
Journal of Glaciology

Article
Cite this article: Wells-Moran S,
Ranganathan M, Minchew B (2025) Fracture
criteria and tensile strength for natural
glacier ice calibrated from remote sensing
observations of Antarctic ice shelves. Journal
of Glaciology 71, e47, 1–16. https://doi.org/
10.1017/jog.2024.104

Received: 21 June 2024
Revised: 6 December 2024
Accepted: 16 December 2024

Keywords:
Antarctic glaciology; crevasses; glacier
geophysics; ice rheolog; ice shelves

Corresponding author: Sarah Wells-Moran;
Email: sewellsmoran@gmail.com

© The Author(s), 2025. Published by
Cambridge University Press on behalf of
International Glaciological Society. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0), which permits unrestricted re-use,
distribution and reproduction, provided the
original article is properly cited.

cambridge.org/jog

Fracture criteria and tensile strength for
natural glacier ice calibrated from remote
sensing observations of Antarctic ice shelves

Sarah Wells-Moran1,2 , Meghana Ranganathan2,3,4,5 and Brent Minchew2

1Department of Geosciences, Wellesley College, Wellesley, MA, USA; 2Department of Earth, Atmospheric and
Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; 3School of Earth and
Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA; 4University Corporation for
Atmospheric Research, Boulder, CO, USA and 5Department of the Geophysical Sciences, University of Chicago,
Chicago, IL, USA

Abstract
The conditions under which ice fractures and calves icebergs from Antarctic ice shelves are poorly
understood due largely to a lack of relevant observations. Though previous studies have estimated
the stresses at which ice fractures in the laboratory and through sparse observations, there remains
significant uncertainty in the applicability of these results to naturally deforming glacier ice on
larger scales. Here, we aim to better constrain the stresses under which ice fractures using remote
sensing data by identifying large-scale fractures on Antarctic ice shelves, calculating the principal
stresses from the observed strain rates and comparing the stresses of unfractured and fractured
areas. Using the inferred stresses, we evaluate five common fracture criteria: Mohr–Coulomb, von
Mises, strain energy, Drucker–Prager and Hayhurst. We find the tensile strength of ice ranges
from 202 to 263 kPa assuming the viscous stress exponent n= 3, narrowing the range produced
by previous observational studies. For n= 4, we find tensile strengths of 423–565 kPa, bringing our
inferences closer to alignment with laboratory experiments. Importantly, we show that crevassed
and uncrevassed areas in the four largest ice shelves are distinct in principal stress space, suggesting
our results apply to all ice shelves and the broader ice sheet.

1. Introduction

The initiation and propagation of macroscale fractures (also known as rifts) on ice shelves acts
as a significant control on the rate of mass loss from the Antarctic Ice Sheet. The propagation
of active rifts both vertically and laterally can result in the calving of tabular icebergs, which
directly contributes ice mass to the oceans (Evans and others, 2022). Further, even fractures
that do not directly result in calving events can weaken the backstress that ice shelves provide
to grounded ice, an effect known as buttressing. The loss of load-bearing, and thus buttressing
ability, of ice shelves can result in acceleratedmass flow to the ocean from the grounded ice, fur-
ther adding to mass loss and affecting the stability of large regions of the ice sheet (Borstad and
others, 2013, 2016, 2017; Sun and others, 2017; Reese and others, 2018; Lhermitte and others,
2020; Mitcham and others, 2021; Sun and Gudmundsson, 2023; Surawy-Stepney and others,
2023).

Additionally, the development and propagation of fractures can result, in certain cases, in
the collapse of large regions of ice shelves, as occurred in the case of the Larsen B Ice Shelf
(Doake and others, 1998; Banwell and others, 2013). Rapid breakup of ice is also occurring on
Thwaites Ice Shelf in possibly a similar process (Lhermitte and others, 2020; Benn and oth-
ers, 2022; Surawy-Stepney and others, 2023), and other regions of Antarctic ice shelves may
be vulnerable to similar instabilities (Lai and others, 2020). These collapses remove the but-
tressing effect and likely result in acceleration of grounded ice toward the ocean (Fürst and
others, 2016), as has been identified after the Larsen B breakup (Rignot, 2004; Scambos, 2004).
Further, they may have large-reaching consequences for the stability of the Antarctic Ice Sheet,
though the extent of these consequences remains unknown (Pollard and others, 2015; DeConto
and Pollard, 2016; Clerc and others, 2019; Edwards and others, 2019; Robel and Banwell, 2019;
Bassis and others, 2021; Crawford and others, 2021; Golledge and Lowry, 2021; Schlemm and
others, 2022).

An important step toward reducing uncertainty in sea level rise projections is understanding
how fracturing affects the flow of upstream ice and implementing this dynamic in models. The
current lack of observations on large-scale ice shelf failure and limited observations on calv-
ing events, in addition to uncertainties in ice rheology and the grain-scale processes through
which failure occurs, impede the predictive capability of models. A strong foundation for
understanding material failure already exists. Fracture criteria, also known as yield criteria or
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failure envelopes (a relationship between the strength of a mate-
rial and the stresses applied to it), are well-studied in material
science, several engineering disciplines, and within the glaciologi-
cal literature. Many different criteria have been applied to describe
the nature of ice fracture and to model iceberg calving (Pralong
and Funk, 2005; Albrecht and Levermann, 2012; Duddu and
Waisman, 2012), as well as materials sometimes used as mechani-
cal analogs for ice (e.g. Drucker and Prager, 1952; Bhat and others,
1991). Other approaches have included using a pressure thresh-
old (Duddu and others, 2020) and a strain threshold (Duddu and
Waisman, 2012), though these are currently less used in large-scale
ice sheet models. Most numerical models that represent ice frac-
ture and calving use a stress threshold, which describes a critical
stress above which ice fractures (Hulbe and others, 2010; Borstad
and others, 2016; Jiménez and others, 2017; Lai and others, 2020).
While many of these studies benchmark their models against lab-
oratory estimates, few studies have been able to use observations
of natural systems to determine the proper fracture criterion and
stress threshold for ice fracture.

Even within models that use a stress threshold, the magnitude
of the critical stress or the relationship of the critical stress to prin-
cipal stresses is not generally agreed upon. Various models use
critical stresses, also known as the strength of ice, ranging from
0.1 to 1 MPa, an order of magnitude difference (Pralong and oth-
ers, 2003; Pralong and Funk, 2005; Astrom and others, 2013; 2014;
Duddu and Waisman, 2013; Krug and others, 2014; Benn and oth-
ers, 2017). These thresholds are based on laboratory experiments
and glaciological observations. Laboratory experiments provide a
range of values from 500 kPa to as high as 5 MPa (Currier and
Schulson, 1982; Lee and Schulson, 1988; Druez and others, 1989;
Petrovic, 2003), while observations have found a lower range of
tensile strengths from 76 kPa to 1 MPa (Vaughan, 1993; Ultee
and others, 2020; Chudley and others, 2021; Grinsted and oth-
ers, 2024). Ultee and others (2020) found the tensile strength
of ice to be ∼ 1 MPa by considering relatively undeformed and
intact ice on Vatnajokull Ice Cap in Iceland and determining
the highest stresses present in unfractured ice using linear-elastic
mechanics (no assumed n value). While this provides a useful
baseline for ice strength in relatively undeformed and undam-
aged ice, the exact applicability to the conditions on Antarctic
ice shelves, where ice has a longer history of deformation, and
thus more accumulated damage or impurities, remains unclear.
Vaughan (1993), using stresses calculated from observed strain
rates (and assuming n= 3), found the tensile strength of ice in
regions of Antarctica ranged from 90 to 320 kPa, below the lower
bound of strengths estimated by laboratory experiments. However,
due to limited observations available in the early 1990s, the broader
applicability of Vaughan’s results to the entire Antarctic Ice Sheet
is unclear. Grinsted and others (2024) finds tensile strengths of
∼ 150–250 kPa, and Chudley and others (2021) find an even lower
critical stress of 76 kPa for fractures on the Greenland Ice Sheet,
again assuming n= 3. The difficulty of measuring stresses in situ
necessitates an assumption of ice rheology to calculate the critical
stress threshold, which introduces inconsistencies between obser-
vations and laboratory-derived stress measurements. It is vital to
understand the differences that assumptions in ice rheology make
in estimates of tensile strength, as variables such as deformation
mechanism, flow speed, and other material properties of the ice
that vary regionally can affect rheology and therefore strength
(Mellor, 1979; Currier and Schulson, 1982; Ranganathan and oth-
ers, 2021b; Ranganathan and Minchew, 2024). This knowledge gap
makes a complete study of the stress threshold across the Antarctic

Ice Sheet, capturing many different flow regimes, necessary and
motivates this study.

