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the median triangle of any self-conjugate can be proved to be cir-
cumscribed to the parabola.

If the envelope be a rectangular hyperbola, (x'y') must be on the
circle whose equation is

â  + 2xy cosC + y2 + 2(c cosB - 26 cosC)a;
+ 2(c cosA - 2a cosC)y + 2aa + 262 - c' = 0.

If {x'y') be on the median through A, the envelope passes through
A. Hence the envelope is only a circumscribed conic when (x'y') is
the centroid.

If (x'y') be on OA, CB or BA, the envelope passes through

(*y)-
If (x'y') be A, B, or C, the envelope is two coincident lines, the

corresponding medians.
If the envelope be a circle, the point is one of the in-centres or

ex-centres of A"B"0".
If (x'y') be the centre of the envelope, it must be either A, B, C,

or the centroid.

Fifth Meeting, March 13, 1891.

J. S. MACKAY, Esq., M.A., LL.D., ex-President, in the Chair.

_ On the Use of Dimensional Equations in Physics.

By WILLIAM PEDDIE, D.SC.

Though every quantity, whatever be its nature, has magnitude,
no quantity can be said to be large or small absolutely. "When we
speak of the size of any body we mean its size relatively to the size
of some other body with which we compare it. A yard is large if
we compare it- with an inch ; it is small when compared with a mile.
In the former case the number which represents it is more than
60,000 times larger than the number by which it is represented in
the latter case. A mere number is therefore useless as regards the
statement of magnitude, except when accompanied by a clear indica-
tion of what the thing measured is compared with. The quantity

https://doi.org/10.1017/S0013091500030789 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500030789


31

in terms of which the comparison is made is called the unit, and the
number which tells how often this unit is contained in a given
quantity is called the numeric of that quantity.

All dynamical quantities may be made to depend upon three
units only. These are the units of mass, of length, and of time.
Thus the unit of speed, being measured by the distance traversed in
a certain time, depends upon the unit of length directly, and upon
the unit of time inversely. Hence, by doubling the unit of length
we double the speed unit, and therefore halve the numeric of any
given speed; whereas, by doubling the unit of time, we halve the
speed unit, and therefore double the numeric of a given speed.
Again, acceleration, being measured by the increase of speed in a
certain time, depends upon the unit of speed directly and upon the
unit of time inversely ; that is, it depends directly upon the unit of
length and inversely upon the square of the unit of time. The
manner in which the fundamental units are involved in any quantity
determines the dimensions of that quantity. If M, L, and T, repre-
sent the units of mass, length, and time, the dimensions of speed
and acceleration are indicated by the symbols [LT"1] and [LT~*]
respectively, and the dimensions of energy are [MI/T"2], and so on.

We may write the expression for Newton's Second Law in the
form , I

where I is the distance which the mass m moves over from rest, in
the time t, under the action of the force/; and it is understood that
unit force is that force which, acting upon unit mass, produces unit
acceleration. And we may further regard this equation as a dimen-
sional equation; in which case the sign of equality merely means
that the dimensions of the quantity on the left-hand side of the
equation are identical with those of the expression on the right-hand
side of the equation. But, from a dimensional equation, we cannot
make any deduction regarding the absolute magnitude of any of the
quantities which are involved, for the equation simply asserts pro-
portionality of magnitude between its various terms. Still, by a
suitable definition of units, we can pass from the dimensional, to the
ordinary, equation. Thus, in the above equation, we may define
unit force as the force which, acting on unit mass for unit time,
causes the unit of mass to move over unit distance from rest; or
we might adopt the definition given at the commencement of this
paragraph.
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The idea of dimensions is of great importance in physics. It
affords a useful check on the accuracy of algebraical work ; for the
dimensions of all the terms in a physical equation must be the same.
But its use is not limited to this extent. For example, we may
write the equation

= m— ,
e '

in the form af~8m yl

J

from which we see that if, in two similar material systems, the forces,
masses, and lengths, are in the ratios a/1, /3/1, y/l, respectively, and
if the systems begin to move in precisely similar manners, the motions
will continue to be similar provided that we compare them after the

lapse of intervals of time which are in the ratio of J—L to unity in
V a

the two systems.
This principle, which was proved (otherwise) by Newton, has

been called the Principle of Dynamical Similarity. The above
proof is due to Bertrand.

Many physical problems can be solved with extreme simplicity
by its means For example, we can determine the speed of pro-
pagation of a wave along a stretched cord. Let T be the tension of
the cord, and let m be its mass per unit of length. The pressure
towards the centre of curvature at any part of the wave T/p, where
p is the radius of curvature and is proportional to the linear dimen-
sion I of the wave. Hence the pressure per similar length in each
of two such waves is T. And the mass per similar length is ml.
Hence the expression for the Second Law of Motion gives

L= T
f TO"

But l^ = v, the speed of propagation of the wave. Hence the
speed is directly as the square root of the tension, and is inversely
as the square root of the mass per unit of length.

This result may be directly applied to the problem of the vibra-
tions of a stretched string. For, A being the length of a wave and
the other quantities having the same meanings as above, we get

A. _ A Jra
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Now Xjv is the time of a complete vibration, which is therefore
directly proportional to the length of a loop of the string and to the
square root of the mass per unit length of the cord, and is inversely
proportional to the square root of its tension.

