

17 DSM5 + BFCRS Lorazepam + ECT [139]

Pathogenic frameshift variant HIVEP2 2 cases including 1 MC 22 / 1 case: Lorazepam no
effect amantadine badly
tolerated

Celecoxib + quetiapine
effective

Other case: MC treated
with ECT

[140, 141]

Heterozygous full deletion VAMP2 1 MC 33 / Lorazepam not tolerated
Treated with ECT

[142]

Baraitser Winter syndrome ACTB and ACTG1 2 cases 18 / / [143]

Heterozygote pathogenic
variant

CACNA1A; CACNA1D 1 case of dementia
1 case with adverse
effect on ECT

9; 14 / Lorazepam not sufficient.
Treated with ECT

[144, 145]

15q duplication Multiple 1 case with ASD / DSM5 ECT [114]

3q13.13 intragenic deletion / 1 case with ASD / DSM5 ECT [114]

9p24.2 deletion / 1 case with ASD / DSM5 ECT [114]

X28q duplication / 1 case with ASD / DSM5 ECT [114]

Pathogenic variant SYNJ1 1 case co-occurring
with PMS with ID
and recurrent
catatonia

19 / Alprazolam, Lithium, and
Levodopa

[126]

Stop-gain mutation RCL1 1 case with very early
onset psychosis

14 DSM5 Clonazepam [146]

Heterozygous variant mTOR 1 case ID and ASD 19 BFCRS Lorazepam not tolerated
Treated with ECT

[147]

Pitt-Hopkins Syndrome TCF4 1 case ID and ASD 23 / ECT [148]

De novo missense variant NLGN2 1 case with ASD and
chronic catatonia

21 / Clonazepam + aripiprazole [149]

Aicardi-Goutières syndrome
homozygous

RNASEH2B
SAMHD1

1 case with
leucoencephalitis.

1 case with ID,
psychosis andDegos
like skin lesions

15; 19 DSM5 + BFCRS treated with
methylprednisolone
then prednisone
combined with
mycophenolate mofetil
and hydroxychloroquine
then
immunoadsorption (22
courses)

[101, 102]

Missense variant TBK1 1 case of catatonia
with post infection
psychosis

/ / / [105]

Continued
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Table 1. Continued

Genetic anomaly Genes implicated Catatonia case Age Scale Treatment References

Rett syndrome MECP2 1 case with ID early-
onset parkinsonism,
and VSGP + 1 case
male with epilepsy
+ 1 catatonia and
regression + 20
catatonia like
behavior

17; 17 / DSM–5 and
BFCRS;
ABQ; PCRS

Lorazepam effective;
tDCS; lorazepam effective

[2, 68–70]

S93L mutation MLC1 1 case with bipolar
disorder and
catatonia

17 / Olanzapine + Sertraline [150]

Fragile X syndrome
trinucleotide repeat
expansion CGG >200 and 1
premutation career

FMR1 1 case with ADHD and
ASD

1 case with neuro-
lupus

1 premutation career
with ADHD, ASD, BP,
OCD, Tourette
syndrome and
recurrent chronic
catatonia + 8 cases
of catatonia like
behavior

18; 21; 25; / DSM–5
BFCRS
ABQ

1 case: Lorazepam partial
improvement

3 cases treated with ECT
8 cases: /

[62–65]

Cornelia de Langes syndrome Multiple 10 cases of catatonia
like behavior

/ ABQ / [63]

15q11 with SNORD 115 mRNA CRHR1, PBRM1, TAF1,
DPM2, RALGPS1

3 cases 9; /; / / Lorazepam effective for
one case

[57]

Fatal familial insomnia (FFI) PRNP 1 case with mood
disorder, and
insomnia

18 / Worse with BZD and ECT [8, 151]

4 missense mutations (P406L,
R431H, Q19P, R185W)

PRODH 1 case with ASD, ID,
schizophrenia and
seizures

14 PCRS / [8]

Mucopolysaccharidosis de type
III (Sanfilippo syndrome)

Multiple 1 case with ID, ASD and
dementia

18 PCRS / [8]

16p13.1 duplication PDXDC1, NTAN1, RRN3,
PKD1P6-NPIPP1,
NPIPA5, MPV17L,
BMERB1, MARF1,
NDE1, MYH11,
ABCC1, ABCC6

1 case with ASD,
schizophrenia and
catatonia

16 PCRS / [8]

8p23.3 deletion DLGAP2, CNL8 1 case with ASD 17 PCRS / [8]