Here, we use high-resolution, remotely sensed observations of
surface strain-rate fields (Gardner and others, 2018) and optical
imagery of ice fractures (Haran and others, 2014, 2019, 2021) to
estimate surface stresses around areas of large-scale rifting. We use
these stresses to evaluate and calibrate fracture criteria that may be
used in ice sheet models to represent rifting and calving. We con-
sider five such criteria in this study—Mohr–Coulomb, von Mises,
strain energy, Drucker–Prager, and Hayhurst—each of which we
describe in some detail. Due to more recent and abundant satel-
lite data, we can capture and evaluate numerous fractures across
Antarctic ice shelves, enabling a more complete look at fracturing
in different regions of the Antarctic Ice Sheet.

2. Methods

2.1. Identifying fractures

We manually identify fractures on Amery (AIS), Larsen C (LCIS),
Ronne–Filchner (RFIS), and Ross (RIS) Ice Shelves as these ice
shelves are large, contain easily identifiable large-scale fractures
and fractures isolated from larger fracture fields or other areas
with accumulated damage that could influence ice rheology, and,
in particular to the AIS and LCIS, have fractures that contribute
to iceberg calving events after 2014. We do not initially investigate
more rapidly changing areas of Antarctica such as the ice shelves in
the Amundsen Sea Embayment, as the dynamic nature of these ice
shelves introduces many uncertainties into rheological processes.
We will examine the ice shelves of the Amundsen Sea Embayment
later on to test the applicability of our derived framework on more
complex areas of Antarctica.

We identify fractures using 2014–2015 Landsat-8 derived 240
m × 240 m effective strain rate fields (Gardner and others, 2018)
and MODIS Mosaic of Antarctica (MOA) 2014 optical imagery
(Scambos and others, 2007; Haran and others, 2014). We look for
linear features with high strain rates in the strain-rate data, and lin-
ear, fracture-like features in MOA imagery on each ice shelf, and
trace the identified features in QGIS. From these traces, we cre-
ate two datasets: one of crevasse features that can be identified on
both optical imagery and strain rate fields, and one of crevasse fea-
tures that can be identified only on optical imagery. We refer to the
first category as ‘active crevasses’ and the latter ‘inactive crevasses’.
The purpose of searching for high-strain-rate crevasses is to fil-
ter out crevasses that may have advected downstream to a stress
state different from the conditions under which they formed. We
aim to include active crevasses rather than inactive crevasses to
gain a better understanding of the stresses associated with frac-
ture propagation and note that inactive crevasses may exist at
stress states similar to those of unfractured ice. We avoid includ-
ing crevasses that exist close to large chains of crevasses or other
features indicative of ice damage, as damage can introduce uncer-
tainties into rheological parameters such as the flow rate parameter
A. In optical imagery, it is difficult to distinguish the depth of
crevasses, and as such, both surface crevasses and full-thickness
rifts are likely included in our datasets, and in either case, the high
strain rates across the crevasse indicate widening. We find a total
of 36 active crevasses out of a total of 110 crevasses identified on
optical imagery (Fig. 1). Of the 36 active crevasses, we find 4 on
AIS, 9 on LCIS, 9 on RFIS and 14 on RIS. We sample principal
deviatoric stresses at each pixel overlapped by a fracture trace on
our calculated stress fields.
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Figure 1. Fractures observed via optical imagery (dark green) and strain rate (neon green) data over the four ice shelves of interest: (a) Ronne–Filchner (RFIS), (b) Amery
(AIS), (c) Larsen C (LCIS) and (d) Ross (RIS). Ice upstream of the grounding line is masked in gray (Morlighem, 2019) and not considered in estimates of ice strength. (e) An
example of identified crevasses on the RIS as seen on MOA2014 (left) and strain rate fields (right). (f) An example of active crevasses on the RIS as seen on MOA2014 (left) and
strain rate fields (right). The inset in (a)–(d) shows ice velocity over Antarctica (Rignot and others, 2017), with the aforementioned ice shelves boxed in red. We do not mask
grounded ice in the inset.

To compare the difference in stress states present in crevassed
ice and uncrevassed ice, we sample principal deviatoric stresses of
unfractured ice upstream of areas of crevasse fields and in unfrac-
tured areas near the calving front. We avoid sampling stresses in
suture zones, as previous studies have shown crevasse propagation
is slowed or stopped by suture zones, suggesting the ice present
in such areas has a higher tensile strength (Glasser and others,
2009; Holland and others, 2009; Hulbe and others, 2010; Borstad
and others, 2017). By comparing the stresses present in relatively
undamaged and actively crevassed ice, as close to the crevasses as
the data allow, we can delineate a stress threshold, or failure enve-
lope, at which ice will fail. The spatial resolution of the data are too
coarse to allow for constraints on the intensification of stresses near
fracture tips.

2.2. Stress calculations

To study the conditions under which ice fractures, we calculate
deviatoric stresses on ice shelves from observed horizontal strain
rate fields and the assumptions of incompressible ice and negligible

vertical shear. We calculate the strain rate tensor at each map loca-
tion from the gradient of the Landsat-8 derived surface velocity
fields (Gardner and others, 2018).We calculate the gradient using a
2nd-order Savitsky–Golay filter and a 2 kmwindow, as inMinchew
and others (2017). The principal strain rates are the eigenvalues
of the strain rate tensor. We calculate the effective strain rates
(the square root of the second invariant (I2) of the 3-D strain-rate
tensor) from principal strain rates as

.𝜖E = √I2(
.𝜖ij) = √ .𝜖2

1 + .𝜖2
2 + .𝜖2

3 (1)

where .𝜖1 is themost tensile horizontal principal strain rate and .𝜖2 is
the least tensile horizontal principal strain rate. We adopt the sign
convention of positive tensile values (.𝜖1 ≥ .𝜖2). We take ice to be
incompressible (i.e. 0 = .𝜖1 + .𝜖2 + .𝜖3). We then solve for .𝜖3 and
substitute into Eqn 1, solving for effective strain rate in terms of
only the horizontal principal strain rates:

.𝜖E = √ .𝜖2
1 + .𝜖2

2 + .𝜖1
.𝜖2. (2)
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Because shear stresses at the upper and lower surfaces of the ice
shelf are negligible, one principal stress or strain rate is always ver-
tical, defined as normal to the surface and approximately aligned
with the gravity vector. For convenience, we denote the vertical
principal components of strain rate (and, later, stress) with a sub-
script 3 regardless of their values relative to the horizontal principal
components. We then calculate the principal deviatoric stresses
using the viscous constitutive relation

2𝜂 .𝜖ij = 𝜏ij (3)

where .𝜖ij denotes the elements of the strain rate tensor, 𝜏ij denotes
the elements of the deviatoric stress tensor and 𝜂 is the dynamic
viscosity of ice, here taken to be isotropic. Adopting Glen’s Flow
Law (Glen, 1955), we calculate the dynamic viscosity as

𝜂 = 1
2A1/n

.𝜖(1−n)/n
E (4)

where n is the stress exponent. We use both n= 3 and n= 4 in our
analysis (Budd and Jacka, 1989; Millstein and others, 2022). Glen’s
Flow Law also can be written in the familiar scalar notation as

.𝜖E = A𝜏n
E (5a)

𝜏E = √𝜏 2
1 + 𝜏 2

2 + 𝜏1𝜏2 (5b)

where 𝜏E is the effective deviatoric stress.
To calculate the flow rate parameter, we use the Arrhenius

relation

A = A0 exp{−Qc
RT } (6)

where Qc is the activation energy (here, we use Qc = 60 kJ mol−1

(Glen, 1955; Thomas, 1973; Paterson, 1977; Duval and Gac, 1982;
Duval and others, 1983; Weertman, 1983; Goldsby and Kohlstedt,
2001)), R is the ideal gas constant, T is ice temperature and take
tabulated values of A0 for n= 3 and n= 4 (Table 1). We com-
pute spatially varying flow rate parameters using RACMO2 annual
means (1974–2014) ice surface temperatures (Van Wessem and
others, 2014), meaning that our calculated deviatoric stresses are
referenced to the surface, and surface temperatures are everywhere
colder than −10∘C, motivating our use of the single value of Qc
given above.We neglect themechanical influence of firn to provide
a consistent reference for readers and becausewe expect differences
in temperature between the top and bottom of a firn layer to impart
a small error relative to uncertainties in the rheological parameters
(e.g. Goldsby andKohlstedt, 2001; Zeitz and others, 2020;Millstein
and others, 2022).

