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ABSTRACT. We present a microstructural characterization of fine-grained layers from the top 90m of
firn from Summit, Greenland, performed using a combination of scanning electron microscopy
techniques including secondary electron imaging, energy-dispersive spectroscopy and electron
backscattered patterns, and X-ray microcomputed tomography. The impurities in the firn, both soluble
impurities and dust particles, were found largely in the grain interiors. Both c- and a-axis pole figures do
not show strong evidence of a preferred orientation of the grains even at the bottom of the firn column.
The firn structure became increasingly anisotropic with vertical alignment in the top 3m, probably due
to vapor transport associated with dry-snow metamorphism. The anisotropy decreases below this level
until at ��50m the average firn structure is close to isotropic. In the near surface, the level of anisotropy
is weaker than at Hercules Dome, Antarctica, confirming that differences in accumulation rates and
temperatures leave enduring evidence in the structure of the firn. The fraction of closed-off pores is
relatively low until ��65m; below that it rises through the end of our sampling at 90m. Our
microstructure measurements on the microscale are consistent with in situ firn-air sampling
measurements on a decimeter scale, both indicating the existence of the lock-in zone starting near
69m depth, and pore close-off at 81m at this site.

INTRODUCTION
Firn is porous multi-year snow consisting of ice and air that
comprises the top 60–100m of polar ice sheets. The
structure of firn is important to atmospheric chemistry (e.g.
Dominé and others, 2008), it affects remotely sensing data
(e.g. Li and others, 2008) and its porous nature permits
transport of air down to pore close-off, below which the air
trapped in bubbles in the ice holds evidence of ancient
atmospheric composition (e.g. Schwander and others, 1988,
1997; Sowers and others 1992; Bender and others, 1997).
Polar firn is often strongly layered due to seasonal
differences in its formation processes (e.g. Alley, 1987,
1988). In this paper, we focus on changes with depth in fine-
grained layers below 20m in the firn; these layers are often
thicker and more laterally homogeneous than coarse-
grained layers, and provide a good starting point for
investigating changes due to metamorphism, sintering,
compaction and pore close-off. Measuring characteristics
of the evolution of the fine-grained layers is a first step
toward our broader objective of understanding microstruc-
ture, layering and gas transport, and other phenomena
through the entire firn column.

For many years, preservation of snow and firn structure for
characterization has been by infiltration with dimethyl
phthalate, sectioning the resulting composite and examining
the two-dimensional (2-D) sections optically (e.g. Davis and
others, 1996; Rick and Albert, 2004; Courville and others,
2007). This technique preserves pore geometry in transport-
ing snow from the field to the laboratory and has been widely
used in seasonal snow. Three-dimensional (3-D) imaging of
near-surface firn that has been preserved in dimethyl
phthalate, transported to the laboratory and imaged using
X-ray computed microtomography shows promising results
in some cases (e.g. Heggli and others, 2009). However, pore
fillers are not useful deep in the firn where constricted pore
space limits infiltration of the dimethyl phthalate.

In recent years, micro X-ray computed tomography
(micro-CT) imaging has been used to provide a higher-
resolution view of the 3-D structure and the internal surface
of both natural and artificial snow, including laboratory
studies of temperature gradient metamorphism (Coléou and
others, 2001; Lundy and others, 2002; Flin and others, 2003,
2004; Freitag and others, 2004; Schneebeli and Sokratov,
2004; Kaempfer and others, 2005). Lomonaco and others
combined micro-CT imaging with scanning electron micro-
scope (SEM) observations (see below) to examine firn from
various sites of the 1999 US International Trans-Antarctic
Scientific Expedition (ITASE) campaign (Lomonaco and
others, 2008) and from Summit, Greenland (Lomonaco
and others, 2009), while Hörhold and others (2009) utilized
the technique in a detailed study of the first 15m of firn from
Hercules Dome obtained during the 2002 US ITASE
campaign. X-ray tomographic studies are of particular
benefit because of their non-destructive nature and the high
contrast provided between ice and air.

