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Abstract

A general discrete multi-dimensional and multi-state random walk model is proposed to
describe the phenomena of diffusion in media with multiple diffusivities. The model is a
generalization of a two-state one-dimensional discrete random walk model (Hill [8]) which
gives rise to the partial differential equations of double diffusion. The same partial
differential equations are shown to emerge as a special case of the continuous version of
the present general model. For two states a particular generalization of the model given in
[8] is presented which is not restricted to nearest neighbour transitions. Under appropriate
circumstances this two-state model still yields the partial differential equations of double
diffusion in the continuum limit, but an example of circumstances leading to a radically
different continuum limit is presented.

1. Introduction

After years of preoccupation with the classical diffusion process, physicists and
engineers are now finding it increasingly necessary to adopt more sophisticated
stochastic models to describe the subtle transport processes which arise in
disordered materials [3, 11, 23, 24]. Sometimes the necessary tools have existed in
the mathematical literature for some time. In some cases these have filtered
through, while in others the wheel has been inadvertantly reinvented, a perhaps
inevitable consequence of the current isolation [14] of "pure" mathematics from
the physical sciences.
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In this paper we shall bring together, in an admittedly heuristic fashion, two
currently popular developments of old themes in probability, internal structure
and divergent moments. Our aim is to formulate a general system of equations
describing, at a continuum level, random transport of charge, mass or energy
under the action of several transport mechanisms of greatly differing efficiency.
To do this, we shall examine a class of random walk processes on lattices (discrete
spaces), in the limit as the lattice spacing and the time between steps approach
zero simultaneously. In the manner of Landman, Montroll and Shlesinger [16, 22]
and Hill, Liyanage and Gulati [8, 9, 18] and many others, we associate with each
lattice site a number of internal states or degrees of freedom, so that there is
random motion between states as well as motion from site to site. So long as
simple moment conditions are obeyed, the equations of the continuum theory of
multiple diffusion [1, 2, 8, 9, 18] are obtained. This is essentially a generalization
of the familar central limit theorem. When these conditions are violated, for
example with suitably long-ranged transition probabilities for individual displace-
ments {cf. [6, 10, 13] in the ordinary random walk context), we obtain generaliza-
tions of the stable laws of Levy [4, 7,17].

In the following section we formulate the general discrete random walk model.
In Section 3 we deduce the formal continuum limit of the model. The use of
matrix formalism and transform methods enables us to deduce easily in Section 4
the differential equations of the simpler model of Hill [8], and to derive formulae
for the mean displacement. In Section 5 we give a particular generalization of the
model of [8] which is not restricted to nearest-neighbour transitions but may still
give rise to the same double diffusion equations in the continuum limit. In Section
6 we give an example of this model involving the Riemann zeta function which
does not give rise to the double diffusion equations and we examine in detail the
various continuum limits. We have not attempted to formulate and prove rigorous
theorems characterizing the continuum limit, but rather have limited ourselves to
an at times heuristic investigation of the possible behaviours, especially in the case
of divergent moments. (Some rigorous theorems of the central limit theorem type
for systems with finite second moment have recently been proved by Kramli and
Szaz [15].)

2. General discrete formulation

We consider a class of spatially and temporally discretized multistate stochastic
processes, namely random walks with internal states on periodic lattices. (These
processes are known to probabilists under a variety of names, e.g. 'random walks
controlled by a Markov chain'.) Specifically we consider a random walk taking
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place on the E dimensional simple cubic lattice (E > 1). If A is the lattice
spacing, the allowed sites are the points x = Al, where I is a vector with integer
components. It is convenient initially to speak of the "lattice site 1", that is to
suppress A and analyse the walk as if it took place on the set ZE. The length scale
A is needed when we wish to take continuum limits in which both A and the time
T between successive steps are made to approach zero in a suitably constrained
manner.

With each lattice site we associate m internal states. We have in mind the
multiple diffusivity model [8, 9], in which each state corresponds to a distinct
diffusivity. In the context of diffusion of ions in metals several high diffusivity
paths can be identified such as dislocations, grain boundaries, free surfaces and
internal microcracks. Similar equations arise in problems of cluster motion on
surfaces [16, 22] and random walks on networks related to the Bethe lattice or
Cayley tree [12].

