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Abstract 

The nonuniqueness of the quasi-Galilean coordinates of general relativity leads to 
the emergence of unmeasurable coordinate-dependent quantities in astronomical 
practice. One may offer three possible ways to overcome the related difficulties: 

1. developing theoretical conclusions only in terms of measurable quantities 

2. using arbitrary coordinates and developing an unambiguous procedure for 
comparing measurable and calculated quantities 

3. agreement to utilize one and only one coordinate system. 

In this paper we prefer the second way. After formulating the heliocentric planetary 
and geocentric satellite equations of motion, the general technique for relativistic 
reduction in astrometry and geodynamics is developed. Specific algorithms for the 
reduction of absolute and relative measurements are derived for the one- and the two-
body problem. For illustration, the relativistic reduction of stellar parallaxes, Doppler 
satellite observations, navigation measurements with the aid of satellites and 
radiointerferometric measurements are presented in detail. 

1. Introduction 

The general theory of relativity in its most simple applications (Schwarzschild 
solution, weak-field approximation) is no longer seen as a theory under verification, but 
must be considered as a necessary framework in the discussiion of high-precision 
observations (0.001" in angular distance, 1 ns in time, 10~14 in frequency) and for the 
construction of accurate dynamical ephemerides (10~8 to 1(T9 with respect to the main 
Newtonian terms). In the immediate future, relativistic reduction of astrometric 
observations will have to become as common as all classical types of reduction are today. 
Many authors are now working on different forms of relativistic reduction. The aim of 
this paper is to present a version of such reductions together with some actual equations 
of relativistic celestial mechanics and geodynamics. 

Relativistic reduction of observations should take into account the dependence of 
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measurements of time, angular distances and light frequency on the velocity of the 
observer and the value of the gravitational potential at the point of observation. (The last 
of these are specific for general relativity while a first approximation of the first one has 
been considered even in Newtonian physics.) 

The most peculiar feature of general relativity is the arbitrariness of the coordinates 
used for the description of the gravitational field and space-time events. In general 
relativity, one cannot introduce the global Galilean (inertial) coordinates. Instead, one 
may use the quasi-Galilean coordinates. The metric of the gravitational field (g ) 
described in these coordinates, given by 

ds2=g dxudxv; u , v = 0,1,2,3 (1) 

will differ little from the Galilean one (n ) and will coincide with the latter at infinitely 
large distances from the attracting masses, to wit, 

g = n +h , with In |«1, and h +0, uv uv uv ' uv1 uv 

a l s o W x> %r °> ^ij= ~ 6 i j ; i , j = 1 ' 2 ' 3 - ( 3 ) 

Quasi-Galilean coordinates x u are not unique and may be subjected to any arbitrary 
nonlinear transformation which preserves the relations (2). In the new quasi-Galilean 
coordinates xu , the equations of motion of bodies and light propagation as well as the 
solutions of these equations will differ from their analogues expressed in terms of x u . 
This leads to the problem of the correspondence between measurable quantities (time, 
angular distances, light frequency) and the coordinate dependent quantities involved in 
theoretical calculations. 

Such nonuniqueness of quasi-Galilean coordinates results in the intrusion of 
coordinate-dependent quantities into astronomical practice which are unmeasurable in 
principal. For example, the well-known numerical theories of motion of the major planets 
(DE-200) and the Moon (LE-200) developed at JPL, involve harmonic coordinates. Along 
with this, there exist similar theories developed in standard coordinates (Oesterwinter and 
Cohen 1972; Krasinsky et al. 1981). The difficulties resulting from the fact that different 
quasi-Galilean coordinates may be used in the treatment of any one problem would, in 
principle, be overcome in any of three ways: 1). refusing to employ coordinates as well as 
coordinate-dependent quantities, and constructing theories in terms of measurable 
quantities only 2). using arbitrary coordinates and developing unambiguous procedures to 
compare measurable and calculated quantities 3). an agreeement binding on every 
investigator (settled by the IAU, for example) to use one and the same specific system of 
coordinates. The first alternative seems too restrictive for theoretical constructions, 
whereas the third one constrains the freedom of a researcher to choose the coordinates 
best suitable for his problem. The developments in this paper are based on the second 
alternative. 
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All the following relations are derived only in the post-Newtonian approximation 
valid for timely modern requirements. 

2. The gravitational field and the equations of motion of planets and satellites. 

The gravitational field of non-rotating point masses is described by the following 
metric: 

I 2 
* m. m. m. m. 

dsZ = 1 - 2Z.-i + 2(3-a)(Z.-±) + (43 - 2) Z. -£ .£. / + 

+ 2aZ. -4 .J. m. ( — - T^VP- r . . | - -£ (2y+l) Z.-7 *• + 
1 «3 15*1 1 \ r . . p . II—1 - 1 1 / 2 ' 1 p . - i 

Pj J J \ U J / \ 7 c Ki 

- m. 
+ - | (v-l) 1 a 

c 1 
£ j - fii r£ - "J (^i V 

P i 

2 ^ 2 _, c dt + 

2 m i + - Z. — c 1 p. (2y + 2 - a - \ v) f + (a + | v) - | (p. f ) p. 
p i 

dr • cdt -

- 1 + 2(Y-O) Z.-^ dr2 - 2aZ. -\ (p .dr) ' (4) 

