
Can. J. Math., Vol. XXXI, No. 5, 1979, pp. 986-1004 

COMBINATORIAL ORIENTED MAPS 

W. T. T U T T E 

1. Introduction. An orientable map is often presented as a realization of a 
finite connected graph G in an orientable surface so that the complementary 
domains of G, the "faces" of the map are topological open discs. This is not 
the definition to be used in the paper. But let us contemplate it for a while. 

On each edge of G we can recognize two opposite directed edges, or "darts". 
Let 6 be the permutation of the dart-set S that interchanges each dart with its 
opposite. The darts radiating from a vertex v occur in a definite cyclic order, 
fixed by a chosen positive sense of rotation on the surface. The cyclic orders 
at the various vertices are the cycles of a permutation P of 5. The choice of P 
rather than P~l, which corresponds to the other sense of rotation, makes the 
map "oriented". 

Each face imposes a cyclic order on the darts having it to their right, and 

the cyclic orders around the various faces are the cycles of another permuta
tion of S. But this permutation is found to be P6, the effect of applying first 0 
and then P. 

Most introductory text-books on topology describe a construction for build
ing 2-dimensional manifolds from polygons. It is based on work of H. R. 
Brahana [1]. Effectively it describes an arbitrary oriented map by giving P0 
and 0. Edmonds' Theorem [4] does it by giving P and 0, It seems that the 
combinatorial properties of an oriented map can be abstracted as the proper
ties of a pair (P, 6) of permutations of a set S of undefined elements called 
"darts", where the cycles of d are all of length 2. Several writers have presented 
theories of maps in terms of these permutations (see [2], [6] and [9]). From 
now on we refer to oriented maps simply as "maps". 

The present paper gives a theory of permutation-pairs (P, 0). In general such 
a pair is called a pretnap. It becomes a map if it is connected, that is if P and 6 
generate a group of permutations that is transitive on S. A map of this kind is 
called a constellation by A. Jacques [6]. However the theorems to be proved 
are those we are used to ascribing to structures called "maps", so we keep that 
word for our permutation-pairs. Special attention is given to planar maps, 
defined as maps of Euler characteristic 2. 

The paper should be called "expository", neither its facts about maps nor 
its use of permutations being new. However it seems to the author that there 
is still a need for a reasonably concise theory of planar maps deduced rigor
ously from purely combinatorial axioms, free from any intrusion of topology, 
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and going a t least as far as the combinatorial equivalent of Jordan ' s Theorem. 

T h e paper tries to meet this need. I t adopts the following philosophy. There is 

a theory of maps as permutat ion-pairs , there is a theory of topological realiza

tions of such maps , and there is a theory of relationships between maps and 

graphs. All three theories are important , but the paper is concerned only with 

the first. T h e paper does indeed point out some graphs associated with a map , 

bu t these play only a minor role in the exposition. 

2. P r e m a p s a n d m a p s . Let 5 be a finite non-null set, of even cardinali ty, 
of elements called darts. 

A premap on S is an ordered pair (P , 6) of permutat ions of 5 such tha t each 
cycle of 6 is of length 2. 

T h e cycles of P and 6 are the vertices and edges of M respectively. A vertex 
and an edge are incident if they have a dar t in common, and doubly incident if 
they have two. Wi th this definition of incidence the vertices and edges of M 
are the vertices and edges respectively of a graph G (i l /) , the graph of M. The 
doubly incident edges are the loops of G (AI). 

P and 6 generate a permutat ion group Y(M) acting on S. If F (il/) is t ran
sitive on S we say tha t M is connected, or tha t M is a map. 

In general Y(M) part i t ions S into disjoint non-null subsets, the equivalence 
classes of M, with the following proper ty: a da r t D can be transformed into 
a da r t E by a member of Y(M) if and only if D and E belong to the same 
equivalence class. We denote the number of equivalence classes of i l / by p(M). 
T h u s p(M) ^ 1, and p(M) = 1 if and only if M is a map. 

If a da r t D belongs to an equivalence class Z of M, then Z contains all the 
dar t s of the edge and vertex to which D belongs. 