Any step of the random walk may leave the walker in a new site, or a new state,
or both, or he may pause at his present location (site and state). We define the
transition probability law:

/ probability of moving next to site I and

rn n 'O ~ •') = { s t a t e "» given that the walker is currently (2.1)

Vat site Tin state n'.

We note that implicit in this definition is that the random walk is translationally
invariant. A more general model would have transition probability law
r«n'(l, 1') =*= Tnn/(1 — I',0) but this much harder problem is not considered here.
We let Pj(\)n denote the probability that after j steps the walker is in state n at site
1 so that the evolution of the walk is described by

W ) * = E £ TnA\-nPj(l')n', (2-2)
I' n ' - l

together with an initial condition which we take as

P0(\)n=Un(\) (n = l ,2 , . . . ,m) , (2.3)
where Un(\) > 0 and

I L Un(\) = I- (2.4)
1 n - l

We introduce matrix notation with F(I — 1') denoting an m X m matrix with
nn'th element rnn-(l - 1'), and Py(l) and U(l) being m dimensional column vectors
with nth elements^(l)n and Un(l) respectively. Equations (2.2) and (2.3) become

, (2.5)

P0(l) = U(l). (2.6)
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The translational invariance of T allows us to exploit the discrete Fourier
transform. If we define

*,(•) = 2>"-*P>(l), (2-7)

then with f (<(>) and U(<|>) defined analogously equations (2.5)and (2.6) become

(2-8)

(2.9)

so that we have

P y (* )={f (* )} y t J (* ) . (2.10)

Now the inversion formula for the discrete Fourier transform is

(2.11)
\J.1T )

where B denotes the first Brillouin zone, that is the hypercube of side 2w centred
on <|> = 0. Thus we deduce that

(2,7)'

and this equation is the formal solution of the random walk problem.
In applications we may only be interested in the site occupation probabilities

rather than the distribution over the m states, so that we need to calculate
m

with the row vector wr = [1 ,1 , . . .,1] acting as a projection operator. From (2.12)
the probabilities become

P (1) = ( d%e~'x <t>toT{IN(<|>)}''U(<)>), (2 14)
1 (2TT)EJB

and clearly the willingness to accept only P,(l) rather than P (̂l) leads to no real
simplications. We have now established the formal machinery to study the general
problem of diffusion in media with multiple diffusivities. In the following section
we consider the continuum limit.

3. The continuum limit

We define the probability density function for the walker, distributed over
continuous space, at time t = jr by

p(x,0 = A-£P,(l), (3.1)

https://doi.org/10.1017/S033427000000477X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000477X


[ s I Random walk formulation for multiple diffusion 77

if x lies in the hypercube of side A centred on site 1 with its edges parallel to the
coordinate axes. We also define

p ( q ( 0 = P,(Aq) ; u(q) = U(Aq), (3.2)

for q within the hypercube of side 2w/A centred on q = 0. The notations p and u
are used in anticipation of the fact that in the limit of A tending to zero p is the
continuous Fourier transform of p, since it follows from (2.11) in this Umit that

p(x, t) = - ^ f • • • / d V-*"P(q, 0, (3-3)
(2w) J-°o J

subject to modest hypotheses on the continuity of p and p.
On rewriting (2.8) in the form

P,+1(<t») - f» (•) = - { / - f «.)}P,(<|>), (3.4)

where / denotes the m X m identity matrix, we obtain with t = jr,

p(q, / + T) - p(q, 0 = - { / - f (Aq)}p(q, 0- (3-5)

Thus provided that

, (3.6)
A , T - » 0 T

exists for a suitable joint limit of A and T we have formally established the
equation

^ ( q , 0 = -^(q)p(q,0- (3-7)

This is a first order vector differential equation which we solve subject to the
initial condition

p(q,0) = u(q). (3.8)

Consequently in terms of the matrix function exp(B) defined by the formal power
series

exp(fl) = / + £ ±Bk, (3.9)

we have

p(q,0 = exp{-M(q)}u(q). (3.10)