Here, the main PPN-formalism parameters 3 and y (Will 1981) define the 
gravitational theory chosen for general relativity, 3=y=l. These values have now been 
confirmed by observation with ever increasing precision and accuracy. The coordinate 
parameters a, v determine one or another of the most commonly used systems of quasi-
Galilean coordinates. Denoting the barycentric position vector of the i-th body by rj and 
its mass (multiplied by the constant of gravitation) by M ,̂ one has 

£i = JL ' L[ t Li j = Li " JLj and mi = Mj/c2. 
The origin of coordinates in Eq. (4) is supposed to coincide with the barycenter of the 

system of point masses, resulting in 

Z.M, (1 + -T? f? - £ ,Z_. T-J-l r. = 0. (5) . „ / , A 1 A2 1 -. ™j \ 
1 1 V 2 c2 -1 2 j * i r u ; - . 

the transformation to harmonic coordinates t and Tj which belong to a = v = 0, is given by 

https://doi.org/10.1017/S0074180900076373 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900076373


\ A. BRUMBERG 

m. m. 
i = t~ ^ z± p"t ^ - ^ r--r--ahip-i. (6) 

In particular, 

f i i = r i j ^ i + m i ) + a ^ ^ i , J m x ( ^ -TTk)' ( 7 ) 

demonstrating the coordinate dependence of the mutual distances between bodies. 

The barycentric equations of motion of bodies in the field (4) have the form 

M. . 
r. = - Z. - 4 - r. . + Z. m.7A. . r. . + B. . f.. \ . (8) Z. -J- r . . + Z. m.'/A. . r. . + B. . t.. \ . 

^ r ? . "1J 3** j \ 1J "1J 1J ~1J / - l 
i . . 

iJ 
Expressions of Aj| and B-• in terms of £j, rj, 6, y, and a (̂  has no influence on the 

equations of motion oi bodies and light propagation) may be found in Brumberg and 
Ivanova (1982). On the basis of Eq. (8) it is easy to derive the heliocentric equations of 
planetary motion: using the index zero on the Sun and denoting by £| = r̂  - j ^ the 
heliocentric position vectors of the planets, we obtain 

R. = -(1VI + M . ) 4 + - i o i R 3 
l 

+ (m A. + m. A .) R. + (m B. + m. B .) R. + o 10 l oi - l o 10 I oi - l 

.£. m, |A. . (R. - R.) + A . R. + B. . (R. - R.) + B . R. 1 
j^i J L 1J - 1 -J °J "J iJ - 1 -1 o j - j j (9) 

Substituting zero as the value of all planetary masses into the relativistic right-hand 
members of Eq. (9) leads to the Schwarzschild terms. Relativistic perturbations in the 
motion of the major planets have been investigated in detail by Lestrade and Bretagnon 
(1982). 

With the aid of Eq. (8) applied to the three body problem: Earth, Sun and Moon one 
may derive the relativistic equations of the Lunar motion in the form adapted for 
numerical integration (Brumberg and Ivanova 1982). The main relativistic perturbations in 
the Lunar motion have been found by Lestrade and Chapront-Touze (1982). 

For treating the motion of artificial satellites of the Earth such a complete form of 
the relativistic equations of motion is superfluous, given contemporary standards of 
accuracy, and it is sufficient to consider in Eq. (4) only the linear combination of the two 
static Schwarzschild metrics related to the Earth (Mi) and the Sun (M2). Neglecting 
Mj/M2 one may introduce the geocentric metric by the transformation 
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r = R(t) + p (10) 

with £ = pi, and R,(t) being the heliocentric position vector of the Earth determined by the 
tial ■' - - - -differential equation of the Schwarzschild problem 

R = - -4 R + -4 
R6 R6 ["- (a + Y) R 2 + ^ (R R)2 + 2(3 + Y - a) ^ ~U + 

+ 2 (Y - a + 1) (R R) R 

By virtue of Eq. (10), metric Eq. (4) assumes the following form: 

(11) 

ds2= 1-2 ( ^ B ^ M H M [<-*>* 
-h %**] 2^2 A 2 c dt + -c 

_R + 5* ^ . y) 5 . _| (£z g, ̂ j 

- [ l + 2 (Y - a) ^ + ^ j dp2 - 2a j ^ ( f i l dp)2
 + ^ (P2 dp)2] 

dp • cdt -

(12) 

The geocentric equations of motion of artificial satellites of the Earth corresponding 
to this metric are as follows: 