2q22.1 deletion THSD7B 1 case with ID, ASD and
seizures

19 PCRS / [8]

13q33.1–34 deletion DAOA, EFNB2, ARGLU1,
FAM155A, LIG4,
ABHD13, TNFSF13B,
MYO16, IRS2

1 case with hemostatic
disorder, ID, and
seizures

14 PCRS / [8]

2q36 deletion DOCK10, NYAP2 1 case with ID and ASD,
seizures

15 PCRS / [8]

6q25.2–27 deletion PRKN 1 case with anti-NMDA
receptor
encephalitis

17 PCRS / [8]

Xp22.33 duplication CRLF2, ASMTL, PERY8 1 case with ID, ASD,
and seizures

19 PCRS / [8]

21q21.1 duplication
6q14 duplication
Xq25 deletion

No coding gene
No coding gene
No coding gene

1 case with ID, BP 14 PCRS / [8]

Ala202Val;
Gln1557*

SCN2A 1 case with seizure
1 case with ID and
recurrent catatonia

4; 20 PCRS Corticoids not very
effective. Treated with
lorazepam.

IVIg not effective,
lorazepam + ECT

[152, 153]

Continued
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Table 1. Continued

Genetic anomaly Genes implicated Catatonia case Age Scale Treatment References

Hexanucleotide repeat
expansion

C9orf72 2 cases with MDD. 65; 67 BFCRS Antidepressant,
Aripiprazole,
Lorazepam, and ECT

[154–156]

14q11.2 duplication SUPTH16, CDH8 1 case with
schizophrenia and
seizure

50 DSM–5 Clozapine [38]

2q36.1 duplication SGPP2, FARSB, MOGAT1 Concomitant with DS / DSM–5 ECT [38]

16p11.2 duplication SLC7A5P1, SPN, QPRT,
C16orf54, ZG16,
KIF22, MAZ, PRRT2,
MVP, CDIPT, SEZ6L2,
ASPDH1, KCTD13,
TMEM219, TAOK2,
HIRIP3, INO80E,
DOC2A, C16orf92,
TLCD3B,
CTD2515O10.6,
PPP4C, TBX6, YPEL3,
GDPD3, MAPK3

1 case with neuro-
syphilis, seizure and
SSD

/ DSM–5 Lorazepam [38]

14q11.2 duplication ZNF219, TMEM253,
OR5AU1, HNRNPC,
RPGRIP1, SUPT16H,
CHD8

1 case with seizure and
SSD

/ DSM–5 Clozapine [38]

Pathogenic variant c.2565del CHD8 1 case of catatonia and
regression following
viral infection in ASD

13 / Resistant to Lorazepam,
ECT and
immunomodulatory
medications

[157]

16p13.13 duplication SNX29, CPPED1 1 case with psychosis / DSM–5 Lorazepam [38]

16p13.11p12.3 duplication NPIPA1, PDXDC1,
NTAN1, RRN3,
NPIPA5, MPV17L,
BMERB1, MARF1,
NDE1, MYH11, CEP20,
ABCC1, ABCC6,
NOMO3

Chronic catatonia with
skill regression, ASD
and DI

21 / / [7]

17p13.3 duplication SLC43A2, SCARF1,
PRPF8, RILP

1 case with psychosis / DSM–5 ECT [38]

Klinefelter extra X chromosome Multiple 1 case with BP and MC 42 / ECT [73]

Missense mutation KCNT1 5 cases / / / [158]

Nonsense mutation HARS 1 case with psychosis / / / [159]

Missense mutation MMACHC 2 cases, 1 with
psychosis

15 ; 14 / Betaine,
hydroxycobalamine

[80, 81]

G6PD deficiency G6PD 2 cases, 1 with mood
disorder and
recurrent catatonia,
1 with MC

35; 19 BFCRS Lithium; ECT [77]

Wilson disease ATB7B 5 cases with MC 22 ; 12 ; 19 ;
19 ; 18

MRS ; BFCRS Penicillamine Zinc BZD
Lorazepam failed, treated

with ECT

[87–90]

MTHFR deficiency MTHFR 1 case with psychosis
1 case with MDD

34 ; 18 BFCRS 1 case treated with betaine
1 case with ECT and AD

[83, 84]