We observe that the spatial probability density for the walker with the distribu-
tion over internal states suppressed is

p(x,t) = uTp(x,t), (3.11)

which in Fourier transform space is given by

(3.12)
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Before proceeding to particular one-dimensional two-state examples in the
following sections we make some general remarks. Firstly let the matrix M(x, t)
denote the inverse Fourier transform of

M(q,/) = exp{-^(q)}. (3.13)

Since the matrix A(q) trivially commutes with itself we have for T such that
0 < T < /,

M(q,t) = M(q,t~r)M(q,T), (3.14)

and therefore

M(x, / ) = r ••• f dEyM{x -y,t- r )M(y , T ) . (3.15)

We observe that equation (3.15) is the matrix form of the Bachelier-Chapman-
Kolmogorov-Smoluchowski chain equation

P ( x , 0 = f 0 ••• f d E y P ( x - y , t - < r ) i > ( y , T ) , (3.16)
— 00

for translationally invariant and temporally homogeneous Markov processes. (See
for example Gikhman and Skorokhod [5], Chapter 7, and Mandl [19], or for a
heuristic discussion, Montroll and West [20]. Solutions of equation (3.16) with
modest smoothness properties are 'infinitely divisible distributions' [4, 7]. Levy's
stable distributions [17] defined below satisfy equation (3.16), and it has been
erroneously stated [21] that they are its only solutions.)

Secondly we remark that for an arbitrary matrix-valued function A(q), the
vector p(x, t) obtained from equation (3.10) will not necessarily be a valid
probability density in the sense that its components are not necessarily positive or
normalized for all T, that is we may not have

/ " • • • j rfWp(x,/) = l. (3.17)
- 0 0 J

Conversely we need also observe that not every bonafide probability density
p(x, /) obtained from (3.10) is necessarily going to be found as the continuum
limit of some multistate random walk. In the following section we show how the
double diffusion equations arise from the above formulation.

4. Double diffusion equations

The double diffusion equations as formulated by Aifantis [1, 2] emerge from a
two-state one-dimensional walk with transition probability law
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where 8, y denotes the usual Kronecker delta. If the particle is in stated {j = 1,2)
it is assumed that it next moves one step to the right with probability pr one to
the left with probability q , remains in position with probability ry, each of these
outcomes is assumed to take place without change of state. In addition it is
assumed that the particle has probability Sj of switching to the other state without
change of position. All probabilities are assumed independent of the position of
the particle, and it is assumed that

pJ + qJ + rJ + sj=l 0 = 1 , 2 ) , (4.2)

i.e. there is no leakage of walkers from the system.
We find that

tM - W"+ "I'"'*+ " , * 1. (4.3)
To obtain a finite continuum limit as the step length or lattice spacing A and the
time T between steps tend to zero, we assume that

Pj = \*(Dj + djb), qj = \*(Dj — djh), sJ = \*kJ&
2, (4.4)

where dj, Dj and kj (j = 1,2) denote finite constants and X* denotes the finite
positive limit of T/A 2 as A and T tend to zero. Writing <j> = Â f, we find that the
function A(q) defined by (3.6) becomes

kt -k2] . \2dx 0 1 _ \DX 0

Thus from (3.7) utilizing the identities

f e'-^-p(x,
/ ox- o o

r
- 00

(4.6)

c,t)dx = -q2p(q,t),

(which hold unless p(jc, t) is badly behaved as |JC| -» oo), wereadily obtain the
second order matrix partial differential equation

a P , x / f A o l a 2 \2d, o l a \ k, -k2

(4.7)

This is precisely the system of double diffusion equations given in [8].
In order to deduce means and variances from the above formulation we need to

differentiate the exponential matrix function in (3.10). For example for the
two-state one-dimensional vector moments we have

M<*>=/° (4.8)
q-0
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We illustrate these calculations for the mean only and moreover we determine
only the scalar mean given by

Af<1>=ttrM(1>=[l,l]7M<1>. (4.9)

Calculations for the higher vector moments are similar although the algebra
becomes more complicated. It is convenient to introduce the constant matrices

so that we have

A(q) =J- iqV+ q2D,

and we note the identity

u>TJ = 0 ,

which considerably simplifies the algebra.
From (3.10) and (4.8) we obtain

Further from (3.9), (4.11) and (4.12) we find that

uTexp[-tA(0)] = wr.