*1 M2 £ = - > + 3 h + ? ( 5 £ ) ? ] 
mj 

2 ^ 

+ (Y 

| - ( a + Y ) P2+ ^ (PP) 2 + 2 (6 + y - a ) ^ 1 P + 2 (Y - a + 1) (p^) p 

[-(o + Y) (A £ + \ ?\ + ^ ((R R)(R P) + | (R P)2 ) ] R + 

a + 1) (R p) R + (Y - a + 1) T(R R) + (R p) 1 p 

In the relativistic right-hand members of Eq. (13), the terms related to the combined 
action of the Earth and the Sun have been neglected. Besides this the solar part in Eq. (13) 
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contains only the terms remaining in the limit for p/R+0. Therefore, Eq. (13) describes 
three kinds of the relativistic perturbations: 1) indirect solar perturbations caused by 
substituting the relativistic value R(t) from Eq. (11) into the Newtonian right-hand 
members of Eq. (13); 2) the direct Schwarzschild perturbations due to the Earth; 3) the 
direct solar perturbations. It may be noted that in the model of the circular heliocentric 
motions of the Earth with IIR= 0 the solar terms in Eq. (13) are rewritten in the form 

( ^ s o l = $ (2y + D p x (R x R) + (1 - 2a) ( R p ) R + ( R P ) R + 0(P2) (14) 

The first term in Eq. (14) describes the geodesic precession resulting in secular 
motions of the perigee and the node (1.91"per century). The second term leads to the 
periodic perturbations, and those terms of Eq. (13) which are quadratic in the geocentric 
velocities are designated by 0 (fr). 

The time argument in Eqs. (12) and (13) is the coordinate time t of the barycentric 
system Sun-Earth which coincides with the heliocentric coordinate time when M-j/M2 is 
neglected. In some recent papers (for example: Ashby and Bertotti 1983, 1984) the 
satellite motion is treated in the local inertial geocentric reference frame with geocentric 
coordinate time being an independent argument. Such an approach provides a significant 
simplification of the solar part of the relativistic terms. Yet it seems desirable to have 
one and the same argument in the dynamical theories of motion of natural as well as 
artificial bodies of the Solar system. From this point of view the approach based on Eqs. 
(12) and (13) with the barycentric coordinate time as an argument may be more 
straightforward. 

3. General technique of the relativistic reduction in astrometry 

Relativistic reduction in astrometry may be reduced to the solution of several 
typical problems, each of them having individual meaning. 

The first problem is the transformation of an observers proper time T to the 
coordinate time t of the barycentric reference frame. This is performed by integrating 
the equation 

dT = (e0o + i * o i * i + 1 2 e i j * j * j > 1 / 2 d t <15> 
c J 

with x being the components of the observers barycentric velocity. The basic relationship 
between T and t was treated in detail by Moyer (1981). The more delicate relations 
between International Atomic Time, Barycentric Dynamical Time and Terrestrial 
Dynamical Time are discussed by Aoki et al. (1982). It should be remembered that the last 
two arguments are, of course, coordinate-dependent. 

The second problem is to investigate the light propagation in the field Eq. (1) using 
the same coordinates as in the dynamical problem under consideration. Integration of the 
equations of light propagation 
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J< .1 x[ = - | c2h . + h . xk x1 + (h., . - i h. . .) xk x1 
2 0 0 , 1 o o , k \ l k , 1 2 k l , I / 

+ c (h . . - h . .) xk + i h . . x̂  xk x1 (16) 
\ oi,k ok,i/ c ok,j 

yields the value of the coordinate velocity j(t)/c at the point of observation. As an initial 
value one may take, for example, the unit vector a = £ (-°°)/c, a = 1 , characterizing 
the initial direction of the light at infinity. For the boundary value problem KtQ) = r̂ , 
rttj) = £j one has to calculate a and t ^ ^ in terms of these boundary values. 

The measurement of the angular distance between two light emitters may be 
regarded as the basic idealized type of astrometric observations. Therefore, the third 
problem of a relativistic reduction is to calculate an expression for the angle between two 
light rays at the point of observation. For this purpose one may apply the local splitting of 
Eq. (1) at the point of observation as follows 

ds2 = c2dT2- dl2 (17) 

c d T =v^o7(d x°+ i^^oi d x l ) ' (18) 

dl2 = Y . j d x i d x J ; Y i J =±g0i80i - B i J • (19) 

The three-dimensional metric form dl2 describes the local space relations at the 
point of observation. Scalar product and length, respectively, of arbitrary three-
dimensional vectors applied at the point of observation are defined by the formulas 

(PQ) . = y . . P V , P i = (Y.. P W 7 2 
- 3 rel 'ij ^ ' rel 'ij (20) 

thus yielding the following expression for the angle between these vectors 

cos * = p" ^ e l . (21) 
rel Tel 

^ EJ §L a r e identified with the# directions of two light rays at the point of 
observation, then P. = i _ i ( t ) / c , S = £2 (*) / c a n d t n e relation Eq. (21) will represent 
the required expression for the measurable angular distance between two light emitters. 

When actually discussing the results of an observation, one usually deals with the 
angular distances between celestial bodies and the relativistic reduction based on Eq. (21) 
may be quite adequate. Nevertheless, astrometric practice often requires the derivation 
of the coordinates of a star or a planet with respect to some specified reference system. 
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the forth problem of reduction is thus to calculate the actually measurable position of an 
emitter in the reference frame of an observer. 