Acute porphyria HMBS 2 cases with psychosis 46 ; 14 / Treated with ECT [91, 92]

Cerebrotendinous
Xanthomatosis

CYP27A1 1 case with seizure 20 / Chenodeoxycholic acid +
HMG-CoA reductase
inhibitor + valproate

[95]

Niemann-Pick Disease Type C
heterozygous mutations

NPC1 1 case with recurrent
catatonia and VSGP

23 BFCRS Lorazepam paradoxal
response

Treated with ECT

[97]

GM2 gangliosidosis (Tay-Sachs
disease)

HEXA 2 cases: 1 with SSD, 1
with ID

17 ; 14 / Lorazepam [99, 100]

Continued
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of EHMT1 [49]. The prevalence is unknown [49]. Six cases of
catatonia in Kleefstra syndrome have been described in the litera-
ture (Table 1) in the context of regression of abilities. Little is known
about the therapeutic approach for catatonia in these patients.
EHMT1 orchestrates histonemethylation and facilitates gene silen-
cing. Alongside EHMT2, it plays a pivotal role in synaptic scaling
[50]. A study involving excitatory cortical neurons derived from
induced pluripotent stem cells obtained from Kleefstra syndrome
patients exhibited EHMT1 deficiency-triggered NMDAR hyper-
activity [51]. Furthermore, insights from a Kleefstra syndrome
mouse model illuminated elevated expression of specific inflam-
matory genes, including IL-1b, alongside an increase in activated
microglial cells within the brain, thereby underscoring the presence

of cerebral inflammation in these patients [52]. The predisposition
to catatonia within Kleefstra syndrome might be linked to the
perturbation of the E/I balance within a neuroinflammatory cere-
bral milieu.

Prader-Willi syndrome: 15q11-q13 region

Catatonia has been reported in Prader-Willi syndrome, associated
with lack of expression of paternally inherited imprinted genes in
the chromosome 15q11-q13 region generally caused by a paternal
deletion or maternal disomy in with both chromosomes 15 being
inherited from the mother [53]. Prader-Willi syndrome occurs in
approximately 1 in 15,000 individuals. Neuropsychiatric features

Table 1. Continued

Genetic anomaly Genes implicated Catatonia case Age Scale Treatment References

Nonsense variant (SHINE
syndrome)

DLG4 1 case early onset SSD 13 / Clonazepam and clozapine [160]

Variant of unknwon significance KIDINS220 1 case chronic
catatonia in ASD and
DI

18 / Clonazepam [7]

Variant of unknwon significance SORCS1 1 chronic catatonia
with ASD DI and
seizure

13 / BZD and ECT [7]

Variant of unknwon significance STAG1 / / / / [7]

IQGAP3

STARD9

CSMD1

NAA15

2p16.3 deletion NRXN1 Chronic catatonia with
ASD DI

16 / BZD [7]

Kallmann syndrome PROK2 Chronic catatonia in
ASD DI seizure and
regression

12 / Lorazepam ECT [7]

18p11.32p11.21 Multiple + pathogenic
variant in
TNFRSF13B

Chronic catatonia and
ASD and DT1,
hashimoto
thyroidisme

17 BFCRS Lorazepam ECT
Then IVIg, mycocophenolic

acide and
hydroxychloroquine

[7]

Xp22.31 deletion PUPD, STS, VCX,
PNPLA4

Chronic catatonia
regression and ASD

17 / Lorazepam and ECT [7]

Cohen Gibson syndrome EED Catatonia with
overgrowth, ID,
seizure

49 / / [161]

Pathogenic variant KCNQ1 Catatonia and
psychosis

15 / Lorazepam [162]

Duplication ADCY8 Catatonia and ASD and
psychosis

16 / Lorazepam and ECT [162]

3p26.3-p26.2 intragenic
deletion and 2q21.1
duplication

CNTN4 ; GPR39, LYPD1 Catatonia and mood
disorder

15 / Lorazepam and ECT [162]

mtDNA MELAS MT-TL1 Acute catatonia post
“stroke like
episode”; acute
catatonia and MDD

41; 17 DSM-IV Lorazepam and
haloperidol;

escitalopram and
methylphenidate

[107, 108]