Moreover using

dq

we can also deduce that

x 3

k

7 = 1

But / is a singular matrix: for any vector [J^] we have

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

From the above equations we may deduce that the scalar mean defined by (4.9)
becomes

(4.18)
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F o r the case in which the r a n d o m walker is initially localized at / = 0, i.e.

w h e r e w0 + v0 = 1, equat ion (4.18) reduces to

2 + k2dx)t + 2(«f1 - d2)(klUo - k2v0) _

(4.20)

This result agrees with the continuum limit of an expression for the mean
displacement of the two-state random walk given in [8].

5. Generalized double diffusion

For the two-state one-dimensional walk we let Pj(n) (j = 1,2) denote the
probability of moving \n\ steps (to the right if n is a positive integer and to the left
if n is a negative integer) and remaining in path j . With r} and Sj as previously
defined, so that path (state) changes can only occur when the walker stays at the
same site, we have

t Pj(n) + rj + Sj = 1 0=1,2), (5.1)
n — - o o

and the transition probability law is

r(/)= E
r\ S2
s \ r2

We remark that the random walk mode1 of the previous section results from
taking Pj(n) to be given by

We show below that the same double diffusion continuum limit also arises from
(5.2) provided that

/*,= E npj(n), ij= t "2Pj(n) 0 = 1,2), (5.4)
n = - o o n — - o o

are both finite and /t̂  tends to zero in an appropriate manner with the step length
A.
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From (5.2), on making use of (5.1) we have

f (<*>) =
I P2(n)(e'"* - I)

(5-5)

and since
oo , 2

we obtain

Thus with

M, = X*2rf,A, i,, = X*22>,, *,. = X*A:,A2, (5.8)

where as previously X* denotes the finite positive limit of T / A 2 as A and T tend to
zero, we obtain ^4(^) given by (4.5) and therefore the same continuum limit (4.7)
results.

If one or both of the individual path mean-square displacements per step ijy is
infinite the preceding simple analysis is no longer applicable. Two distinct cases
arise. In the first case, double diffusion equations can be derived if the continuum
limit is modified. This case arises only when the series defining a divergent t\j is
only very weakly divergent, in the sense that

H p X n ) [ e " " > - 1 ] = in,<t> ~ <t>2L,(<!>) + o(<j>2), (5.9)
n = -oo

with Lj(tf>) 'slowly varying' in the sense of Feller [4], i.e. Ly(X<»/L/(^)) -* 1 as
<f> —> 0 for each X > 0. So long as the functions Lx(<|>)and L2(<i>) are asymptoti-
cally proportional as <f> -* 0, double diffusion equations can be obtained in the
continuum limit if the constraint T a A2 is replaced by T a A2Ly( A). This case is a
generalization to multistate processes of sharp forms of the central limit theorem
which establish the existence of a Gaussian limit for sums of independent random
variables with weakly divergent variances (see for example [4]).

In the second case, the series defining r\j diverges so strongly that the asymp-
totic form (5.9) is not obtained, and the usual double-diffusion limit is precluded.
The following section is devoted to a detailed discussion of an example of such
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behaviour. We encounter what might be loosely described as multistate generali-
zations of the stable or Levy distributions (see [4] or [7]), which arise from
generalizations of the central limit theorem. A one-dimensional symmetric stable
distribution of order /x has the probability density function /M(x) defined by

W , ( * ) dx = cxp[-C|?r], (5.10)

with C a positive constant. The parameter /x is constrained to the interval
0 < ju < 2, and the variance is finite only in the case ii = 2, which is the Gaussian
or normal distribution.

6. Example of generalized double diffusion

With 0 < atj < 2 we consider the two-state random walk for which

p,(n)= /J~SJ}—*—, n*0(j=l,2); (6-1)
FjK ' 2 f ( l + U) | | 1 + V \ J > t> v )

here f(s) is the Riemann zeta function defined for Re(s) > 1 by

Equation (6.1) defines a valid two-state random walk, but the lengths of individ-
ual steps have infinite variance.