The reference frame of an observer may be mathematically represented by the 
tetrad of unit orthogonal vectors X/ \, u = 0,1,2,3. The time-like vector X/Q\ is tangent to 
the world-line of the observer at the point of observation. Physically, this vector 
determines the proper time dx of the reference frame. The three other vectors A/A (i = 
1,2,3) are space-like and define three space directions in the space dl . This tetrad 
represents the local inertial reference system at the point of observation. All relations of 
special relativity are locally valid in such a system and all tensor operations are carried 
out with the aid of n ^ . The tetrad is completely determined by 16 scalar components 
X(u). Changing the locai and global indices one gets 

x(f3) = rfv g x A (22) 
a &av (u) 

From this follows 

g , = x ( a ) x ( e ) n - (23) 
&uv u v aB 

and 

ds2 = n d x ^ dx ( v ) (24) 
'uv 

with 

dx ( , j ) = X ( ^ dxv, dxll = x j v ) d x ( v ) . (25) 

Relations Eqs. (22H25) are basic for the tetrad formalism (Ivanitskaya 1979). 

For the metric Eq. (17) one has in accordance with the general form Eqs. (1), (2) 

h = 0, h . = 0, h . . = 6 . . - v . . (26) 
OO ' Ol ' 1J 1J ' l j 

and the tetrad components may be found from 

The results are 
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xM = ^xM=°'xil) = o^(\) = 6ir^ii (28) 

and 

X(o> = 1, X<°> = 0, X<J> = 0, X<J> = 6.. 1 h.. . (29) 
o ' l 9 o ' l IJ 2 IJ 

The 4-impulse of a photon has the following components in metric Eq. (17) 
hv dx| 
c dx 

^o _ ... i __ hv dx1 /«ns 
P - hv, p - — -=— (30) 

(v is the frequency, h is Planck's constant). The components p1 may be calculated on the 
basis of the equations of light transmittion in field Eq. (1) with the use of Eq. (18). Then 
the tetrad formalism enables one to find the invariant components of the 3-vector 
n __ , ( 1 ) (2) (3k E - (P > P > P ) 

P
( i ) = P

y x ( ; ) . (3D 

With the normalization hv = l, vector £ represents the unit vector determining the 
observed direction of the light ray at the point of observation. Relation Eq. (31) may be 
rewritten in the form 

£ = g + Ag . (32) 

The correction A£ represents the relativistic term which must be added to the 
observed value of £ in order to obtain the gravitationally unperturbed direction £ at 
infinity. 

It is easy to express this reduction in spherical coordinates. For example, using 
equatorial coordinates 

£ = - (cosot cos6, sina cos<$, sin<5) (33) 

one has 
1 2 

cos<SAa = sinotAp - cosotAp + sin<$AaA6 , (34) 
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1 2 3 1 2 
A6 = sin6 (cosaAp + sinotAp ) - cos6Ap - -x sinfi cos6(Aa) . (35) 

It should be noted that the expression for the vector £ inay be obtained quite 
formally with the aid of Eq. (17). Starting from the expansion dl = d£ + ... one derives 
the vector dl = d£ + ... (ellipses indicate the relativistic terms) as well as the derivative 
dl/dT, using Rt) for the light. Then, 

1 d I 
B S ; I E • ( 36 ) 

Actually this method has been used by Murray (1981), and the tetrad formulation Eq. 
(31) may be regarded as its foundation. 

The angle between two light rays from the directions £ j , ££> respectively, at the 
point of observation is defined by the Euclidean formula 

cos \|J = 2i-22 ^37^ 

which is equivalent to Eq. (21). 

The fifth problem of relativistic reduction is to take into account the observer's 
motion. This may be solved by using the formulas for the relativistic treatment of 
aberration independently of the previous problems. One may achieve the same goal, 
however, by substituting into Eq. (1) the expression Eq. (10) with Jjtft) being that function 
of time which defines the motion of the observer (for example, annual and diurnal motion 
of the Earth). If all this is done, one gets expressions which describe the dependence of 
cos \p and p not only on the parameters of the graitational field but on the observer's 
velocity R(tT as well. 

The last problem to be mentioned here is the relativistic treatment of the 
astronomical reference frames. To construct a co-moving system suited for the reference 
frame, Eq. (17) must be divided not at one world-point but along the whole world-line of 
the observer in some space tube of this line. Such problems may be solved by the methods 
of the tetrad formalism (Mast and Strathdee 1959; Synge 1960; Manasse and Misner 
1963). The physical aspects of the relativistic reference frames are considered by M811er 
(1972) and Vladimirov (1982). The construction of the reference systems on the basis of 
given dynamical relations or space directions (prototype of dynamical and kinematical 
reference frames in astronomy) was dealt with by Vyblyj and Kostyukovich (1982) and by 
Kostyukovich (1982). Relations among barycentric, geocentric and topocentric reference 
systems are discussed by Fujimoto et al. (1982) and by Pavlov (1984). 

4. Relativistic reduction in the Schwarzschild problem and in the two-body field 

Consider now some applications of the general technique of relativistic reduction. 