We estimate stress states near ice fractures from observed strain
rates, meaning the estimates of stress are dependent upon assump-
tions about ice rheology. Here, we calculate two sets of stress fields
from the same strain rate data and apply the same criteria to each
stress field to compare how assumed rheology changes estimated
tensile strength. We define one stress field using n= 3 and tabu-
lated A values from Cuffey and Paterson 2010, and the other using
n= 4 and tabulated A values from Goldsby and Kohlstedt (2001).
We assume a constant coefficientA0 for each n value for the prefac-
tor A. This simplification does not explicitly account for the effects
of ice fabric (Staroszczyk and Morland, 2001; Pettit and others,
2007; Hruby and others, 2020), grain size (Ranganathan and oth-
ers, 2021b), ice damage (Borstad and others, 2012; Minchew and
others, 2018; Lhermitte and others, 2020), and other factors. We

Table 1. Definition of variables and parametric values used in this work

Symbol Description Units Value

Stresses .𝜖 Strain rate a−1 –
𝜏 Deviatoric stress kPa –
𝜎 Cauchy stress kPa –
𝜎* Most tensile

principal Cauchy
stress

kPa –

p Pressure kPa –
Viscosity
and flow

𝜂 Dynamic
viscosity

kPa s –

n Stress exponent – 3[a], 4[b,c]
A Flow rate

parameter
kPa−n a−1 –

A0 Prefactor (n= 3) kPa−3 a−1 2.290×104 [d]

Prefactor (n= 4) kPa−4 a−1 12.614[b]
Qc Activation

energy
kJmol−1 60[d]

R Ideal gas
constant

J K−1 mol−1 8.314

T Absolute
temperature

K –

Tuning
parameters

𝜇 Internal friction
coefficient

– –

c0 Cohesion kPa –
𝜎t Tensile strength kPa –
𝜎c Compressive

strength
kPa –

m 𝜎c/𝜎t – –
𝛼 Hayhurst tensile

stress coefficient
– 0.21[e]

𝛽 Hayhurst von
Mises coefficient

– 0.63[e]

[a] Nye (1953); [b] Goldsby and Kohlstedt (2001); [c] Millstein and others 2022; [d] Duval and
others (1983); [e] Pralong and Funk 2005.

specifically choose to analyze areas where the variability of A due
to damage is likely to be small, such as away from shearmargins and
large crevasse fields. Outside of shear margins, ice fabric causes a
maximum factor of 2–3 variability in the value of A, which trans-
lates to a variability in viscosity, and thus calculated stress (Eqn 4),
of ∼1.3 for n= 4 to 1.4 for n= 3 (Hudleston, 2015). Spatial varia-
tions in the observed strain rates (Fig. 2) indicate that there should
be no systematic nor homogeneous fabrics across the ice shelves,
meaning that the effective fabric induced variations on A will vary
between 1 and 3 in away that will appear random in principle stress
space, where we do the calibrations. Given that A is raised to the
power −1/n in the expression for viscosity (and thus the calcula-
tion of stress), themaximum influence of fabric on our calculations
of stress vary from 1.3 (for n= 4) to 1.4 (for n= 3), meaning that
the influence of fabrics in our data will vary between 1 and 1.3
or 1.4 depending on the value of n. Thus, errors in A within our
study area are a minor source of error relative to other uncertain-
ties, and in the interest of simplicity, reproducibility and broader
applicability of this work, we do not attempt to explicitly account
for fabric. We leave for future work addressing the open question
of how to reliably incorporate the effects of fabric into estimates
of the strength of ice (Ma and others, 2010; Minchew and others,
2018).

While we calculate the deviatoric stresses from observed strain
rates and Glen’s Flow Law (Eqns 3 and 4), yield criteria are often
referenced to the Cauchy (or total) stresses, here denoted 𝜎ij. The
deviatoric and Cauchy stresses are related through the isotropic
pressure (the mean of the normal Cauchy stresses) such that

𝜏ij = 𝜎ij − p𝛿ij (7)
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Figure 2. A view of stress regimes on the (a) Ronne–Filchner, (b) Amery, (c) Larsen C, and (d) Ross ice shelves. Black represents grounded ice (Morlighem, 2019), blue represents
a tensile regime (both principal Cauchy stresses are positive), red represents a compressive regime (both principal Cauchy stresses are negative), and gray represents a mixed
regime (one principal Cauchy stress is positive and the other is negative). These colors correspond to the background colors in Figure 3. Each color is scaled by the effective
deviatoric stress (assuming n = 3), with lighter colors representing lower stresses. The mixed, tensile, and compressive regimes cover 41.1%, 45.0% and 13.9% of all ice
shelves, respectively.

where p = 𝜎kk/3 is the pressure, 𝜎kk is the trace of the Cauchy
stress tensor (summation implied for repeated indices), and 𝛿ij is
the Kronecker delta. The trace is the first tensor invariant; thus, the
principal Cauchy stresses follow the same definitions and conven-
tions discussed above for the strain rates and deviatoric stresses.
Because shear stresses at the surface of the ice are negligible, one
principal stress must be normal to the surface. We take the prin-
cipal stress normal to the surface to be 𝜎3 = −𝜌gz. At the surface
of the ice, z = 0, thus 𝜎3 = 0, and we can calculate the principal
Cauchy stresses at the ice surface from the observationally inferred
deviatoric stresses as

𝜎1 = 2𝜏1 + 𝜏2 (8a)

𝜎2 = 2𝜏2 + 𝜏1 (8b)

recalling that 𝜏3 = −𝜏1 − 𝜏2 by definition (cf. Eqn 7). The
pressure at the surface is then

p = 𝜎1 + 𝜎2
3 (9a)

= 𝜏1 + 𝜏2. (9b)

2.3. Yield criteria

To determine the tensile and compressive strengths of ice, we
plot our inferred stresses in principal deviatoric stress space and

fit our data with a selection of yield criteria to delineate the
boundary between stresses in uncrevassed and crevassed ice. Yield
criteria, also known as failure envelopes, fracture criteria, fail-
ure criteria, etc., are bounds defined by material properties that
delineate stresses past which failure should occur. In this work,
we define yielding and failure as the conditions under which
ice fractures and interchange the above terms. Here, we con-
sider fracture to be a phenomenological description of the for-
mation of new surfaces, not a description of the specific mech-
anisms that create those surfaces (i.e. we do not distinguish
between brittle and ductile fracture). We choose the criteria given
by Vaughan (1993)—Mohr–Coulomb, strain-energy dissipation,
and von Mises criteria—plus the Drucker–Prager and Hayhurst
criteria.