While X-ray tomography can be used to visualize the pore
size and the ice matrix, currently it is not possible to use this
technique to image microstructural features such as micro-
impurities and filaments, and techniques for producing grain
boundaries have recently been identified (e.g. Ludwig and
others, 2009). The 2-D microstructure of firn and ice has
been characterized by holding specimens in a cold stage
and examining them using a SEM (Cullen and Baker, 2001,
2002; Baker and Cullen, 2002; Iliescu and others, 2002;
Baker and others, 2003; Dominé and others, 2003; Obbard
and others, 2003). The combination of these two techniques
can provide insight into both the microstructural trans-
formation and natural sintering process in both 2-D and 3-D.
The use of a SEM at higher accelerating voltages (>10 kV)
also provides opportunities to determine both the chemistry
of soluble impurities and dust particles using energy-
dispersive X-ray spectroscopy (EDS) (Cullen and Baker,
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2001, 2002; Baker and Cullen, 2002; Baker and others,
2005), and the orientations of the ice crystals using electron
backscattered patterns (EBSPs) (Iliescu and others, 2004;
Baker and others, 2005; Obbard and others, 2006).

This paper presents a detailed characterization of fine-
grained layers in firn from the ice-sheet surface to just beyond
pore close-off in 90m of a core extracted from Summit,
Greenland, during the 2007 field season. The firn-core site
was located at 728N, 388W where the mean annual snow
accumulation rate was 0.221mw.e. a–1 over the 460 years
that preceded core drilling (personal communication from
J. McConnell, 2010). Micro-CT imaging and SEM obser-
vations are paired in order to understand the evolution of the
2-D and 3-D properties with depth. The combination of these
two techniques is particularly powerful for microstructural
characterization of firn and is made possible because micro-
CT imaging is nondestructive, thus allowing the same
specimen to be examined subsequently in the SEM (Lomo-
naco and others, 2008). Pore fraction, SMI and surface-area-
to-volume ratio are tabulated from 3-D reconstructions while
crystallographic texture andmicro-impurity composition and
location are determined by SEM analysis.

EXPERIMENTAL METHODS
One hundred fine-grained core segments were examined
from the top 90m of a core retrieved from Summit. The core
was stored in insulated boxes in a cold room maintained at
–298C at the US Army Cold Regions Research and Engin-
eering Laboratory in Hanover, New Hampshire, USA, for �8
months before the measurements were made. Core segments
were 8 cm in diameter and 2–10 cm in length. Each specimen
was sectioned perpendicular to the core axis from a near-
center position. The final dimensions of the specimens were
10mm�10mm�15mm high. Each core segment was
sectioned into one to three specimens. Specimens were
either used for immediate observation or sealed in a small
container stored in a –298C cold room to await analysis.

First, a SkyScan 1172 micro-CT, equipped with a home-
built cold stage that utilizes cold carbon dioxide sublimating
from dry ice, was used to image the specimens. With the
imaging lasting �7min, the samples were subject to a
temperature gradient but the time was not sufficiently long to
significantly affect the samples. Later, a cold-room adapted
SkyScan 1172 located in a –108C roomwas used for imaging.
The specimen rotates in the micro-CT between the X-ray
source and a camera in steps of 0.78 for 1808, producing a set
of 265 projection images. A resolution of 15 mm and a long
working distance were used during data acquisition.

The data were reconstructed using the SkyScan program
suite. A series of processing techniques including Gaussian
smoothing, ring artifact reduction and beam-hardening
correction were applied. Of these corrections, beam hard-
ening is the most important. This parameter corrects for
polychromatic X-ray attenuation artifacts; low-energy X-rays
attenuate on the exterior of the sample while high-intensity
X-rays pass through the entire sample. The attenuation
gradient produces a false contrast effect, producing a sample
that appears to have a very dense exterior and a less dense
interior. Thus, the beam-hardening correction is needed to
reduce the noise in the image. All these tools were
employed to ensure minimal reconstruction artifacts. Image
reconstruction yields a grayscale stack of 970 cross-section
images correlating to the specimen.