Note: With ‘/’= not available or not relevant.
Abbreviations: ABQ, attenuated behavior questionnaire; ADHD, attention deficit hyperactive disorder; ASD, autism spectrum disorder; BFCRS, Bush Francis catatonia rating scale; BP, bipolar
disorder; BZD, benzodiazepines; DS, Down syndrome; ECT, electroconvulsive therapy; ID, intellectual disability; IVIg, intravenous immunoglobulins; MC, malignant catatonia; MDD, major
depressive disorder; MRS, modified Rogers scale; OCD, obsessional compulsive disorder; PCRS, pediatric catatonia rating scale; SSD, schizophrenia spectrum disorder; tDCS, transcranial direct
current stimulation; VSGP, vertical supranuclear gaze palsy.
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Figure 2. Location of genetic variants and small deletions and duplications reported in catatonia. The main phenotypes associated with catatonia are shown in color. The name of the gene or the size of the deletion or duplication is
indicated next to it. ID = intellectual disability; ASD= autism spectrum disorder. The circle corresponds to mitochondrial DNA.
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are common in this condition, with anxiety and compulsive
behaviors being the most prevalent [54]. The use of lorazepam
can be challenging in these patients with extreme obesity and
obstructive sleep apnea syndrome with a higher risk of dyspnea
[53]. ECT treatment seems to be somewhat effective [55, 56]. The
gene region implicated in Prader-Willi syndrome also includes the
brain-specific, non-coding, Small Nucleolar Ribonucleic acid C/D
box 115-1(SNORD 115). SNORD 115 dysfunction, reported in 3
case reports [57], is hypothesized to contribute to catatonia across
various neuropsychiatric disorders, including autism, schizophre-
nia, bipolar disorder, and major depressive disorder, as well as
genetic and immune-related conditions through the regulation of
five downstream genes: CRHR1, PBRM1, TAF1, DPM2, RALGPS1

and the alternative splicing of serotonin 2C receptor [57]. TAF1 and
DPM2 provide potential clues about parkinsonism and increased
creatine phosphokinase in neuroleptic malignant syndrome, while
abnormalities in RALGPS1 suggest links to both anti-NMDAR
antibody encephalitis and the SHANK3 gene, which is known to
predispose to catatonia.

Huntington’s disease: HTT gene

Huntington’s disease, caused by an expanded CAG trinucleotide
repeat in the HTT gene encoding a non-functional huntingtin
protein [58], is often associated with psychiatric features in addition
to motor dysfunction. It occurs approximately in one in 7,300

Figure 3. Gene network mapping for the 50 variants reported in catatonia.
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individuals [58]. Catatonia in Huntington’s disease is described in
five cases in the literature in the context of concurrent schizophre-
nia andmood disorders with good response to ECT. ECT should be
widely offered to patients with catatonia in Huntington’s disease.
However, the diagnosis is difficult to make in patients whose
psychiatric manifestations precede their motor symptoms by sev-
eral years [59].

X-linked syndrome

Fragile X syndrome: FMR1 gene
Fragile X syndrome is related to a number of CGG trinucleotide
repeats >200 in the FMR1 gene’s promoter region. The prevalence
of the full Fragile X syndromemutation in the general population is
estimated to be approximately 1 in 5,000 males and between 1
in 4,000 and 1 in 8,000 females [60]. Expansions between 55 and
200 repeats are defined as a premutation, and its relationship with
neuropsychiatric symptoms is discussed [61, 62]. A case series
described eight patients with Fragile X syndrome with “catatonia-
like behaviour” scored by the attenuated behaviour questionnaire
(ABQ) [63]. Unfortunately, treatment was not described in this
study. In addition, the ABQ scale used, which was developed to
describe patients with ASD and catatonic symptoms, seems to
overestimate the prevalence of catatonia and, to be less specific,
with correlations with depression and repetitive/restrictive

behavior. Moreover, a case of Fragile X syndrome and a neuro-
lupus with catatonia is reported with a good response to ECT
[64]. A male with a premutation has been described alongside
ASD and ADHD associated with catatonia and a good response
to ECT [65]. ECT appears to be well tolerated and effective in
Fragile X syndrome or premutation careers – the FMR1 expansion
results in reduced levels of Fragile X mental retardation protein
(FMRP). The absence of FMRP leads to the downregulation of
GABA-A and B receptors and the upregulation of glutamate recep-
tors. This disruption in the balance of GABA/glutamate levels could
likely predispose these patients to catatonia [65].