2.3.1. Mohr–Coulomb
The Mohr–Coulomb criterion was originally defined for and is
commonly used to describe the yield strength of granular mate-
rials like soils and till (Lambe and Whitman, 1969; Davis and
Selvadurai, 2002). The basis of the Mohr–Coulomb criterion is the
assumption that the strength of materials arises from a combi-
nation of internal friction and cohesion. A related criterion, the
Tresca criterion, is a special case where internal friction is negligi-
ble and has been applied in the glaciological literature (Bassis and
Walker, 2011). The opposite special case, where cohesion is negli-
gible, is commonly used to describe the strength of subglacial till
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(e.g. Iverson, 2010; Minchew and others, 2016; Zoet and Iverson,
2020; Ranganathan and others, 2021a). The Mohr–Coulomb cri-
terion accounts for only the most tensile and most compressive
principal stresses, neglecting the intermediate principal stress, and
is often written in a form that relates the shear strength of a mate-
rial 𝜏s to the effective pressure N (difference in overburden and
water pressures) through two parameters representing cohesion c0
and internal friction 𝜇 (Labuz and Zang, 2012), such that 𝜏s =
N𝜇 + c0. ApplyingMohr’s Circle and assuming the friction coeffi-
cient is small (i.e. 𝜇 = tan𝜙 ≈ sin𝜙 where 𝜙 is the friction angle),
we can write the Mohr–Coulomb criterion in terms of principal
Cauchy stresses (Vaughan, 1993) as

𝜎1 =
⎧{
⎨{⎩

2c0
1 + 𝜇 when 𝜎1 ≥ 0 and 𝜎2 ≥ 0
2c0 + 𝜎2(1 − 𝜇)

1 + 𝜇 when 𝜎1 > 0 and 𝜎2 < 0
(10a)

𝜎2 = − 2c0
1 − 𝜇 when 𝜎1 ≤ 0 and 𝜎2 < 0, (10b)

from which we can see that the tensile strength for the
Mohr–Coulomb criterion 𝜎tmc

, the compressive strength 𝜎cmc
and

their ratio mmc = 𝜎cmc
/𝜎tmc

are

𝜎tmc
= 2c0

1 + 𝜇 (11a)

𝜎cmc
= 2c0

1 − 𝜇 (11b)

mmc = 1 + 𝜇
1 − 𝜇. (11c)

We can see in Eqn 11 that the Tresca criterion (𝜇 = 0) requires the
tensile and compressive strengths of ice to be equal (m= 1), a con-
dition that is contradicted by numerous laboratory experiments
(Petrovic, 2003; Schulson and Duval, 2009) but nonetheless tested
with our results.

To connect with the observationally inferred deviatoric stresses,
we apply Eqn 8 to write Eqn 10 in terms of the principal deviatoric
stresses arranged as the standard equation for a line (with 𝜏1 the
x-axis and 𝜏2 the y-axis) such that

𝜏2 =

⎧{{{
⎨{{{⎩

−2𝜏1 + 2c0
1 + 𝜇 when − 𝜏2

2 ≤ 𝜏1 and − 2𝜏2 ≤ 𝜏1

𝜏1
1 + 3𝜇
1 − 3𝜇 − 2c0

1 − 3𝜇 when − 𝜏2
2 ≤ 𝜏1 < −2𝜏2

−𝜏1
2 − c0

1 − 𝜇 when 𝜏1 < −𝜏2
2 and 𝜏1 < −2𝜏2.

(12)

Here, we can see that for the intermediate condition (when 𝜎1 > 0
and 𝜎2 < 0 and, equivalently, −𝜏2 ≤ 2𝜏1 < −4𝜏2), the slope
of the line is a function of only the internal friction coefficient 𝜇
while the y-intercept (taking 𝜏2 to be the y-axis) is a function of the
cohesion, c0, and the internal friction coefficient. For the other two
conditions, the lines have a constant slope with y-intercepts that
depend on cohesion and internal friction. Thus, taking all three
regions given in Eqn 12, we can fit both c0 and 𝜇. We also note that
the first and last conditions in Eqn 12 contain two separate inequal-
ities for 𝜏1 in terms of 𝜏2 because the principal deviatoric stresses
can be positive, negative and zero valued; the only restriction is our
chosen convention 𝜏1 ≥ 𝜏2.

2.3.2. von Mises and strain energy
The von Mises criterion is a yield-stress-based parameterization of
the rate of work done to deform a ductilematerial, as we later show.
In practice, this criterion defines the tensile yield strength of mate-
rials in terms of a critical value of the stress, which is closely related
to the effective deviatoric stress, 𝜏E (Eqn 5b). In three dimensions,
the von Mises stress, 𝜎vm is

𝜎vm = √1
2 [(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2]. (13)

As we are analyzing surface strain rates (z = 0), we take 𝜎3 =
−𝜌gz = 0, and thus the von Mises stress at the surface is

𝜎vm = √𝜎2
1 + 𝜎2

2 − 𝜎1𝜎2 (14a)

=
√

3𝜏E (14b)

and the tensile strength of ice according to the vonMises criteria
𝜎tvm is the value of 𝜎vm that demarcates crevassed and uncrevassed
ice.

Because the von Mises criterion is a parameterization for the
yield strength of materials as a work-rate threshold, it is essentially
the same as the strain-energy dissipation criterion introduced by
Vaughan (1993). In this criterion, the tensile strength of ice 𝜎tse
is related to the rate of work: 𝜎ij

.𝜖ij = 𝜏ij
.𝜖ij, where the replace-

ment of the Cauchy stress tensor 𝜎ij on the left-hand side with the
deviatoric stress tensor 𝜏ij on the right-hand side is justified by the
incompressibility of ice (i.e. the pressure does not do work because
the volume remains constant under applied stress). By applying
Eqn 3, it can be shown that the stress associated with the vis-
cous work rate (strain-energy dissipation) 𝜎se is proportional to the
von Mises stress, 𝜎vm, and, thus effective deviatoric stress 𝜏E, such
that

𝜎se = 𝜎vm√
3

= 𝜏E. (15)

The tensile strength from the Vaughan (1993) strain-energy dissi-
pation criterion 𝜎tse is proportional to the tensile strength from the
von Mises criterion such that 𝜎tse = 𝜎tvm/

√
3.

2.3.3. Drucker–Prager
The Drucker–Prager criterion links all of the previous criteria and
provides a relatively simple framework, like the von Mises (and
strain energy) criterion, that provides constraints on the tensile and
compressive strengths of ice, like the Mohr–Coulomb criterion. In
essence, the Drucker–Prager criterion is a smoothed form of the
Mohr–Coulomb criterion, initially derived to describe the yielding
of soil (Drucker and Prager, 1952).The criterion is dependent upon
the first invariant of the Cauchy stress tensor (relatedly, pressure, p,
Eqn 7) and the second invariant of the deviatoric stress tensor, 𝜏E
(relatedly, the von Mises stress, 𝜎vm, Eqn 14), and given as (Bhat
and others, 1991; Davis and Selvadurai, 2002)

𝜎tdp = 3p(
mdp − 1
2mdp

) + 𝜎vm (
mdp + 1
2mdp

) (16)

where mdp = 𝜎cdp/𝜎tdp, 𝜎tdp is the tensile strength and 𝜎cdp the
compressive strength according to the Drucker–Prager criterion.
These values can be inferred by defining the failure envelope
formed in principal stress space by Eqn 16 that delineates crevassed
and uncrevassed ice. Because the Drucker–Prager criterion is a
smoothed version of the Mohr–Coulomb criterion, we can relate
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the inferred strengths 𝜎tdp and 𝜎cdp to cohesion, c0, and internal fric-
tion,𝜇, of ice by requiring that theDrucker–Prager failure envelope
intersect the Mohr–Coulomb failure envelope at the latter’s major
vertices, i.e. fully circumscribe the Mohr–Coulomb envelope. The
resulting relations are

𝜎tdp = 6c0
3 + 𝜇 (17a)

𝜎cdp = 2c0
1 − 𝜇 = 𝜎cmc

(17b)

mdp = 3 + 𝜇
3 (1 − 𝜇) (17c)

all of which reduce to the same values as in Eqn 11 when
𝜇 = 0 (the Tresca criterion). We also note that the relations
between tensile strength, cohesion and friction differ for the
Mohr–Coulomb and Drucker–Prager failure envelopes, but the
compressive strength relation is the same. This agreement in com-
pressive strength inexorably arises from our decision to have the
Drucker–Prager envelope intersect the Mohr–Coulomb envelope
at the major vertices. The relations will vary if we make dif-
ferent choices for the intersections of the Mohr–Coulomb and
Drucker–Prager failure envelopes, but we stay with these rela-
tions for illustrative purposes because the major vertices provide
unambiguous reference points.