All structural values are dependent upon thresholding,
which is the most critical aspect of the micro-CT process.
Therefore we use the method put forth by Kerckhofs and
others (2008) to validate the micro-CT thresholds by
correlating reconstructions with high-resolution 2-D binar-
ized secondary electron images produced using an FEI field
emission gun (FEG), XL-30, environmental SEM equipped
with a Gatan cold stage and cryotransfer system. Threshold
correlation with SEM images was performed every 10m of
the core to validate the threshold levels. Thresholding yields
a binary representation where ice space is represented as
white voxels and void space as black, or vice versa. Two 3-D
models were created for every sample from a rectangular
region of interest (ROI), one that represents pore space and
the other ice space. Lastly, the model was cropped into a
spherical ROI (d=8mm) and the microstructure values were
tabulated. Properties of interest were percent ice volume,
surface density, SMI, degree of anisotropy and closed-pore
fraction (CPF). Imaging of multiple samples from the same
layer yielded good agreement in results. However, as
discussed in more detail below, the ROI (d=8mm) was
not large enough to give representative results of pore-space
geometry in the top �20m of firn.

The geometrical properties are computed according to
Hildebrand and Rüegsegger (1997) and Hildebrand and
others (1999). Percent ice volume is tabulated based on the
ratio of white voxels to total voxels in the spherical ROI and is
used to estimate density by multiplying by the theoretical
density of ice (0.918 g cm–3). The surface-area-to-volume
ratio, Sv is the surface area of the pores inside the ROI divided
by the ROI volume. The surface area of the pores inside the
ROI is determined by the summed area of the faces of the
individual voxels which lie on the border between pore and
ice voxels (Hildebrand and others, 1999).

The SMI describes the convexity of the structure. Positive
values of SMI are convex structures, and negative values are
concave structures. For example, positive SMI for the ice
phase results from ice protruding into a pore space; negative
SMI is concave ice around a pore space. SMI is calculated
with the use of an algorithm that artificially dilates the ice
space by one voxel. SMI is calculated from

SMI ¼ 6ðS 0V Þ
S2 ,

where V is the original volume of the ice matrix, S is the
surface area before dilation, and S 0 is the difference between
the dilated and undilated surface areas. Specifically, values
of 4, 3 and –9 relate respectively to spherical structures,
cylindrical structures and structures enclosing spherical
holes.

The degree of anisotropy describes the symmetry of the
ice matrix and identifies elongation in the vertical or
horizontal directions. This is calculated with the use of an
algorithm that intersects the ROI with a grid of 1600 lines
spaced 13.5 pixels apart. The intersection is done discretely
over a range of angles with 128 projections in all. From this a
mean intercept length, MIL, is tabulated:

MIL ¼ d=N,

where d is the distance the gridlines intersect with ice space
and N is the number of times the gridlines pass through the
ice. The MIL is averaged over the gridlines in a particular
direction and plotted as a vector value. This plot is referred
to as the MIL pincushion. An algorithm statistically fits an
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ellipsoid to the pincushion. Eigenvectors represent the
principal axes of the ellipsoid, and eigenvalues are tabulated
corresponding to these axes. The degree of anisotropy, DA, is
obtained from

DA ¼ 0:5ðE1 þ E3Þ
E2

,

where E refers to the eigenvalues in the three principal
directions as they relate to the ellipse. If DA>1 then the
matrix is elongated horizontally, and if DA<1 it is elongated
vertically. A value of 1 is obtained from an isotropic
medium.

Pore-space investigation was not possible on the firn
samples at depths less than 20m because the large pore
spaces in that region always extended beyond the ROI. A
new threshold value was used to remove very small pore
spaces (<0.1mm diameter) which were most likely beam-
hardening artifacts described above; this was also verified by
comparison of the CT images with SEM images of the same
firn samples. For samples below 20m, we defined a CPF
index to describe the interconnectedness of the pore space.
The CTalgorithm identifies a pore as a region of black voxels
surrounded by a region of white voxels. Below 20m in the
firn, pore volume slowly decreases with depth, increasing
the CPF index. In addition, the segregation of tortuous but

connected pore space into multiple separate pore spaces
also continues to occur with depth. The CPF index for each
sample below 20m was calculated as the ratio of the
number of pores to the pore volume. The CPF index rises
when the pore volume decreases and/or when the number of
pores increases. Note that this index serves as an indicator of
closed pores but is not an exact quantity. From visually
homogeneous firn samples, five vertically adjacent samples
were taken at each 5m increment in depth, except at depths
of 80, 85 and 90m, where ten samples were taken. The
average and standard deviation are plotted in Figure 5e
(further below) as a function of depth.