Rett syndrome: MECP2 gene
Rett syndrome results from a methyl CpG binding protein 2
(MECP2) gene mutation. This disorder predominantly impacts
girls, accounting for 95 to 97% of cases and has a prevalence of
fewer than 1 in 200,000 individuals [66]. Its hallmark features
encompass developmental regression coupled with movement dis-
orders, notably hand stereotypies [67]. Within Rett syndrome, an
array of additional movement disorders has been documented,
including a rigid akinetic syndrome prevalent in older patients.
One case of catatonia in a primary school-aged girl with Rett
syndrome was associated with new-onset incontinence in addition
to posturing, waxy flexibility, rigidity, staring and grimacing and was
resolved with 8mg of lorazepam [2]. Catatonia has been described in

Figure 4. Gene ontology biological processes and cell type signatures of the 50 variants reported in catatonia. p-values are corrected for multiple testing and the colors represent
the p-value magnitude, with darker shades indicating smaller p-values.
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two 17-year-old males with MECP2 deficiency [68, 69]. In males
carryingMECP2 variants, intellectual deficiency is associated with
parkinsonism features [68]. One presented with a catatonic epi-
sode resolved with lorazepam, alongside a vertical supranuclear
gaze palsy [68]; the other had recurrent lorazepam-resistant cata-
tonia and was successfully treated with tDCS [69]. A noteworthy
conjecture arises that several individuals with Rett syndrome and
presenting parkinsonism features might be misdiagnosed and
potentially could be suffering from catatonia. Using the ABQ
scale, 32 patients diagnosed with Rett syndrome were evaluated
[70]. Of this group, 20 exhibited catatonia-like behaviors. Rett
syndrome is primarily a synaptic disorder, andMECP2 deficiency
impacts excitatory and inhibitory synapses, leading to an elevated
E/I ratio in animal model [71].

Klinefelter syndrome: extra X chromosome
Klinefelter’s syndrome arises from the presence of one or more
additional X chromosomes (i.e. 47XXY). Its incidence is approxi-
mately 1 in 750 births [72]. A case of catatonia is described in a
42-year-old patient with Klinefelter’s syndrome and bipolar dis-
order [73]. The presentation was rather severe, with malignant
catatonia coupled with respiratory failure and effectively treated
with ECT. Association between the extra X chromosome and
psychiatric disorders has long been known with, in particular, an
increased risk of psychotic disorders [74]. However, very few cases
of Klinefelter syndrome with catatonia have been reported, prob-
ably due to the underdiagnosis of both Klinefelter syndrome and
catatonia.

Inborn errors of metabolism

Inborn errors of metabolism are linked to genetic mutations,
resulting in deficiencies in metabolic enzymes and leading to the
accumulation or reduced excretion of protein, carbohydrates, and
lipids. These diseases are most often diagnosed in early childhood,
although milder forms occurring in adolescence and adulthood
may be marked by psychiatric manifestations [75]. Inborn errors
of metabolism are individually rare, however, more than 1,000
types have been identified, with a combined prevalence of approxi-
mately 1 in 800 to 1 in 1,000 individuals [75]. Lahutte and col-
leagues have compiled a list of inborn errors of metabolism likely
associated with catatonia [76]. We present inborn errors of metab-
olism and catatonia cases documented in the literature (Table 1).
Two cases of G6PD deficiency were associated with catatonia [77]
and, in particular, one with malignant catatonia requiring ECT.
G6PD deficiency has been associated with psychiatric disorders,
notably psychosis andmood disorders [78]. It is relatively common,
with an estimated global prevalence of over 500 million individuals
[79]. Among treatable diseases, two cases of cobalamin C deficiency
leading to hyperhomocysteinemia presented with catatonia in two
girls of 10 and 15 years old [80, 81]. In both cases, catatonia
regressed with the specific treatment of hydroxocobalamin, betaine
and carnitine. Cobalamin C deficiency occurs in approximately
1 in 100,000 live births [82]. In addition, 2 cases of MTHFR
deficiency also led to hyperhomocysteinemia in two girls, 34 and
18 years old. One was treated with betaine, yielding limited effect-
iveness, while the other underwent ECT [83, 84]. MTHFR defi-
ciency is the most frequent folate metabolic disorder although the
incidence is very rare( <1/400,000) [85]. Regarding Wilson’s dis-
ease, with an estimated incidence of ~1 per 7,000 individuals [86],
five cases of catatonia have been reported, including onemarked by
malignant catatonia [87–90]. These cases raised diagnostic