2.3.4. Hayhurst
The Hayhurst criterion was first developed to describe the failure
of metals and is commonly used in continuum damage mechanics
models of ice fracture (Hayhurst, 1972; Pralong and Funk, 2005;
Duddu and others, 2020). It adds a term related to the most tensile
principal Cauchy stress 𝜎* = max [𝜎1, 0] to the Drucker–Prager
criterion (Eqn 16), such that

𝜎tH = 𝛼𝜎* + 𝛽𝜎vm + 3(1 − 𝛼 − 𝛽)p (18)

where 𝛼 and 𝛽 are non-negative and 0 ≤ (1 − 𝛼 − 𝛽) ≤ 1. We
take

𝛼 = 1
√

3 − 2
[
√

3
𝜎tH
𝜎cH

+
√

3 − 2
𝜎tH
𝜎sH

] (19a)

𝛽 = 1
√

3 − 2
[

𝜎tH
𝜎sH

−
𝜎tH
𝜎cH

− 1] (19b)

as in Pralong and Funk 2005, where 𝜎tH is the tensile strength,
𝜎cH is the compressive strength and 𝜎sH is the shear strength. We
solve both equations for the ratio m between compressive and
tensile strength:

mH = 1
𝛼 + 2𝛽 − 1 . (20)

The Hayhurst criterion (Eqn 18) reduces to the Drucker–Prager
criterion (Eqn 16) when 𝛼 = 0.

3. Results

3.1. Visualizing the conditions under which ice fractures

The goal of this work is to constrain the tensile strength of ice on
Antarctic ice shelves. To do this, we look to see if there is a clear
threshold in our data at which unfractured ice will fail. We plot the
uncrevassed and crevassed data as density plots in principal devia-
toric stress space, with the color of each point denoting the number

of points in its proximity (Fig. 3).We findminimal overlap between
the uncrevassed and crevassed data. Because there is no particular
significance to the assignment of 𝜏1 and 𝜏2 in principal stress space,
we reflect the data over the line 𝜏1 = 𝜏2 to aid in drawing yield
criteria, as in Vaughan (1993).

We identify no active crevasses that exist in a compressive
regime (both principal Cauchy stresses are negative). Most ice
shelves exist with a free calving front, which means it is unlikely
for the system to be in a compressional state (𝜎1, 𝜎2 < 0) because
there is no resistive pressure from the ocean on the free calving
front. There are localized observations of compressive fractures in
rapidly changing areas such as the Thwaites Ice Tongue (Benn and
others, 2022), but the applicability of fractures caused by ice accel-
eration to the large, slow-growing fractures in this study needs
further investigation. Even in unfractured ice, there are few regions
that fall into a purely compressional regime, with such areas cov-
ering about 13.9% of all Antarctic ice shelves (Fig. 2). As such, we
find relatively few uncrevassed points in the compressive regime
compared to other regimes.

To find the tensile strength of ice, we plot the Mohr–Coulomb,
von Mises, Drucker–Prager and Hayhurst criteria over our data
and tune their fit using material properties such as cohesion, inter-
nal friction, and tensile strength. We aim to draw the criteria
between the crevassed and uncrevassed data,minimizing the num-
ber of crevassed points included and maximizing the number of
uncrevassed points included. The yield criteria are shown in Fig. 3.
For the Drucker–Prager and Mohr–Coulomb criteria, we vary the
values of 𝜇 and c0 to fit the criteria. For the vonMises andHayhurst
criteria, we vary the values of 𝜎t to find best fit. We do not inves-
tigate fit values for the strain-energy criterion, as the shape of the
criterion is the same as that of the von Mises criterion, with tensile
strength reduced by a factor of

√
3. We plot the Hayhurst crite-

rion using empirically determined (i.e. calibrated through exper-
iments) values of 𝛼 = 0.21, 𝛽 = 0.63 (Pralong and Funk,
2005).

To analyze fit, we determine the percentage of uncrevassed and
crevassed data points included in each criterion using a dataset of
∼11700 and ∼3500 points, respectively. For each criterion, we test
for three scenarios of fit: (1) the highest integer value of the tuning
parameter (c0 or 𝜎t) where the criterion includes no crevassed data,
(2) the integer value of the tuning parameter where the deriva-
tives of percent uncrevassed and percent crevassed included with
respect to the tuning parameter are equal, and (3) the lowest integer
value of the tuning parameter where the criterion includes 100%
of uncrevassed data. We define ‘best fit’ by the second scenario
and use the other two scenarios to provide an upper and lower
bound for the estimates of tensile strength produced by each crite-
rion. Our low estimate of tensile strength encapsulates the error
of crevasse advection out of stress states of crevasse formation,
which is evidenced by the low percentage of uncrevassed points
included in the criteria in the first scenario. While we aim to fil-
ter out inactive crevasses through our identification methodology,
some may still be included in our data. Therefore, it is better to
define criteria based on the current stress state of ice that remains
unfractured rather than by excluding crevassed data, as noted by
Vaughan (1993).

3.2. Tensile strength of ice

Using the above framework and the four selected yield criteria,
we find the tensile strength of ice to range from 59 to 289.4 kPa
when n= 3 and 127 to 633.5 kPa when n= 4. Under the best fit
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Figure 3. A density plot in principal stress space of estimated principal stresses (assuming n = 3) sampled along crevasses (red) and in uncrevassed areas (blue). Colorbars
for the crevassed and uncrevassed data are scaled logarithmically and normalized, with brighter colors representing a higher density of points in the area. The yield criteria
are plotted on top of the density plot using the best fit values of tensile strength in Table 2, with both the Drucker–Prager and Mohr–Coulomb criteria plotted with 𝜇 = 0.4. To
aid in comparing principal stress space and geographic space, we shade each quadrant with the corresponding colors used for stress states in Figure 2. Colorblind-accessible
figures are available in the supplement.

Table 2. Tested values of internal friction (𝜇), cohesion (c0) and tensile strength (𝜎t) used to fit the criteria to our stress data when n = 3. Compressive strength
(𝜎c) is calculated from 𝜇, c0, and 𝜎t using the equations described in Section 2. For each criterion, we present a low, best fit (bolded), and high estimate of tensile
strength as described in the text

Criterion 𝜇 c0 (kPa) 𝜎t (kPa) 𝜎c (kPa) m % Uncrev. % Crev.

Mohr–Coulomb 0.3 77 118.5 220 1.9 23.9 0
0.3 164 252.3 468.6 1.9 99.4 7.3
0.3 171 263.1 488.6 1.9 100 8.6
0.4 75 107.1 250 2.3 19.4 0
0.4 178 254.3 593.3 2.3 99.6 8.1
0.4 184 262.9 613.3 2.3 100 8.8

Von Mises – – 147 – – 50.4 0
– – 223 – – 98.8 5
– – 234 – – 100 6.7

Drucker–Prager 0.3 62 112.7 177.1 1.6 24.4 0
0.3 139 252.7 397.1 1.6 97.9 8.5
0.3 152 276.4 434.3 1.6 100 13.5
0.4 58 102.4 193.3 1.9 19.8 0
0.4 149 262.9 496.7 1.9 97.9 9.3
0.4 164 289.4 546.7 1.9 100 15.4

Hayhurst (𝛼 = 0.21, 𝛽 = 0.63) – – 59 125.5 2.1 13.3 0
– – 202 429.8 2.1 98.9 10.7
– – 211 448.9 2.1 100 13.5

case, the tensile strength ranges from 202 to 263 kPa assuming
n= 3 and 423 to 565 kPa assuming n= 4. The predicted tensile
strengths increase by a factor of ∼ 2.1 between n= 3 and n= 4,

although a larger percentage of crevassed points are included for
criteria drawn around stresses calculated using n= 4. We present
a selected range of tensile strengths in Tables 2 and 3 and include a
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Table 3. Tested values of internal friction (𝜇), cohesion (c0) and tensile strength (𝜎t) used to fit the criteria to our stress data when n = 4. Compressive strength
(𝜎c) is calculated from 𝜇, c0, and 𝜎t using the equations described in the methods. For each criterion, we present a low, best fit (bolded), and high estimate of
tensile strength as described in the text

Criterion 𝜇 c0 (kPa) 𝜎t (kPa) 𝜎c (kPa) m % Uncrev. % Crev.