The SEM was also used for EDS as described by Cullen
and Baker (2001) and EBSPs as first described by Iliescu and
others (2004). EBSPs were obtained from specimens at
depths of 30, 60, 90, 100, 110 and 120m, while EDS data
were obtained from specimens taken every 10m from the
surface to 120m.

RESULTS
EBSPs were obtained from specimens at depths of 30, 60,
90, 100, 110 and 120m, from which pole figures were
constructed. Only pole figures for the deepest region are
shown (Fig. 1) since it is the most likely region to show a
preferred orientation due to the deformation of ice. Figure 1
shows pole figures for both c- and a-axes for the 120m
specimen. Each c-axis point represents the orientation of
one independent crystal. There is not a strong indication of
fabric. This was also the case for pole figures obtained from
shallower depths.

Figure 2 shows typical EDS data taken from impurity spots
in 110 and 80m firn samples. These show C, Na, Cl, Fe, Si
and Ca as impurities. The O peak mostly arises from the ice
itself, but could also include small contributions from oxides,
sulfates, nitrates and other oxygen-containing compounds
if present. Other common elements that were identified were
K, S, F, Al and Mg. Impurities existed in two forms, soluble
impurities and dust-like particles. Soluble impurities con-
sisted mostly of Na, Cl, F and S, while dust-like impurities

Fig. 1. Pole figure for the c-axis (left) and a-axis (right) of grains at
120m in the firn core.

Fig. 2. EDS data and associated secondary electron images from (a) 80m and (b) 110m firn-core specimens.
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contained Fe, Si, Ca, Al and K. Most micro-impurities were
found within grains rather than in the grain boundaries.
Filaments within grain boundaries were rarely observed in
these firn samples. This is in contrast to observations of ice
cores where impurities existed both within the grains and as
filaments along the grain boundaries (Cullen and Baker,
2001, 2002; Baker and Cullen, 2002; Barnes and others,
2002; Baker and others, 2005). This difference may arise
because in the deeper ice, grain boundaries sweep up
impurities as they migrate, a feature demonstrated in
laboratory-grown doped ice (Iliescu and Baker, 2008).
Barnes and Wolff (2004) examined both surface snow and
firn specimens from several depths from Dome C, Antarctica,
and snow from Halley station, Antarctica, using a cold-stage
equipped SEM equipped with EDS. Interestingly, they were
able to detect Cl on the surface of the snow from Dome C but
no impurities in the etching spots from the snow from Halley
station. They found filaments at grain boundaries and triple
junctions in the snow from both locations, but were unable
to observe detectable impurities in some of the filaments
although they likely contained impurities. In their firn
specimens, filaments were observed on grain boundaries
and triple junctions for specimens from 23.30 and 51.90m
depth, but less so in a specimen from 95.8m depth even
though all specimens had similar impurity levels. S, Cl and
sometimes Na and Si were found in spots within the grains of
the firn specimens.

Figure 3 shows examples of 3-D reconstructions of the firn
core from the top and bottom of the core relating to depths of

0.12 and 90m respectively. Figure 3a and c show the ice
while Figure 3b and d show the pores. In Figure 3c the snow
is white, while in Figure 3b the pores are white. While these
give a 3-D picture of the structure, it is difficult to envisage
the structure from such a figure. Figure 4 shows represen-
tative vertical 2-D cross-sections from the firn core every
10m in which the ice is white and the pores are black. While
2-D properties do not directly translate to 3-D properties, the
images are useful in seeing that a coarsening of the structure
is clearly evident from 0 to 10m, rounding of pores can be
observed from 50 to 90m, and the percent of ice in each
image increases and pore space decreases with depth.

Figure 5a–e show 3-D microstructural data as a function
of depth calculated from the micro-CT reconstructions. The
density calculations (Fig. 5a), based on ice volume percent,
show a sharp increase in the first 5m, then a more gradual
increase until 90m (Fig. 5a). At 90m the calculated density
was 0.845 g cm–3. The surface-to-volume ratio, Sv, shows a
rapid decrease from the surface to 4m and then a steadier
decrease to 90m (Fig. 5b). The SMI, which describes the
convexity of the pore space, shows an almost linear
decrease throughout the core, with generally decreasing
positive values from the surface to 20m, an SMI close to
zero between 20 and 40m, and variable but increasingly
negative values deeper than 40m (Fig. 5c).