Again, in the case of a gas, of density p and under pressure p,
the dimensional equation takes the form

from which we conclude that the period of vibration when a dis-
turbance of given wave-length travels through the gas is

v p >

and that the speed of propagation of that disturbance is

v- ip
V p

the proper choice of units being made.
In an oscillatory wave, propagated by gravity, the force is pro-

portioned to the intensity of gravity g, and to the mass of the wave,
which is proportional to the density p of the liquid and to the square
of the length. Hence the fundamental equation takes the form

from which we get

t= l.L

This shows that the speed of propagation is proportional conjointly
to the square roots of the wave length and of gravity, and is inde-
pendent of the density of the liquid.

In a ripple, propagated by surface tension, the pressure per unit
area of the surface of the ripple is proportional directly to the surface
tension T and inversely to the radius of curvature. Hence the pres-
sure per similar area is proportional to T and to the square of the
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length of the wave. Also the mass is proportional to the density
and to the cube of the wave length. Hence we get

t-l IP1

l /Y

which shows that the speed of propagation of a ripple is proportional
to the square root of the surface tension directly and is inversely
proportional to the square roots of the density and the wave length
conjointly. Hence we see that, as is well known to be the case,
ripples run faster the shorter they are, while gravity waves run
faster the longer they are.

As a single additional example of the application of the Second
Law, consider the small vibrations of a liquid sphere. Let the radius
of the sphere be a, while the density of the liquid is p, and its sur-
face tension is T. The force which acts, per unit of area, to restore
the spherical form after a slight disturbance is 2T/o, and hence the
force per similar area is 2Ta. The mass is proportional to pa3, and
the ranges of similar disturbances are proportional to a. Hence we

get ,_ J i~P

which shows that the periods of similar vibrations are proportional
to the power 3/2 of the radius.

Lastly, as an example of the use of dimensional equations apart
from the consideration of the Second Law of Motion, consider the
conduction of heat downwards through the earth's crust, for which
we have the well-known equation

dv
dx \ dx I

where c is the thermal capacity, k is the thermal conductivity (which
we shall assume to be constant), v is temperature, t is time, and x
is distance measured downwards from the surface. The quantities
dv, dt, dx, being of the same dimensions as v, I, and x, respectively,
we get, as a dimensional equation

x*
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This gives _ /kt
X— i ,

V c
which means that if the times are altered in any fixed proportion p
(say), the lengths must be altered in proportion of the square root
of p in order that the flow of heat may take place under similar con-
ditions in the altered circumstances. In other words, the distances
at which similar effects are felt (for example, the distance below the
surface at which the periodic variations of surface temperature cease
to be felt) are proportional to the square root of the period.

Again, x_= I k_ _
t si ct '

Here we may suppose that x represents the length of a wave, while
t represents the periodic time, so that the fraction on the right-hand
side of the equation is proportional to the rate at which the wave of
heat travels downwards. We see therefore that this rate is directly
proportional to the square root of the conductivity, and is inversely
proportional to the square roots of the thermal capacity and the
periodic time conjointly.

It follows from this that, when the period is constant, the date
at which the maximum temperature reaches any given depth is later
than the date at which it left the surface in direct proportion to the
depth.

[The law which regulates the diminution of the range of tempera-
ture with increase of depth cannot be obtained from the original
equation in the way in which we have obtained the two laws just
enunciated, for the temperature is not involved in the dimensional
equation which we deduce from it.

But we may write the original equation in the form

dv dx d / , dv \
dx"di~ dx\ dx)'

and we may suppose that dx/dt is the speed with which the heat
wave travels downwards, in which case the equation becomes

/ck dv _ _ d i ,dv\
~f"dx~ dx\ dx)'

where T is the periodic time, and dv/dx now represents the rate at
which (say) the maximum temperature changes as the wave passes
down.
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This equation asserts that the rate of diminution of the rate of
change of temperature with depth is proportional to the rate of
change itself. In other words, the rate of change diminishes in
geometrical progression as the depth increases in arithmetical pro-
gression. And its rate of diminution is Jc/ JkT, k being assumed
to be constant. But, since the rate of diminution of the rate of
alteration of the range is proportional to the rate of alteration
itself, it follows that the rate of alteration bears the same ratio to
the range. Hence the range diminishes in geometrical progression
as the depth increases in arithmetical progression, the rate of diminu-
tion being directly as the square root of the thermal capacity, and
inversely as the square roots of the conductivity and the periodic
time conjointly.]

The above examples will serve to illustrate the extreme ease
with which the consideration of dimensional equations leads to the
solutions of problems which are usually attacked by the aid of
recondite methods alone.

Some relations between the orthic and the median triangles.

By A. J. PRESSLAND, M.A.

FIGURE 15.

Let ABC be the triangle, X, Y, Z the feet of the altitudes, H
the orthocentre, A',B',C the mid points of the sides.

Let ZY meet A'B' in D, A'C in D', B'C in R :
ZX meet B'C in E, A'B' in E', A'C in S :
XY meet C'A' in F, B'C in F , A'B' in T.

§ 1. The following triangles are similar to ABC; AYZ, XBZ,
XYC.

B'YD, C'D'Z are similar to AYZ and have parallel sides.
EC'Z, XA'E' are similar to XBZ and have parallel sides.
XFA', FYB' are similar to XYC and have parallel sides.

Y is the internal centre of similitude of the circles AYZ, B'YD.
Z ,, „ „ „ „ „ AYZ, C'D'Z.
Z „ external „ , „ „ XBZ, EC'Z.
X „ internal „ „ „ „ XBZ, XA'E'.
X „ external „ „ „ „ XYC, XFA'.
Y „ :, ,, ,, „ ,, XYC, FYB'.
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