Mohr–Coulomb 0.3 167 256.9 477.1 1.9 19.2 0
0.3 352 541.5 1005.7 1.9 99.2 9.9
0.3 364 560 1040 1.9 100 12.5
0.4 162 231.4 540 2.3 15.3 0
0.4 377 538.6 1256.7 2.3 99.1 9.8
0.4 392 560 1306.7 2.3 100 12.7

Von Mises – – 317 – – 43.8 0
– – 480 – – 98.3 6.9
– – 513 – – 100 12.6

Drucker–Prager 0.3 133 241.8 380 1.6 19.3 0
0.3 294 534.5 840 1.6 95.6 11.1
0.3 334 607.3 954.3 1.6 100 22.1
0.4 124 218.8 413.3 1.9 15.4 0
0.4 320 564.7 1066.7 1.9 96.8 14.8
0.4 359 633.5 1196.7 1.9 100 23.4

Hayhurst (𝛼 = 0.21, 𝛽 = 0.63) – – 127 270.2 2.1 11.6 0
– – 423 900 2.1 97.1 14.7
– – 463 985.1 2.1 100 20.9

full range of tensile strengths for varying 𝜎t, c0, and 𝜇 values in the
supplement. We plot our best fit tensile strengths for the criteria in
Fig. 3 and provide plots of criteria defined by the minimum and
maximum tensile strengths in the supplement.

Under both assumed rheologies, the Mohr–Coulomb and von
Mises criteria produce amore constrained range of tensile strength
estimates and include minimal crevassed data compared to the
other two criteria. When n= 3, the von Mises criterion has a
difference of 87 kPa between low and high estimates for tensile
stress, and the Mohr–Coulomb criterion produces a range of 49
kPa when 𝜇 = 0 and 109 kPa when 𝜇 = 0.4. Both criteria include
less than 10% of the crevassed data under our highest estimates
of tensile strength and 𝜇 = 0 − 0.7. The Drucker–Prager crite-
rion provides a smaller range of tensile strength values but includes
more crevassed points than the Mohr–Coulomb and von Mises
criteria, especially as 𝜇 increases. The Hayhurst criterion pro-
duces a range of 138 kPa between our low and high estimates of
tensile strength and contains the largest percentage of crevassed
points, including 13.5% of the crevassed points when 100% of the
uncrevassed data are included.

4. Discussion

4.1. Toward a general fracture criterion

We evaluate the applicability of previously derived yield criteria
to observations of ice fracture. The von Mises criterion (describ-
ing the failure of materials based on the second invariant of the
deviatoric stress tensor) and the strain energy criterion (describ-
ing the failure of materials based on strain-energy dissipation)
have been historically applied to the question of ice fracture
(e.g. Vaughan (1993), Pralong and Funk (2005), Albrecht and
Levermann (2012)). Using yield criteria, Vaughan (1993) evalu-
ates the tensile strength in specific regions of Antarctica with a
total of ∼ 990 strain-rate measurements. Vaughan (1993) finds
the tensile strength to vary from 90 to 320 kPa and the von Mises
and Mohr–Coulomb criteria to provide a good fit. This is com-
parable to the results of Grinsted and others 2024, who finds a
von Mises strength of 265 ± 73 kPa. We similarly find the von
Mises and Mohr–Coulomb criteria to fit the data well, and our

predicted tensile strength range of 202–263 kPa (assuming n= 3)
falls within the upper end of the values predicted by Vaughan
(1993) and Grinsted and others 2024, both of whom only consider
stresses calculated with n= 3. Our predicted range of 423–565
kPa for n= 4 falls more than 100 kPa outside the upper bound of
Vaughan’s range, although it is much closer to the range predicted
by laboratory experiments (Petrovic, 2003).

Vaughan (1993) provides a 230 kPa range of tensile strengths,
while our predicted tensile strengths produce a range of 61 and
142 kPa for n= 3 and n= 4, respectively. Our narrower predicted
ranges are likely due to the increased amount of data available for
our study. Satellites have proved pivotal for increasing the spatial
and temporal resolution of strain rate measurements, allowing us
to collect a sample size of ∼ 14500 crevassed and uncrevassed data
points. While our sample size of crevassed data is limited by the
number of crevasses visible on optical imagery and strain rate data,
the ∼ 11000 uncrevassed points are a small subsection of the data
available for uncrevassed ice.

We find that the von Mises and Mohr–Coulomb criteria pro-
vide the best numerical fit to our data. Best numerical fit means the
range of inferred tensile strength values is small and few crevassed
points are inside the failure envelope. The Drucker–Prager crite-
rion provides a good fit to the data when 𝜇 ≤ 0.3. When 𝜇 = 0,
the Drucker–Prager criterion reduces to the von Mises criterion
and produces virtually identical values of predicted tensile strength
(Supplement Table S2). While the Hayhurst criterion provides
the poorest numerical fit to our data relative to all other crite-
ria, it aligns well with the data in pure tension. It mostly includes
crevassed data in the mixed regime. As many fractures occur in
pure tension, the Hayhurst criterion still provides a viable frame-
work for understanding damage evolution in this regime. Further
work is necessary to determine the applicability of the Hayhurst
criterion to damage and failure in shear regimes, though we expect
the broad takeaways to hold because failure in shear zones often
occurs in tension.

It is particularly interesting to consider the pressure dependen-
cies of the fracture criteria with regard to their fit. Numerically,
the von Mises criterion provides the best fit to the data. This
criterion is also the only criterion of those tested that is not
pressure-dependent. We postulate that the von Mises criterion fits
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Figure 4. The range of tensile strengths produced by each criterion under our framework. Error bars represent our minimum and maximum estimates for tensile strength,
and our best fit case is plotted as a black dot. The height of the shaded area on top of/beneath the error bar denotes the percent of uncrevassed points excluded (dark
purple/blue) and percent of crevassed points included (light purple/blue) by a criterion defined by that tensile strength for n= 3 and n= 4, respectively. For the Mohr–Coulomb
and Drucker–Prager criteria, we plot the values for a criterion defined by 𝜇 = 0.4. A plot of the full range of 𝜇 values is available in the supplement. The characteristic flaw
size associated with each tensile strength, calculated assuming KIc = 150 kPa m−1/2, is plotted on the bottom axis.

so well because we consider stresses only at the surface, where the
overburden pressure equals the vertical normal stress 𝜎3 = 0.
A von Mises criterion defined by our estimated tensile strengths
from surface crevasses will likely not fit well for basal crevasses
since the criterion predicts the same tensile strength for all depths.
Overburden pressure (𝜎3 = −𝜌gz) will act against crevasse for-
mation at increasing depths. Thus, observations of stresses sur-
rounding basal crevasses are needed to properly constrain failure
at depth. By estimating stresses around basal crevasses, it may be
possible to refine our results to a single fracture criterion that fits
data through the entire thickness of the ice.

We find the Drucker–Prager and Mohr–Coulomb criteria
numerically fit best with lower values of 𝜇. Other studies also find
models better replicate observations when using lower values of 𝜇
(MacAyeal and others, 1986; Bassis and Walker, 2011). However,
a low value of 𝜇 corresponds to a low ratio between tensile and
compressive strength. When 𝜇 = 0, the equations for compressive
strength derived from the yield criteria (Eqn 11 and 17) suggest
the tensile and compressive strengths are equal, a phenomenon
that is not observed in most natural materials. For example, rocks
commonly have𝜇 values of 0.5–0.7 (Byerlee, 1978), leading to com-
pressive strengths 2.3–5.7 times higher than the tensile strength.