A member of Y(M) is a product of permutat ions , each of which is P or 0. 
Hence two dar t s D and E belong to the same equivalence class if and only if 
there is an al ternat ing sequence 

U = (Ku K2, . . - , Km) 

of edges and vertices of M such tha t D is in K1} E is in Km, and any two con
secutive members of the sequence have a common dar t . We call U a connecting 
sequence of D and E in M. 

W e can s ta te the preceding observation as follows. 

2.1. Two darts D and E belong to the same equivalence class of M if and only if 
they belong to the same component of G(M). 

3. D u a l i t y . Let M = ( P , 6) be a premap on S. Then we denote the premap 
(PO, 6) on S by M*, and call it the dual premap of M. 

Since 62 is the identi ty permutat ion we find tha t M is the dual p remap of il/*. 

(3.1) (M*)* = il/. 
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Now Pô and 6 generate the same permuta t ion group Y(M) as do P and 6. 
Hence we have 

(3.2) Y(M*) = Y(M), and the equivalence classes of M* are the equivalence 
classes of ilf. In particular M* is a map if and only if M is a map. 

T h e vertices of M* are called theface s of il/, and correspondingly the ver
tices of M are the faces of il-/*. 

We denote the numbers of vertices, edges and faces of a p remap M by 
a0( i l f) , ai(M) and a2(M) respectively. The Eider characteristic of M is an 
integer N(M.) defined as follows. 

(3.3) N(M) = a0(M) - ax(M) + a 2 ( i l / ) . 

Thus 

(3.4) N(M*) = N(M). 

Consider the case in which 5 has exactly two members . Then 6 is uniquely 

determined, and we can write the two dar t s as I) and 6D. There are jus t two 

possibilities for P ; it is either 6 or the identical permuta t ion / . T h e premaps 

(/, 6) and (0, 6) are clearly maps. We call them the link-map and loop-map 

respectively on S. Kach is the dual of the other. Since / has two cycles and 6 

only one we can assert the following proposition. 

(3.5) / / M is a link-map or loop-map, then N(M) = 2. 

4. S u b p r e m a p s a n d s u b m a p s . Let M = ( P , 6) be a p remap on a set S. 
Let T be any non-null subset of S which with any dar t D contains also OD. 
Let 6' be the restriction of 6 to T. Let P' be the permuta t ion of T defined as 
follows: if D is any da r t of T then P'D is the first member of the sequence 

(PD,PW,P*D, . . .) 

tha t is in T. We write M' for the premap (P ; , 6') on T. 
We call M' the sub premap of M on T. If it is a map we call it also the submap 

of M on T. 
If a vertex v of M is also a vertex of i l / ' , t ha t is contains only da r t s of 1\ we 

call it an inner vertex of i l / ' . Any other vertex of M t ha t includes a da r t of T 
is a vertex of attachment of M'. 

Let v be a vertex of a t t achment of M'. Then there is a unique corresponding 
vertex v' of i l / ' . It is obtained from v by striking out the dar t s not in T and 
keeping the cyclic order of those tha t remain. We call v' the outer vertex of Mr 

in v. Since z> must have a t least one da r t t ha t is not in T we can form another 
cycle v" by striking out the dar t s in T and keeping the cyclic order of the others. 
We call v" the complementary cycle of v' in v. 

We call M' a proper subpremap or submap of M if it is dist inct from il/, t ha t 
is if T is a proper subset of 5. In tha t case let. M" be the proper subpremap of 
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M on the non-null set S — T. We call M" the complementary subpremap to AI' 
in M. Evidently the vertices of attachment of AI" are those of AI', and the 
outer vertices of M" are the complementary cycles of the outer vertices of 
W. Moreover M' is the complementary subpremap to M" in M. 

A component of M is a subpremap of M on an equivalence class of M. Thus 
each dar t of 5 belongs to exactly one component of AT 

4.1. Let C be the component of M on an equivalence class Z. Then C is a map. 
Moreover the vertices, edges and faces of C are those vertices, edges and faces of AT 
respectively that meet Z. 