In the most simple case of the heliocentric Schwarzschild metric one has 
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hoo = -r + 2 [ B - a ( p ) ] ^ + - ■ hoi = 0^ 

h ij = ~^\\y " a ( r ) l 6 i j + [ a ( r ) " rat(r)"l ^T~ 
(38) 

where the coordinate function a(r) generalizes the constant coordinate parameter a and 
satisfies two relations for the quasi-Galilean coordinates a!(r) ■> 0, a(r)/r ■* 0 with r -► °°. 

By virtue of Eq. (12) the velocity of light in the field Eq. (38) will be 

(or) 1 ™ l r i v Q r ) 
i f ( t ) = a + m [ra'(r) - a(p)J - = 3 - r 

r l a x (r_ x a) 
+ [a(r> - Y - l j a - (Y + 1) r . g £ 

For the boundary value problem r_(tQ) = r ,̂ r_(tj) = r_j one obtains 

n - " 0 1 + m 
r i " ro + Doi 

(Y + i ) - + ('o x V 

D; 01 

a ( r Q ) 01(1^) 

e ( t r t o ) = Doi+ m (Y + 1) 1 

5DI X (^O X ^I> 

ro * r i +Doi 
n ro+ r r Doi 

2 2 ^ - 2 2 2 ^2 
a(rj * ° — + a ( p ) 1 ° ° 

1 2 r l D01 
0 2rQ DQ1 

(39) 

(40) 

(41) 

where JDQJ = r± - r$. For the case r < < TQ it is convenient to use the aproximate relations 

0 = -*L+. 
ro 

1 + "L 
r l 

~Y + 1 

l + SLk 
L r0 r l 

- a ( r j 
1 

1 I t o x (^i x Vj (42) 
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(43) 

The function a(r) enters into the right-hand sides of Eqs. (40) and (41) only through 
the combination 

L = I [ l - m o t ( r ) ] , 

proving the coordinate independence of a and tj - tn (taking into account that in the post-
Newtonian approximation the relationship between proper time and coordinate time is 
coordinate independent). 

The geocentric Schwarzschild metric is introduced with the |id of Eq. (10). If the 
metric tensor Eq. (38) in the heliocentric system is designated by h , then one has in the 
geocentric system 

hoo = C - 4 52 - -f [ Y - «(r) l R2 - -f=3 [«(D - ra'<r>l (r R)2 , 
c c r l . J c r | _ -J 

Rj + f1 [Y - a(r) | R1 + ^ fa(r) - ra'(r)l (r R) x1 hoi = " c (44) 

h i i = h i J 

In this metric, Eq. (17) is split in the following way: 

dl 

dx 

1 + - 1 [Y ~ a(p)]|dfi2 + ^ [a(r) - ra'(r)] (r d£)2 + - j (R d £ ) 2 , (45) 

o 
- m 1 "2 , ro t x 1 1 m m f , x , 1 "1 *2 1 " F " 71 5 + [6 - a(r) - j J - j - — [ Y " «(r) + f J R -

2c *- J r c r l -

- ^ 4 fad-) - ra'(r)l (r R ) - -±j (R2)5 

c V L J " " 8c4 " * - ? , .is [ T . a ( r , . i ] 

https://doi.org/10.1017/S0074180900076373 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900076373


RELATIVISTIC REDUCTION OF ASTROMETRIC OBSERVATIONS 

1 V R2 ( R d p ) - - y ^ [a(r) - ra'(r)] (r R) (r d £ ) . (46) 
c r L 

With the aid of Eqs. (10), (39) and (45) the relation Eq. (21) results in the final 
expression for the angle between two light rays (Brumberg 1981a) 

cos ty = c^ a2 + ^ (ax a2 - l ) (a 1 R + g_2 R) + ^ ( ^ o_2 - 1) [ ( ^ R ) 2 + (a2 R)2+ 
c 

+ ( £ l R) (a2 R) - R 2 ] + (Y + 1) ? ( ^ | L - - ^ ^ ) ( o 1 x a2) • (47) 

This formula describes the aberration effects of the first and second order together 
with the light deflection effect. 

Applying to Eqs. (45) and (46) the tetrad relations Eqs. (27)-(29) and using Eq. (31), 
one gets an expression for the proper direction of the light at the point of observation 

£ = £ + £ |"<I x <2 x ?)"| " "-̂ 2 [- x *- x 5*J + 2̂ *- -* [- x *- x 5M " 
zc c 

m o x (r x a) 
" <1T + 1) ? ~ r - a r " • ( 4 8 ) 

This expression may also be obtained directly from Eq. (36) with the aid of Eqs. (45) 
and (46). In spite of the difference in form, the expression Eq. (48) agrees with the 
corresponding relation given by Murray (1981). 

Solving Eq. (48) with respect to a gives the reduction Eq. (32) in the Schwarzschild 
field 

Ae = I [E x (? x E>] - \ ( 5 x E)2 E ' "T [- x (^ x E ) ] + 

^ p x (r x p) 
+ (Y + 1) ? r " p . (49) 

r r - j> r_ 

Using Eq. (47), one may investigate a variety of specific cases occuring in 
astrometric practice (Brumberg 1981b). As illustration, we consider here the relativistic 
corrections in defining the annual parallax. This question has aroused some controversy 
(Arifov and Kadyev 1968; Mikhailov 1969; Arifov 1983). 