The degree of anisotropy from the firn-core samples
shows a definite skew below a value of 1, with a local
minimum at �3m (Fig. 5d). The firn generally becomes
more isotropic below this, approaching a value of 1, until at

Fig. 3. Reconstructed firn cubes from 0.12m (a, b) and 90m (c, d) showing both ice (a, c) and pores (b, d). In (a, c) the snow is white while in
(b, d) the pores are shown in white. The reconstructions (a, b) and (c, d) are complementary.
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�20m the average firn structure is close to isotropic, where
it remained throughout the rest of the core.

The firn above 20m depth was sufficiently porous that the
small imaged sample did not contain a large number of
snow grains in the ROI, so that a valid CPF index could not
be calculated in that region. Values at 20m and below were
validated visually with the small (d=2mm) 3-D model.
Figure 5e shows the values of the CPF index, along with bars
to indicate one standard deviation above and below each
average. The CPF index increases between 20 and 35m.
From 35 to 65m the data show that relative changes in the
CPF index are within the standard deviation of the multiple
samples. From 65 to 90m the CPF index values increase at
two different rates: one rate from 65 to 80m and a second,
higher rate from 80 to 90m.

DISCUSSION
Sintering is a dynamic process where multiple mechanisms
and driving forces work in concert to densify the ice matrix
present (e.g. Blackford, 2007). Swinkels and Ashby (1980)
describe six main mechanisms by which sintering occurs.
They are surface diffusion from a surface source, lattice
diffusion from a surface source, vapor transport from a
surface source, boundary diffusion from a boundary source,
lattice diffusion from a boundary source and lattice diffusion
from a dislocation source. It is assumed that each of these
processes affects the ice matrix but that each works at a
different rate depending on the driving forces present.
Within this study we can account for three main driving
forces: temperature gradient, overburden pressure gradient
and chemical potential gradient, the latter produced by
differences in local curvature. Multiple driving forces can be
present at a given depth, but their effectiveness will change
with depth. The following discussion outlines the leading
driving forces and possible mechanisms present at each
depth interval to produce the observed morphology.

In the first 3m of the firn column, a large decrease in
surface-to-volume ratio occurs, indicating coarsening of the
ice particles. The ice in the firn has the strongest anisotropy
in the top 10m, where the degree of anisotropy is <1
(Fig. 5d). A local minimum exists at 3m, which is consistent

with recent findings at Hercules Dome (Hörhold and others,
2009) and Siple Dome, Antarctica (Albert and others, 2000).
In this region, vertical structures are preferentially generated.
This is to be expected from temperature-gradient-induced
vapor diffusion, where material is preferentially deposited
on the underside of particles (e.g. Colbeck, 1983). This
growth rate increases the vertical connectivity of the
particles more rapidly than horizontal connectivity.

In the region from 3 to 21m, continued compaction is
exhibited by the decrease in both the SMI and Sv. The
degree-of-anisotropy values indicate that, on average, iso-
tropy is approached at �20m depth, although slightly
anisotropic samples do exist below that. Because the
degree-of-anisotropy value indicates that the firn evolves
toward isotropy between 3 and 20m, it is evident that necks
in the horizontal plane are created at an increasing rate in
this region, where mass diffusion becomes increasingly
attributed to chemical potential gradients and overburden
pressure as depth increases.

These measurements agree with prior measurements
made by different techniques at Summit by Alley (1987,
1988). In a recent study from an Antarctic site (Hörhold and
others, 2009), the anisotropy persisted at all depths studied,
i.e. to 15m. The presence of stronger anisotropy in the firn at
Hercules Dome than at Summit is a reflection of the fact that
the sites have different accumulation rates and temperatures,
which causes enduring evidence in the structure of the firn
(Rick and Albert, 2004; Hörhold and others, 2009).