Proof. Pu t C = (P ' ,0 ' ) - By the definition of Z the cycles of Pf and 6' are 
those cycles of P and 6 respectively tha t meet Z. Hence the cycles of P'6' are 
those cycles of Pô tha t meet Z. I t remains only to verify tha t C is a map. 

We can now assert tha t any connecting sequence in M of two dar ts D and E 
belonging to Z is a connecting sequence in C of D and E. Hence Z is the only 
equivalence class of C, and C is a map. 

4.2. The components of M* are the dual maps of the components of AT 

Proof. Let Z be any equivalence class of M, and therefore of AI* by 3.2. 
Let C and d be the components of M and AI* respectively on Z. Applying 
4.1 to M and M* we see tha t the vertices, edges and faces of C are the faces, 
edges and vertices respectively of C\. Hence G = C*. 

4.3. N(Al) is the sum of the Euler characteristics of the components of AT 

Proof. See 4.1. 

4.4. / / M' is a submap of AT it is a submap of some component of AT. 

Proof. Let D and E be any two dar ts of M'. They have a connecting sequence 
in M'. Replacing each outer vertex of M' in this sequence by the corresponding 
vertex of a t t achment we obtain a connecting sequence of D and E in AT. The 
dart-set T of AT is thus contained in some equivalence class Z of AT. By 4.1 
M' is a submap of the component of AI on Z. 

4.5. Let Mf be a submap of AT. Then it is a component of M if and only if it has 
no vertex of attachment. 

Proof. If AT is a component of AI it has no vertex of a t t achment by 4 .1 . 
Conversely suppose M' to have no vertex of a t tachment . Then AT is a 

submap of a component C of M, by 4.4. Let T be the set of dar ts of AT, and 
U the set of all other dar ts of C. 

Assume U non-null. Choose dar ts D in T and E in U. In any connecting 
sequence of D and E in C we can find a vertex v of C having a dar t on T and a 
da r t in U. But then v is a vertex of a t t achment of AT by 4.1, contrary to 
supposition. 

We conclude tha t U is null. Hence M' and C are identical. 
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4.6. Let 31 he a map. Then a suhpremap 31* of 31 is uniquely determined when 
its outer vertices are given. 

Proof. Let Q' be the given set of outer vertices, and Q" the corresponding 
set of coin piemen ta ry cycles. 

Suppose first that Q* is null. Any component A* of AT is a submap of 31 with 
no vertices of attachment, and therefore a component of 31 m by 4.5. But then 
AT = 31 since 31 is a map. Thus 3If is uniquely determined. 

Suppose next that Ç' is non-null. Let 31 \ be the premap obtained from 31 by 
replacing the vertices of attachment of 31* by the members of Q* and Q'\ so 
that each vertex of attachment splits into two disjoint dart-cycles, one made 
up of darts in AT and the other of darts in the complement of AT in 3Î. 

Let A" be a component of 311 having no vertex in Qf or Q'\ Then X is a 
submap of 31 with no vertex of attachment. Hence X = J/, by 4.5. But then 
A/i = 31 and we have the contradiction that Q* is null. We conclude that in 
fact each component of Af i has a vertex in (7 or Q'f. 

Any component C* of AT is a submap of 31 \, with no vertex of attachment in 

J/i. It is thus a component of Afi, by 4.5. We conclude that J/ ' is uniquely 

determined ; its components are those components of Mi that include vertices 

of tf. 

5. Alleles. Let 31 = (JF\ #} be a premap on a set S. An angle of A/ is an 
ordered pair 

(1) a = (D,PD), 

where I? is in 5. We say that a is ci# the vertex v of Af that contains D and PX>. 
Given « we can define a corresponding angle 

(2) a* = (ftD, PD) 

of J/*. We call it the dual angle of or, and we note that a is the dual angle of a*. 
The angle a* is at some vertex F of if*. We say that F is the face of 3f 

occupying the angle a. Likewise v is the face of if* occupying a*. 
It is convenient to set down here a notation for certain linear sequences of 

darts. Thus if a is given by (1) we write fa, a] for the linear sequence 

(PD, P2D. . . . , P*D, D) 

whose darts are those, of i\ 
Let 

(3) 0 - (£, PE) 

be another angle at P in 3Ï. Then we write [at 0] for the linear sequence 

(PD,PW, . . . , £ ) , 

the subsequence of [«, a] extending from PD to £ . Likewise [#, a] is a linear 
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sequence extending from PE to J), Each dart of ? belongs to exactly one of 
[a, 01 and yj„ a]. 