In principle, the distance to the star whose heliocentric position vector is £Q may be 
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found by two properly spaced measurements of the angle between the directions from the 
Earth to the Sun and to the star. Neglecting aberration effects and using Eq. (42), one 
finds from Eq. (47) for the first observation ^ when the heliocentric position vector of the 
Earth is rj 

C O S ( h + T~T~ + 

1 r i ro 

III * Ifll 
r l r 0 Vi ro / ri \ r i ro / ro J 

(50) 

sini))- = '^0 * lil 
r 0 r l 

1 + — « m h io 
r l r0 + r-l e-0 

Ui l + =lio 
r i ro 

a ( r x ) 
(51) 

At the moment of the second observation $2 o n e n a s t h e s a m e relations but with the 
sign of r_2 reversed, provided that <t>j and 4*2 were measured one half year apart. As a 
consequence, we have 

s inl >1+ V r1 - m a ( r x ) 

2 s i n $- (Y + 1) 
r - s i n <))-

(52) 

The classical definition specifies as the annual parallax the angle A at the star in the 
rectangular triangle Sun-Earth-star with ty^ = 90°. In Newtonian theory, 4>2 = 90° - 2 A and 
the left-hand side of Eq. (52) becomes equal to A. Starting from some sufficiently large 
value of r0, the right-hand side of Eq. (52) will be negative. But the conclusion about the 
negative value of A would be incorrect being based on the Euclidean formula for the sum 
of angles in the triangle. Assuming that the Earth moves uniformly in a circle with the 
radius ri = a and the mean motion l l 

(M/a3) 
1/2 

1 + m [|a(a) - 2 y (53) 

one has 

a = aN + Aa, aN = (M/n 2 ) 1 / 3 , 

where a is (by optical means or by radar) a measurable quantity with the difference Aa -
ma(a) beinff coordinate-independent. In principle, the relation Eq. (52) permits one to find 
the ratio a N / r 0 without any ambiguities. 

Consider now the modification of the basic reduction formulas for the field Eq. (12) 
of the two-body system Earth-Sun. The barycentric velocity of light will be 
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2 m. 
z - i 

i=l ^ L 

1 • 2 m; T 2 2i 2 x (fiix2) "I 
± r ( t ) = a + Z -r-l- a 5 1 " fi« + <a " Y " D <? - <Y + D — £ (54) 1 ~ 2 i 

and relations Eqs. (40) and (41) for the boundary value problem take the form 

D„ 2 m. (1) (0 ) . n 

n _ - o i + ; "4 L j pi ; pi + Doi ? M I ) (o ) \ 
01 i - l 01 I ( £ x fl, ) DQ1 p. p. \ / 

(55) 

(1 ) . (0 ) . n 
P j

 + Pj + D 0 1 
c ( t l " V - D01 + * mi (Y + 1) l n (1)+ (0) _ + 

1=1 I Pj + Pj " D01 

, a / ( D . J O h f / d ) ( 0 ) \ 2 '. 
2D n ( 0 ) . ( l ) I"1 Pi / (Pi " Pi / ' 
2DQ1 p. p. \ /LV / 

(56) 

,(i) Here, £> J ' denotes the position vector of the light particle with respect to the body 
i at the moment j . Eq. (17) is partitioned for the metric Eq. (12) as fol lows 

[ l + 2(Y - o) Z - r 
L i=l p i J 

dl = 1 + 2 ( y 
L 

2 m. 

c i=l p. 
(57) 

i 5 ^ 1 - 2 

d T = l - Z — -
i=l p i 2c 

2 m. • 9 / 1 \ 

\ / 1=1 p. 

2 * [(.-»)?-;*(**)'] 
p l p 2 8c 4 v« 

2c px c p2 

dt + 

- ^ + (2g - 2Y - 1) — - -^] R2 - 2g - | ( f i , R) £ , dfi . (58) 
p l p2 2c 2 J " p3

2
 2~ 2\ 

For the Earth-Sun system, formulas Eqs. (47), (48) are generalized to 
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2 m. / P . x o 
cos ♦ = ̂  °L2

 + 

P.. 

P 

z m. / "i- * l-i 

(59) 

2 m. a x ( p . x a \ 
. 1 P. p . - a p . 
i = l I I - - l 

= a - ( Y + i ) Z ^1 p > _ J p / + . . . . (60) 

The ellipses in Eqs. (57) and (58) signify the aberration terms which are the same as 
in Eqs. (47) and (48), respectively. 

With the aid of Eqs. (56) and (59), one may derive the round-trip time in Lunar laser 
ranging as well as the expressions for the angular distances Moon-Sun and Moon-star 
(Brumberg and Ivanova 1982). 

5. Relativistic reduction in geodynamics 

As supplementary examples, the relativistic reduction in Doppler satellite 
observations, navigation measurements with the use of satellites like NAVSTAR and 
radiointerferometric observations may be considered. 