challenges, and in four cases, identifying the Kayser–Fleischer ring
facilitated accurate diagnosis and the proposal of targeted treat-
ments. Indeed, cases were effectively treated with the specific
therapy based on penicillamine and zinc in addition to a benzodi-
azepine, with one case necessitating ECT. In addition, two cases of
acute porphyria, with catatonia alongside psychosis exhibited sig-
nificant improvements with ECT [91, 92]. Acute porphyria has an
estimated incidence of 10 per million [93]. A case of cerebrotendi-
nous xanthomatosis, incidence 1 in 50,000 [94], and catatonia was
effectively treated with the specific treatment of chenodeoxycholic
acid and HMG-CoA reductase inhibitor coupled with valproate for
seizure control [95]. A case of Niemann-Pick type C disease,
incidence 0.82/100,000 [96], is reported in a 23-year-old boy who
exhibited recurrent catatonia alongside neurological manifest-
ations like vertical supranuclear gaze palsy [97]. Finally, two cases
of GM2 gangliosidosis, also known as Tay–Sachs disease, incidence
of one in 320,000 births [98], were reported, and catatonia in these
cases was alleviated with lorazepam [99, 100].

Interferonopathies

Catatonia has been described in two patients with Aicardi–Gou-
tières syndrome [101, 102]. Aicardi-Goutières syndrome is an
autosomal recessive encephalopathy within the type 1 interfero-
nopathies characterized by increased type 1 interferon (IFN)
signaling[103] with an incidence less than 0.7600/100,000 live
births [104]. Both cases presented with neurodevelopmental
delay associated with bilateral basal ganglia calcifications on CT
scan. One had typical skin lesions. In one case, the catatonic
syndrome was successfully treated with immunoadsorption
(22 treatments over 8 weeks) [101]. Another case of catatonia
was described in a woman with post-infectious psychosis and a
TBK1 variant [105]. TBK1 upregulates type 1 IFN transcription
genes. Type 1 IFN is essential as an antiviral cytokine and regu-
lates innate and adaptive immune responses. Dysregulation of
IFN signaling could play a key role in triggering the cerebral
inflammation that leads to catatonia [25].

Mitochondrial DNA mutation

Catatonia has been documented in two cases involving mitochon-
drial DNA mutation, the MELAS (mitochondrial encephalopathy
with lactic acidosis and stroke-like episodes) syndrome, prevalence
of 16 to 18/100,000 [106]. A 41-year-old woman presented with
catatonia following stroke-like episodes (SLE) [107], a hallmark
symptom of MELAS driven by ictal activity leading to a range of
neurological and psychiatric manifestations. The catatonic episode
was successfully resolved with benzodiazepines. In another case, a
patient with MELAS exhibited acute catatonia in the context of a
major depressive disorder, which responded well to antidepressant
treatment [108]. Psychiatric symptoms are prevalent in mitochon-
drial disorders ranging from 6 to 28%, including anxiety,mood, and
psychosis disorders [109], and are likely to be related to a dysfunc-
tion of the brain’s respiratory chain. Antipsychotics must be cau-
tiously considered, both typical and atypical, as they have been
shown to inhibit complex I of the respiratory chain, potentially
exacerbating the symptoms [109].

Clinical and therapeutic overview

Of 353 cases with a complete clinical description, 241 cases (68%)
had a chronic or recurrent presentation, and 14 cases (4%) presented
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with malignant catatonia. Of 311 cases with documented treatment
data, 261 cases (84%) showed a poor response to lorazepam, and
135 cases (43%)were treated with ECT, in contrast to the typical 70%
good response rate to lorazepam in catatonia [1]. Only three were
reported to be treated with clozapine.