The compressive strength of ice in the lab has been measured
between 5 and 25 MPa, far greater than lab measurements of the
tensile strength (Petrovic, 2003). The lack of observable crevasses
in compressive ice regimes also points to the compressive strength
of ice being greater than the tensile strength. In this work, we
choose to present tensile strength ranges for the Drucker–Prager
and Mohr–Coulomb criteria defined by 𝜇 = 0.3 − 0.4, in spite
of the fact that lower 𝜇 values fit better numerically, due to the
implications of 𝜇 on the predicted compressive strength of ice. We
provide a full list of tensile strengths for each criterion defined by
𝜇 = 0 − 0.7 in the supplement.

One important limitation of our study arising from the lack of
appropriate data is our inability to constrain the strength of ice for
the nucleation of new fractures. The data we use only allow us to
constrain the strength of ice that is relevant for fracture propaga-
tion. The key difference between nucleation and propagation is the
preexisting flaw sizes. We might assume that for a given fracture
toughness, we can simply scale ice strength as the square root of the
flaw size (Schulson and Duval, 2009), but this assumption remains
to be tested in natural glacier ice, where impurities and air bubbles
can play important roles. This limitation provides opportunities,
and perhaps impetus, for collecting and testing this assumption
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with relevant data but does not undercut the value of providing
constraints on the conditions for fracture propagation, as we do
here.

4.2. Predicting fracture

Using the best-fit values for tensile strength and n= 4, as described
in Table 3, we create a map of areas that fall outside of the yield
criteria (i.e. the ice should be fractured) on all Antarctic ice shelves
(Figs 5 and 6).We find our predicted tensile strengths work well for
predicting large-scale fractures, and areas where stresses fall under
the yield threshold generally do not show signs of active crevassing.
The predicted fracture map picks up some fractures, particularly
on the Amery Ice Shelf near a portion of isolated grounded ice
on the eastern margin, that do appear on both optical imagery
and the strain rate fields but were not included in our original
analysis due to their proximity to the shear margin and a large
chain of crevasses, which could introduce uncertainties in rheology
associated with damage.

The primary difference in predictions between the four criteria
is in shear zones. The von Mises criterion predicts fracture in shear
zones whereas all other criteria (assuming 𝜇 = 0.4) predict no frac-
ture in these areas. For the Drucker–Prager and Mohr–Coulomb
criteria, lower values of 𝜇 predict more fracturing in shear zones,
and the area of predicted shear zone fracturing decreases as 𝜇
increases.Themain areas where the predicted fracturemap is inac-
curate to observations are toward the calving front of the Amery
and Filchner ice shelves and in front of a large upstream section
of grounded ice on the Ronne Ice Shelf, where all criteria predict
heavy fracturing but none is visible on optical imagery. There may
be other rheological factors influencing the strength of ice in these

areas, such as suture zones, differences in ice thickness and tem-
perature, or other parameters that require further study. We also
note that the speckled patterns of predicted fracture close to Ross
Island on the RIS, on the parts of the LCIS, and downstream of the
aforementioned predicted fracture zone on the Ronne Ice Shelf are
likely due to noise in the strain rate data, as we see very few sur-
face expressions of any crevasses, relict or active, in these areas. As
observations improve in the future, we expect to be able to better
resolve these areas.

In addition to analyzing the predicted fracture map over the
original study area, we also investigate the accuracy of the map
over four smaller ice shelves: the Thwaites, Totten, Pine Island, and
Brunt ice shelves (Fig. 6). On these smaller ice shelves, we observe
smaller and more densely packed fractures. Our predicted frac-
ture map is not as robust in predicting the locations of individual
fractures on these ice shelves due to the large spatial resolution of
the strain rate fields relative to the size of the ice shelves and frac-
tures but does predict where the ice shelves tend to be intact versus
where they are heavily fractured. The fracture prediction map
shows heavy fracturing on the Western Ice Tongue of Thwaites,
while it shows the Eastern Ice Shelf more intact, matching surface
observations of damage in the area, although the map does fail to
predict several large rifts that have visible surface expressions. On
the Brunt Ice Shelf, the von Mises criterion predicts fracturing in
a compressive region around the upstream end of the McDonald
Ice Rumples, an area where no other criteria predict fracturing but
where smaller fractures are observed. On the Pine Island Ice Shelf
(PIIS), all criteria predict some level of fracturing in the shear mar-
gins and just downstream of the grounding zone, but fractures are
not observed in these locations. This incorrect fracture prediction
could be related to rheological differences associated with a high

Figure 5. A map of predicted fracture areas for n = 4 on the (a) Ronne–Filchner, (b) Amery, (c) Larsen C, and (d) Ross Ice Shelves. White represents areas where all four yield
criteria predict the ice will fracture, and dark gray represents areas where no criteria predict fracture will occur.
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Figure 6. MODIS 2014 imagery (top [a,d]; left [b,c]) and our predicted fracture map (bottom [a,d]; right [b,c]) of four smaller ice shelves originally outside of the study area:
(a) Thwaites, (b) Totten, (c) Pine Island and (d) Brunt.

deformation rate, as Pine Island Glacier is one of the fastest flow-
ing glaciers in Antarctica and thus experiences high strain rates in
the shear margins (Rignot, 2008). The Hayhurst criterion predicts
the least amount of fracturing in the PIIS shearmargins, although it
still predicts some fracturing, particularly along the Southern shear
margin. The predicted fracture map does accurately capture with
all four criteria a relatively large (∼ 7km) fracture in the middle of
the PIIS, which eventually calves off a tabular iceberg in late 2015.
The accuracy of the map in regions that were not included in the
construction of the fracture criteria suggests that the map and pre-
dicted tensile strengths could be used in transient ice flow models
to predict areas where large fractures may form or the extent of
damage on smaller ice shelves.

4.3. Applicability to modeling efforts

Our framework produces a range of tensile strengths for each yield
criterion and two different flow regimes based on how we define
the fit to the data. These values are presented in Tables 2 and 3
and further expanded in the supplement. In general, ice with active
crevasses exists at higher stresses than unfractured ice (Fig. 2).
We aim to give a broad understanding of how different defini-
tions of fit may influence the range of tensile strengths produced.
Therefore, these results produce a constrained range of tensile
strengths, rather than a single value.The strength of ice is also likely
to vary spatially based on rheological properties, and our data likely
capture this range (Schulson and Duval, 2009).

Given the quantity of data now available and the fact that we can
produce continent-wide estimates of tensile strength, we believe
that these results could extend beyond providing single tensile
strength values to be used as fracture criteria in models. The range

of tensile strength values could be thought of as uncertainty bounds
that can be input into stochasticmodels, rather than a set threshold
for fracture, to take into account the variability in the strength of
ice with varying material properties. Additionally, the percentage
of uncrevassed and crevassed points included in the criteria (e.g.
Fig. 4) can provide constraints on a probability distribution func-
tion. This may allow us to ask questions in a probabilistic sense,
such as what is the probability of ice fracture at certain principal
stresses?

Additionally, our methodology can be used to determine the
regional strength of ice. Because we see very minimal overlap
between the crevassed and uncrevassed data, it is possible to define
an upper bound for ice strength solely from uncrevassed data. As
noted previously, Vaughan (1993) defined yield criteria by includ-
ing all uncrevassed points rather than excluding crevassed points.
Regional tensile strengths can be derived from looking at the upper
bound of uncrevassed stresses in areas without crevasses. In future
work, we hope to explore the strength of suture zones and how
they interact with crevasse propagation. Constraining the different
rheological properties affecting tensile strength and how they vary
spatially across Antarctica is important for accurately modeling
fracture formation, propagation, and iceberg calving.

4.4. Implications for damage

In this work, we present estimates for a stress threshold at which
ice fractures initiate and propagate on a large-scale. This can also
be interpreted as the tensile strength of ice (that is, the maximum
stress ice can withstand under tension before fracturing). These
estimates can also illuminate some material properties of the ice
itself.
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The tensile strength of ice is dependent upon a number of phys-
ical properties, including ice temperature and grain size (Schulson
and others, 1984; Cole, 1987; Nixon and Schulson, 1987; Schulson
andDuval, 2009).Therefore, the estimates of ice strength presented
in this study can provide constraints on the characteristic flaw size
of glacier ice. Ice grain size can be considered the characteristic
flaw size of undamaged ice. Since grain boundaries are irregular
bonds connecting two ice grains, grain boundaries are inherently
the smallest flaw in glacier ice (Schulson and Hibler, 1991).