In the first two problems one may (for a precision of 10~14 in the frequency 
measurements) neglect the influences of the Moon and the Sun (see appendix) and consider 
the geocentric inertial system Eq. (1) as characterized by 

noo = ^ ( l ) / ^ > n
o i = ° > h i j = ° t <61> 

$(r) being the Newtonian potential at r. If the moving point 1 emits a light signal of 
duration o t and the duration of this signal as received at the moving point 2 is ^ t1, then 
the ratio of the emitted frequency fj to the received frequency f« will be in inverse 
proportion to the ratio of the proper time intervals ^t /^t1 of light emission and 
reception. Therefore 

f_l_= 6T, _ l + » 2 / c 2 - i ! / ( 2 g 2 ) 

f i 2 ~ ™~ " i + V c 2 - ; 2 /(2c2) 
TT.~ K- = ". ~: ', , HT > ( 6 2 ) 

t and t1 being the epochs of emission and reception, respectively, in coordinate time. By 

V " * = c" ^ l ( t ) - I 2
( t , ) l ( 6 3 ) 
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one has 

1 + k r ( t ) /c 

of = r (64) 

1 + k r2(t»)/c 

with 

r^t ) - r 2 ( t ' ) 
k = i , u\ __ - / + i \ l (65) |r x(t) - r 2 ( f ) | 

The relation Eq. (62) (with Eq. (64)) is often used in practice. It contains two instants 
t and tf. Sometimes it may be useful to rewrite this relation as the function of one single 
argument. Denoting 

R (t) = rx(t) - r2(t) (66) 

one obtains 

t . - t . 5 J l L - i j B r , ♦ . . . ^ - ^ R r + . . . . (67) 
c c 

Taking the derivative dt'/dt yields two expressions which are equivalent to Eq. (62): 

6 T ' - I + *2 " *1 . R(t) . 1 *2 1 R .. ,Rft, 
c 2c c 

& . ,♦ !L_!? . isn , . j . t ̂ g . . . . . (691 
c c 2c c 

In the second order terms, the difference between t and tf is, of course, insignificant. 

In the integrated Doppler effect (Boucher 1978) the measurable quantity is the 
difference between the number oft impulses generated at point 2 with the frequency f« 
during the proper time interval (T«, T2) and the number of impulses emitted at point 1 
with the frequency fj and received at point 2 with the frequency f̂ * Mathematically, 
this quantity equals 

- } ( f„ - f^Jdx' (70) 
t , v 2 '12 

1 
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(71) 

and 

T 2 ^ Ar 

Considering Eq. (69), the final result is 

N = ( f 2 - f l ) ( T ' 2 - T ' , ) + ^[^p-^V] -
T * 2 

" V l / , (*1"$2 + l « 2 + 5 l i ) * ' • (72) 
C T j V ' 

Ashby and Allan (1979) have shown that one may use the coordinate time of the 
geocentric reference frame in the problem of clock synchronization in terrestrial space. 
This is of advantage in navigation, and with the aid of navigation satellite systems like 
NAVSTAR as well. Consider three moving objects, a navigation satellite 1, a user 2, and a 
ground station 3. The clocks of all three objects indicate individual proper times t, t!, t", 
respectively. These may be converted to coordinate time for each object by a formula 
such as the following 

At = f ( l - ±y * + -** p2^dr 
J V c 2c / 

(73) 
2 c ' " " 

in conjunction with the transformations of the integral function for the satellite and the 
ground station, cf. Ashby and Allan (1979). 

At the epoch tQ pf coordinate time let the clocks 1,2,3 be synchronized. This means 
that the readings x̂  T^, TJ , respectively, in their individual proper times conform to the 
epoch tQ of coordinate time. The satellite 1 transmits signals periodic in its proper time 
T. Consider a signal emitted by the satellite at the moment T2 in its own time-scale T and 
received by the user at the moment T 2 in the user!s time-scale T\ The corresponding 
epochs of coordinate time are tj and t2, respectively. Then 

T2 
\ ' 'u = T2 " T * + ^ H j r ; - « , )dT, (74) i + 7 jf ( i i ! -*i)«> 
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Evidently, 
T 2 T 2 T 2 
/ f12 dr1 = / Tj dr = fx / dr 
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l0 - T2 " Ti 

T2 
2 '0 " l2 Ll + 1 2 / ( I 4 - *2 ) dT? 

According to Eq. (67) 

*2 " t l 4 R 1 2 ( t 2 ) -h^l2h + 
c 

From Eqs. (74) and (75) follows 

, R 1 2 ( t ) = r ^ t ) - r 2 ( t ) . 

(75) 

(76) 

R ^ ) = C(T£ - xi> - c ( t 2 - T l ) + i / ( | r i 
T 1 V 

T2 

-1 / (i ;? - •)dT +«5i2 ii • 

- *, ) < * ' 

(77) 

The epochs -rp T2> T^, TO » r e known quantities and the integral as well as the last 
term in Eq. (77) may be calculated with their known approximate values. In combination 
with three analogous relations for three other satellites, this enables us to determine the 
accurate coordinates of the user and the time correction to his clock (Spilker 1978). 
Similar expression may be derived for the relationship between the satellite 1 and the 
ground station 3. 