We require the small <j> behaviour of

E Pj(*)[e»* ~ 1] = \ ^ t I ^ 1

fl1 + a)
aj) n-l " '

For 0 < oij < 2, it can be shown that as (j> -* 0,

1 y cos n<j>- 1

aj)T{\ + ay)s in(T O/

(See, e.g. Gillis and Weiss [6].) When 0 < a, < 2, a formal contour integral
argument based on the Mellin transform [10] may be used to establish the
complete asymptotic expansion

1 y cos n<j>- 1 -7r|<ftp

oy)r( l + « y ) s i n ( T O / )
( 6 5 )

(The argument can be made rigorous when 1/2 < ay < 2.)
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The presence of both a series in integer powers of <j> and a nonanalytic
component (here proportional to \<t>\"J) in the series (6.3), revealed in (6.5), is to be
expected from experience with single-state random walks having long-ranged
transitions [10, 11, 13]. When 0 < a, < 2, the nonanalytic component dominates
the power series as <f> -* 0, and the qualitative behaviour of the multistate random
walk is sensitive to the asymptotic behaviour of the probability distributions

For a, > 2 there is still a nonanalytic component in the series (6.3), but it no
longer dominates as <J> -» 0, and so the results of Section 5 are applicable. In the
borderline case ay = 2, the dominant term is proportional to |<f>|2log|</>|, giving an
example of a 'weakly divergent' moment as discussed at the end of Section 5. A
double diffusive limit is therefore obtained in the case ax = a2 = 2, so long as A
and T are constrained such that T a A2log(l/A).

We now examine more closely the consequences of assuming that 0 < oij < 2
(j = 1,2). From (5.5), (6.3) and (6.4) we may show that

(1 - #1 - sjK

\"\0 (1 - r2 - s2)K2\+\"

(6-6)

where the constants Kj(j = 1,2) are defined by

IT

K «y)sin(™/2) '

For this example a wide variety of continuum limits are possible. Without loss of
generality we suppose that a^^ a2- A well defined continuum limit is only
possible when s1 = O(A"') and s2 = O(A"'). We examine the following two
situations for A tending to zero:

in the second of these cases it is assumed that at least one of the nonnegative
constants kx and k2 is nonzero.

For case (i) with T ~ A"1 as A tends to zero we find from (6.6)

ifax < a2,
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so that from (3.10) we obtain

exp[-r(l - r̂ ATĵ l J ux

85

, ' ) =

exp [-r(l - r2)KM\ai\u

if ax < a2,

if ax — a2.

(6.9)

Thus for case (i) two possibilities arise for the continuum limit. We either have a
stable law confined to one path (when ax < a2) or a stable law of order ar for
each state with no changes of state (if ax = a2).

For case (ii) with T ~ A"1 we find

k, -k,

2, (6.10a)

if<*i = a2. (6.10b)

It is clear that in general for case (ii) the ability to change state is retained in the
continuum limit. In very special cases some simplification occurs. If the two
matrices in (6.10b) commute, exp[-tA(q)] can be factorized. The necessary and
sufficient conditions for commutation are that either (a) kx = k2 = 0 (which is
just case (i)) or (b) (1 - r1)Kl — (1 - r2)K2 = X say and a: = a2. In the latter
case we find that the distribution over space and between states is given by

,O = exp(-rXMai)expj-rl _̂  ~£2|W*)- (*.H)

More generally, if we are only interested in which state the walker occupies, we
may obtain a vector o(t), with components 0,(0 the probability of being in statey
at time /, by setting q = 0 in (6.10). We find that

[•>.(<) 1 / I *• -k.
u(0). (6.12)

It is easily verified that a^t) + o2(t) = 1, corresponding to conservation of
probability. Using (4.17), it is easy to show that
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and as t -* oo we find an 'equilibrium distribution' between the two states,

k(')
k(') * • / ! * .

. . . . .
( 6 1 4 )

which is insensitive to the values of at and a2.
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