Between 21 and 35m a level of pore segregation is
witnessed. A change in SMI from positive to negative values
occurs, which describes a transformation from a convex to a
concave ice surface, a transformation from ice particles
surrounded by air to ice enclosing cavities of air. Also, the
degree of anisotropy has small scatter around a value of 1,
indicating a nearly isotropic matrix. In conjunction, there is
an increase in the CPF index. These values together relate to
a changing ice matrix where adjacent particles coalesce
through neck growth, leaving behind segregated concave
pore spaces.

The next distinct region is from 35 to 65m. No evidence
for a net change of CPF index exists in this region due to the
large standard deviations. The SMI data decrease at a linear

Fig. 4. Representative vertical cross sections from the micro-CT taken every 10m, of the firn core, in which the ice is white and the pores are
black. Each image corresponds to a width of 8mm on the specimen.
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Fig. 5. Graphs of (a) density, (b) Sv, (c) SMI, (d) degree of anisotropy and (e) CPF. Black curves in (a–d) represent the running mean. In (e) the
error bars are the standard deviations from at least three measurements.
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rate, indicating the slow and continuous rounding of pore
spaces due to overburden pressure and isothermal mass
transport processes. The degree-of-anisotropy values show a
slightly vertical texture between 40 and 45m, and become
more isotropic between 46 and 60m. These are small
differences in the degree of anisotropy, but it is possible that
they may be attributed to the surficial residence time of the
snow layer (Rick and Albert, 2004; Hörhold and others,
2009). Rick and Albert (2004) showed that the microstructure
of a material is a function of the structure that was developed
at the surface and its length of exposure to temperature-
gradient metamorphic processes. The longer the exposure
time, the greater the vertical texture development, given a
common initial state. It may be that the layers present
between 40 and 45m had short surficial residence times
relative to those above 35m and between 46 and 60m.

The deepest region, from 65 to 90m, shows another two
levels of pore segregation. The first linear increase in CPF
occurs from 65 to 80m, and the slope of that increase is
comparable to the increase from 20 to 35m. The second
section spans 80–90m. Here pore segregation occurs at a
higher rate than in the regions above. Pores are segregated
by the same means as above; however, overburden pressure
should play a more integral role at this depth, which could
influence the compaction rate. The SMI values show a value
of –9, and the degree of anisotropy shows an approximate
value of 1 at 90m. This indicates that the structure is one of a
majority of rounded pore spaces dispersed evenly through-
out the specimens.

Near both 70 and 81m, there are a few specimens that
exhibit a structure similar to those we see at 90m. They have
relatively low SMI, and a high CPF index in comparison with
the surrounding values. In addition, these areas have degree-
of-anisotropy values with relatively small deviations from a
value of 1. These are horizons that are primarily ice but
contain isolated bubbles. If such horizons are laterally
continuous across a large area, they could cause the lock-in
zone as defined by Sowers and others (1992). J. Sever-
inghaus (personal communication, 2009) determined inde-
pendently from in situ firn-air measurements in the borehole
that the onset of the lock-in zone occurred at 69m and that
pore close-off occurred around 81m. Our microstructure
measurements on the millimeter scale are consistent with his
air-sampling measurements on a decimeter scale, and both
confirm the existence of the lock-in zone.

CONCLUSIONS
A combination of SEM techniques including EDS and EBSPs,
and X-ray micro-CT were used to perform a complete
microstructural characterization of selected fine-grained
samples from the firn column at Summit, Greenland. SEM
analysis showed that both soluble impurities and dust
particles in the firn were largely in the grain interiors, while
both c- and a-axis pole figures show little evidence of a
preferred orientation of the grains at any depth. The firn
showed an increasingly anisotropic structure in the top 3m
due to vapor transport associated with dry-snow meta-
morphism. The anisotropy decreases below this level until at
�20m the firn structure is largely isotropic. In the near
surface, the presence of stronger anisotropy in the firn at
Hercules Dome, a high-accumulation site in Antarctica,
than at Summit is a reflection of the fact that the sites have
different accumulation rates and temperatures which causes

enduring evidence of the structure of the firn. Closed-off
pores are evident throughout the firn column, but the
fraction is low until �65m, when it starts to rise, and pore
close-off occurs at �81m. Ongoing work will further
explore the nature of the firn as it impacts ice-core gas
records and remotely sensed data.
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