Enrichment analyses

This systematic literature review identified 50 genetic variants
associated with catatonia alongside 23 small-scale duplications
and deletions. In our analysis, we have excluded genes encompassed
by deletions and duplications, as it is challenging to determine
which subset of genes plays a significant role in catatonia. The
50 genetic variants exhibit high interconnectivity, suggesting a
potential convergence of shared biological processes, as illustrated
in Figure 3. Theprotein-protein interaction revealed pathway enrich-
ment in postsynaptic membrane organization (p = 6.31×10�13),
positive regulation of excitatory postsynaptic potential (p = 10–12),
and receptor clustering (p = 5×10�12). The variants are enriched in
genes involved in behavior (p = 2 × 10�15), social behavior (p = 2 ×
10�12), regulation of transmembrane transporter activity (p = 3.63 ×
10�11), synapse organization (p = 1.2 × 10�10) and neuromuscular
process (p = 1.1 × 10�10) (Figure 4). These genes are mainly
expressed in GABAergic (p = 1.5 × 10�4), serotoninergic (p = 1 ×
10�4), dopaminergic (p = 2 × 10�4), and excitatory (p = 1.6 × 10�3)
neurons as well as in microglial cells (p = 5 × 10�3) (Figure 4).

Discussion

In this review, we reported all the genetic anomalies associated with
a catatonic syndrome described in the literature to date. This
analysis included 94 articles with 374 cases of catatonia and 78 dis-
tinct genetic anomalies.

Firstly, regarding clinical presentation, this review highlights
that catatonic episodes associated with genetic abnormalities
exhibit a chronic course in 241 cases (68%). Additionally, typical
clinical signs of catatonia may be absent, with behavioral regression
often being a predominant feature. A recent review article proposes
assessing a personalized score at baseline based on the BFCRS and
the pediatric catatonia rating scale (PCRS) [163] to facilitate diag-
nosis and assessment of response to treatment [2]. In addition,
some cases of catatonia with genetic abnormalities have been
described in neurodegenerative disorders such as C9orf72, associ-
ated with frontotemporal dementia, and in Huntington’s disease,
reinforcing the importance of looking for genetic abnormalities also
in neurodegenerative disorders in line with the known associated
vulnerability between neurodevelopmental and neurodegenerative
disorders [164].

Concerning the therapeutic aspect, in the majority of cases
(261 cases; 84%), lorazepam proved inadequate in alleviating
catatonia, exhibiting reduced efficacy or poor tolerance. Electro-
convulsive therapy was frequently used (135 cases; 43%) and was
mostly effective but limited by its restrictive access [15, 165]. Thus,
although ECT should be widely offered [166], alternative treat-
ments must be discussed. Although only three cases of catatonia
were treated with clozapine with significant improvement, cloza-
pine appears to be well tolerated and effective in patients with
neurodevelopmental disorders [167] and should therefore be part
of the personalized care strategies considered. The efficacy of
clozapine may be closely linked to the imbalance in the E/I ratio

and, in particular, to the involvement of gabaergic interneurons
[168, 169]. Indeed, clozapine may facilitate the binding of GABA
to the GABAB receptor [170]. tDCS, an easy-to-apply noninvasive
brain stimulation technique, was effective and safe in 16 cases of
catatonic patients, including four patients with Phelan-
McDermid syndrome [41, 171] and two patients with Down
Syndrome Regression Disorder [172]. In addition, in catatonia
cases related to neuroinflammation, anti-inflammatory interven-
tions appear promising [34, 173]. Anti-inflammatory treatment
needs to be offered more widely, even in the absence of autoanti-
bodies identified by lumbar puncture or blood test, in syndromes
with known inflammation such as Down Syndrome Regression
Disorder [33]. Along the same lines, specific treatment in case of
treatable inborn errors of metabolism, such as Cobalamin C
disorder or Wilson disease, can treat catatonia. Knowledge of
genetic abnormalities can help organize timely personalized care
[41, 140]. Likewise, it is legitimate to systematically assess cata-
tonic symptoms in genetic diseases, notably in Down syndrome
and Phelan–McDermid syndrome, where its prevalence is extremely
high [32, 37].

In light of this literature review, genetic testing for catatonia
should be considered more broadly in patients with the following
criteria: the presence of a neurodevelopmental background [7], a
chronic episode lasting more than 12 weeks, recurrent episodes,
early onset of catatonia, resistance or paradoxical reaction to first-
line treatment of catatonia, association with neurological signs
including seizures, and the existence of malignant catatonia.
Whole-exome or whole-genome sequencing should be considered
the first-tier diagnostic framework, considering the high propor-
tion of SNVs.