The relationship between the tensile strength of ice 𝜎t and
characteristic flaw size d has been determined through labora-
tory experiments to be (Currier and Schulson, 1982; Schulson and
others, 1984)

𝜎t = KIc√
d

(21)

where KIc is the Mode I (tensile) fracture toughness of ice (Nixon
and Schulson, 1988). The fracture toughness of ice has been exper-
imentally determined to be within the range of 50–150 kPa

√
m

(Petrovic, 2003).
The estimates of tensile strengths presented in this study imply

large characteristic flaw sizes d, with d ≈ 4–36 cm assuming n= 3
(𝜎t ≈ 250 kPa) and d ≈ 1 − 9 cm assuming n= 4 (𝜎t ≈ 500
kPa).The characteristic flaw size estimates for both n= 3 and n= 4
are an order of magnitude larger than the typical grain sizes of
glacier ice (on the order of millimeter scale), although the n= 4
estimates are much closer to observed grain sizes (Gow and oth-
ers, 1997; Thorsteinsson and others, 1997; Fitzpatrick and others,
2014;Gerbi and others, 2021, Ranganathan and others, 2021b).The
value of d can be interpreted as the maximum flaw size within the
ice that can be considered ductile. At flaw sizes (or microcracks)
larger than these estimated values of d, cracks will become unstable
and propagate (Schulson and Duval, 2009).

4.5. Reconciling ice strength and ice viscosity

Notably, the regions in which we map fractures on Antarctic ice
shelves overlap strongly with regions in which the stress expo-
nent is estimated to be n= 4 based on observations (Millstein and
others, 2022), suggesting that dislocation creep is the dominant
mechanism of deformation. These are regions in which the along-
flow (normal) deviatoric stress is in tension and proportional to
the local ice thickness (Millstein and others, 2022). This has two
implications.

Firstly, it suggests that the values of tensile strength we estimate
from n= 4 are likely most applicable in those regions. Historically,
stresses have been calculated using n= 3, a value used in the liter-
ature from the early 1960s onward, derived from a combination
of laboratory experiments and field measurements (Glen, 1952,
1955, 1958; Nye and Perutz, 1957; Haefeli, 1961; Lliboutry, 1968).
However, recent studies have shown that in Antarctica and specif-
ically on the fast-flowing Antarctic ice shelves, the value of n for
ice should be closer to 4 (Goldsby and Kohlstedt, 2001; Cuffey
and Kavanaugh, 2011; Bons and others, 2018; Millstein and oth-
ers, 2022; Ranganathan and Minchew, 2024). We find the tensile
strength of ice is ∼2.1 times greater when assuming n= 4 com-
pared to n= 3. While our results do not aim to constrain the value
of n, we do note that tensile strength estimates for n= 4 are much
closer to those produced by laboratory experiments than previ-
ous observational studies (Vaughan, 1993; Petrovic, 2003; Chudley
and others, 2021; Grinsted and others, 2024). Additionally, the
lower tensile stress estimates of an n= 3 flow regime produce larger
characteristic flaw size estimates.

Secondly, the presence of crevasses in these tensile areas in
which n= 4 is the observed estimate of the stress exponent indi-
cates that the tensile stresses in these areas are larger than the
tensile strength estimated in this work, begging the question: Why
is it common to find viscous stresses in the ice shelves that are
high enough to meet the fracture criteria? This suggests com-
mon mechanisms link viscosity and fracture strength, such as
dislocations (Weertman, 1996). Given recent inferences of the vis-
cous stress exponent n= 4, which laboratory studies show arises
from dislocation creep (Goldsby and Kohlstedt, 2001), and the
fact that fractures are made up of dislocations aligned to form a
surface (Weertman, 1996), we suppose that the rapid formation
and mobilization of dislocations required to allow for dislocation-
creep-dominated viscous flow creates a work-hardening effect that
leads to microcracks and eventually macro-scale fractures. Such
a mechanism could also explain why ice fractures lead to large-
scale rift formation even though it takes months to years to build
up enough stress in the ice for some rifts to propagate (Borstad
and others, 2017). This observation of episodic rift propagation,
where the time between episodes ismuch longer than the viscoelas-
tic relaxation time, is mysterious because when the viscous stress
exponent has values of n= 3–4, the viscosity should tend to zero as
the stresses intensify around the rift tip. Intuition suggests that ice
should relieve these stresses through viscous flow, yet rifts prop-
agate as fractures. Our observations of the alignment of tensile
strength and viscosity of ice and the hypothesis that dislocations
are responsible for both viscous flow and fracture on ice shelves
could explain episodic rift formation, too, and help to reconcile our
understanding of the flow, deformation and fracture of ice.

5. Conclusion

We use observations of ice fractures and estimated stresses to eval-
uate the tensile strength of ice. We produce a map of observed
fractures in 2014 over four major Antarctic ice shelves and a range
of tensile strengths for stresses calculated with both n= 3 and
n= 4. We find a tensile strength value between 202 and 263 kPa
assuming n= 3, on the higher end of previous observational esti-
mates but still lower than experimentally derived tensile strengths.
When n= 4, the predicted tensile strength is 423–565 kPa.We pro-
duce a map of predicted fracturing across all Antarctic ice shelves
using these values.

Our predicted tensile strengths when n= 4 are within the lower
bound, ∼ 500 kPa, of tensile strength estimates produced by labo-
ratory experiments. Previous observational studies assuming n= 3
have predicted tensile strengths of ∼ 100–300 kPa or about 200
kPa below the lower bound of laboratory estimates.With the inclu-
sion of impurities and damage in natural glacier ice, observation-
ally inferred tensile strength estimates are likely to be lower than
those measured in pristine laboratory ice. Damage must be exten-
sive and pervasive to account for such a large difference between
lab estimates and these observationally derived tensile strengths.
We hypothesize that assuming n= 4 rather than n= 3 accounts
for most of this discrepancy, as evidenced by our n= 4 tensile
strength estimates aligning with laboratory studies.This alignment
in observed versus measured strength values brings us one step
closer to bridging the gap between experiments and observations,
allowing us to better apply material properties of ice measured in
lab environments to naturally deforming glacier ice.

Ice rheology plays a central role in this work, both from the per-
spective of inferences of stress and how our results inform a deeper
understanding of the mechanical properties of natural glacier ice.
The viscous rheology of ice appears most prevalently as the stress
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exponent, n, and the corresponding prefactorA in Glen’s Flow Law.
The influence of our choices of n on the inferred strength of ice
underscores the importance of understanding the viscous proper-
ties of ice to help understand fracture properties. The rheological
connection of viscosity and fracture goes the other direction, too,
via the question of why the stresses involved in the viscous flow of
ice are sufficient to generate fractures. Our results, especially when
we take n= 4, support the idea that dislocations are a common
mechanism linking viscous deformation and fracture.

While this work allows for more insight into fracture pro-
cesses, further work is needed to fully understand the implications
of the fracture criteria for ice sheet dynamics. Importantly, our
results focus only on fracture processes at the surface because
those are the readily observable areas. However, basal crevasses
are common across Antarctic ice shelves and contribute to calving
and ice-shelf disintegration. Further observations that can identify
basal crevasses are needed to fully understand both surface and
basal fracture conditions. From a mechanistic perspective, the key
difference is likely to be the dependence of tensile strength on over-
burden pressure. Finally, the estimates provided here should allow
for more accurate fracture parameterizations and higher-fidelity
calving relations in ice sheet models by constraining key parame-
ters: the stress threshold and the fracture criterion. In this work, we
presentmultiple potential fracture criteria, though the implications
of different fracture criteria for modeling ice fractures are not well
understood. Future work may incorporate these estimates and cri-
teria into models to determine the response of ice sheets to these
observationally constrained estimates.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2024.104.
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