Finally, in radiointerferometry on the surface of the Earth the dependence Eq. (56), 
by BrumbergTs (1981b) method leads to the following expression for the coordinate time 
delay betwen the epochs t^ and t 2 respectively, of the reception of a signal by two 
terrestrial stations 

c ( t x - t 2 ) 
s d 

l + h [ ^ l ( t l ) + % ( t 2 ) ] 

+ 1 

Px+ £ (R + a\ 
a 
Pi 

(s d) + 

"2 
(y + 1) 

(R + R s)d 
R + R s a (s d) + %, (R s)(R d) (78) 

Here, r̂  is the position vector of the center of mass of the Earth with respect to the 
barycenter Sun-Earth, II is the heliocentric position vector of the center of mass of the 
Earth, £j is the geocentric position vector of the station i, d̂  = £0^1) - £ i ( t i ) is the base­
line vector, £ = rQ/rQ is the direction to the radio source from the barycenter Sun-Earth. 
In harmonic coordinates, by virtue of (6) 
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d = d - a ( — + J ^ J d + a - | (Rd)R 
~ ~ \ p l R / " R3 

demonstrating that Eq. (78) is coordinate independent. 

6. Conclusion 

One may easily obtain numerical estimates of the above described reductions made 
on the basis of the values: m2 = 1.5 km, m-i = 0.5 cm (gravitational radii of the Sun and 
the Earth, respectively). At the distance of tne radius of the terrestrial orbit R and radius 
of the Earth p one has m2/R = 10~8 , mi/P = 10 . These values characterize the order of 
the relativistic effects in comparison with the main Newtonian terms. 

The most timely questions of relativistic astrometry seem to be the relativistic 
aspects of the astronomical reference systems and the relativistic effects in the rotational 
motion of the Earth. These questions have been dealt with in many investigations but 
much remains to be done to find these solutions best suited to astronomical practice. 

(79) 
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Appendix: Influence of the Moon and the Sun 

Let us show that in geodynamical problems of clock synchronization and navigational 
measurements, the influence of the Moon and the Sun may be neglected to an accuracy of 
10"1 in frequency. This has been demonstrated by Ashby and Allan (1979) but in a rather 
complicated way considering several effects which mutually cancel each other. The 
following technique, which has to do with the relationship between the Earth's proper time 
and coordinate barycentric time (Moyer 1981), leads directly to the same conclusion. 

In the barycentric system with respect to the Sun, the Earth and the Moon Eq. (1) 
yields, sufficiently accurate for the problems under consideration 

nig mg m^ 
goo = l ~ Â  " A^ " 1^ ' goi = ° ' g i j = " 6 i j 

Ag, Ag, A^ being the distances to Earth (E), Sun (S) and Moon (L) respectively. The 
proper time t of clock A situated on the surface of the Earth or on the satellite will be 

dx = 1 ™5 ™S ™L 
E " S " L 

r A r A r A 
A A A 

= • ( * ) ' 
dx 

Here, j j denotes the position vector of the body I with respect to the body J. Index 
C refers to the Sun-Earth-Moon barycenter. 

S T F S F F 
r^ and r£ are expanded in powers of r£/rg and r^/rg, respectively, taking into 

account that 

S E , S L E E rA = r . + r„ , rA = rA - rT -A -A -E * -A -A -L 

On the other hand 

"C *E , #C 
*A = T-A + % 

and the term with the mixed velocities is transformed as follows 

a 
whei 

■s 

;c _ d / E ;c \ E c 
^E " d t \ ^ A ^ E / - ^ A *E 

*e, by virtue of the Newtonian equations 
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The mixed terms proportional to J^rj? and J^£_L c a n c e * each other and we get 

l"i ^ ™S ™L J _ / -E \2 J _ AC\2 
" \ l " E " S " E " 0 2 I -A/ 0 2 (-E 

L rA rE rL 2 c W 2 c \ / 

A similar relation between dTf and dt1 may be established for the second clock A1. If 
t is the moment of emission of the signal at point A, and V is the moment of its reception 
at point AT then 

t» - t = i I rG ( t ) - r C ( t T ) I = 5 l l l . L R lc . L R nE + 
c ' -A V ' -Af u ; • c 2 - -E 2 - -AT • ' • 

c c 
with 

R(t) = rj(t) - pjf(t) . 

Hence, 

111 = i R(t) _ 1_ d 
dt c 

c 

1 d / 'C \ 1 *E *E x 1 / *E \2 1 . E 

Therefore, 

r , r 2c 

This expression contains only the geocentric quantities and coincides with Eq. (68). 
(In this approximation there is no difference in coordinate time for geocentric and 
barycentric systems.) 

The neglected terms 

& [*> • & [A> 

are of the order 10"2 4(r|)2 (for the apn with the coefficient 1/2, r? in units of km). For 
satellites with a geocentric distance rf = 3.10 km, this is of the oraer 10" . 

dx = 
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