Although the risk of developing catatonia is high in certain
genetic conditions, the onset of a catatonic episode may depend
on environmental factors, such as exposure to antipsychotics [17]
or the sudden discontinuation of clozapine treatment [174]. Well-
conducted studies are needed to identify environmental risk factors
in these genetically predisposed patients to develop effective pre-
vention strategies.

Finally, a deeper understanding of the genetic factors involved
in catatonia can shed light on its pathophysiology. The protein–
protein interaction, enrichment in biological processes, and the
cell type signatures in the 50 genetic variants associated with
catatonia reinforce the hypothesis of a dysfunction at the synaptic
level, particularly in GABAergic neurons. It supports the likely
central role of GABAergic interneurons in catatonia [174, 175] in
the hypothesis of E/I imbalance [23]. Glutamate modulates the
activity of the GABAergic interneurons through their NMDA
receptors that regulate the synchronization of superficial pyram-
idal cells, thus ensuring a variety of cognitive processes [176]. A
disruption of GABAergic interneurons has been highlighted in
several psychiatric disorders, including ASD and schizophrenia
[176, 177], both of which are associated with catatonia. This
disruption may underlie the dysconnectivity between the medial
prefrontal, orbitofrontal, and motor areas observed in fMRI
studies of catatonia [178] and could represent a shared patho-
physiological mechanism linking these disorders to catatonia.
Furthermore, as interneuron-dependent prefrontal cortical mat-
uration occurs during adolescence [179], their disruption may
also explain the specific timing of catatonia onset in syndromes
such as DSRD. Adolescence thus emerges as a vulnerable time-
frame for catatonia. Quantitative EEG analyses could be used
to provide further support for the hypothesis of disruption of

12 Moyal et al.



GABAergic interneurons in catatonia [180]. Such anomalies in
GABAergic function could be due to various pathological pro-
cesses, contributing to the diverse clinical presentations observed
in catatonia. One potential mechanism is neuro-inflammation,
a phenomenon observed in several genetic diseases, notably
Down’s syndrome and 22q11DS, and also reported in catatonia
[24, 25]. Autoantibodies targeting GABAergic interneurons could
lead to catatonia, as it has also been observed for autoantibodies
targeting NMDA receptors [181]. The microglial cell signature
of genetic variants associated with catatonia further underscores
the involvement of neuroinflammation. Based on our cell-
enrichment analysis, serotonergic and dopaminergic neurons
also appear to be involved. Serotonin receptors have previously
been associated with catatonia, notably via SNORD 115 mRNA,
which regulates alternative splicing of the serotonin 2C receptor
[57]. Furthermore, catatonia is frequently associated with both
serotonin syndrome and neuroleptic malignant syndrome, each
respectively associated with an excess of serotonin and dopa-
mine blockage [182].

Several methodological issues call for caution when interpret-
ing this work. First, catatonia is not always described using the
same scale, and sometimes no scale has been used. It is rather
difficult to ascertain the diagnosis and severity of the syndrome.
Second, we probably missed genetic abnormalities as the vast
majority of genetic cases with catatonia have not been published,
and there is still limited access to genetic testing in psychiatric
disorders. Another form of bias stems from the limited conclu-
siveness of cases due to our current understanding of genetics.
This understanding is influenced by variants found in other
psychiatric conditions, resulting in the expectation that biological
processes and cell signatures will be concentrated in usual brain
pathways. In addition, given the absence of a control group, we
cannot ascertain whether these genetic variations are truly
enriched in catatonia specifically or if their presence merely
reflects broader neurodevelopmental processes associated with
catatonia. Nevertheless, these findings provide a valuable foun-
dation for generating research hypotheses. To overcome this
limitation, future studies should incorporate larger, well-
controlled, and unbiased genetic analyses involving patients with
catatonia.

Conclusion

This review highlighted the neurodevelopmental burden of catato-
nia and the clinical relevance of genetic explorations in this syn-
dromewhile also discussing the underlying pathophysiology and its
implications for treatment. Our systematic description of rare
disorders associated with catatonia, providing clear links between
genotype and phenotype, strengthens the importance of GABAer-
gic interneuron dysfunction. This work further points out the
importance of large-scale whole-exome or whole-genome sequen-
cing studies to identify new genetic variants and pathways associ-
atedwith catatonia. Improving our knowledge of catatonia’s genetic
background may allow for the development of more targeted
diagnostic approaches and personalized treatment strategies.
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