Given a linear sequence L of darts we can fikv it, that is convert :t into a 
cyclic sequence, ï>y postulating thai the first dart Is the immediate successor 
of tie last We write the resulting cycle, the d&vdre of I . as K\L). Thos 
K{[a,a}) is the vertex F. 

Given two linear 'sequences X-i -and L* of darts, with no common member, 
we can combine them into a single linear sequence Z~zL± by taking first the 
terms of Li in proper order and then those of L*, Products of three or more 
linear sequences, no two with a common dart, can ?*e defined analogously. 

6* Splitting a vertex. In the course of Brahana's classification of surfaces 
some important combinatorial theorems are proved. For exampie the Enter 
characteristic of an oriented map is an even number, possibly negative, not 
exceeding 2. Moreover any two oriented maps with the same Eoier charac
teristic can be transformed into one another by subdivisions of edges, sob-
divisions of faces, and the inverses of these operations. 

In tliis section we experiment with another elementary opération, splitting 
a vertex. We use it ro establish the limitations on the Euler characteristic. 

Let M = J P . #) be a premap on a dart-set 5. We define the valency of a 
vertex or face of M as the number of its darts. 

Let v be a vertex of M whose valency is at least 2. Let a = [D. PD) and 
J = Œ, PE) be distinct angles of M at v. Let Pt he the permutation of 5 
derived from F by replacing the cycle r by the two cycles K*[a,,8}) and 
K\tji,a:), We say that the premap Mt = (Plr 6) Is obtained from M by 
*plitiin% the vertex v between a and £. We proceed to investigate the structure 
of Mi. noting that 

•.'4) aoiMtt = a*(M) + L 

It is not possible to split a vertex w of valency 1. For if D is the single dart 
of w there is only one angle at w, namely (Df D). We can split the vertex of a 
ioop-map and so obtain a link-map. But it is clear that the link-maps are the 
only maps in which each vertex is monovalent, and therefore they are the only 
maps in which no vertex can be split. 

We return to the premaps M and Mi, Let us set out in detail the difference 
between Pt and P , and between Pid and PB. We note that P\D = PE and 
P\E = PD. But PiX = PX if X is not D or E. Equivalently we car, say that 
PtfidD) = P £ , Pid(6E) = PD, and Pt0< Y) = Pdi H if Y is not 6D or BE. 

Suppose that a and B are occupied by distinct faces A and B respectively of 
ÀI. Consider the sequences \a*r a*] and >?*. d*] of M*. We note that P\d 
transforms the last dart BD of [a*, a*} into the first dart PE of (3*, 3*}, and 
the last dart BE of [fi*f 0*] into the first dart PD of [a*, a*]. Otherwise PY6 has 
the same effect as PB. We infer that one cycle of P\d is K([a*, «*]i/3*, 8*)). 
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The others are the cycles of PB other than A and B. In this case we deduce 

from (4) tha t iV(Mi) - N(M). 

Suppose next tha t a and fi are occupied by the same face A of M. Consider 

the sequences [a*, /3*] and {j3*, a*] of M*. We note tha t for each one PXB 

transforms the last dar t into the first, BE into PD in the first case and #£> into 

PE in the second. Hence # ( [ « * , 0*]) and # ( [ 0 * , a*]) are cycles of P ^ . The 

others are the cycles of PB other than A. I t now follows from (4) tha t N(M\) 

= N(M) + 2. 

A component of M\ having neither K([a, 13]) nor K([/3, a]) as a vertex is a 

component of M, by 4.5. We deduce that 

(5) p(Mx) = p(M) or p(M) + L 

Moreover if p(Mx) = p(M) + 1 then X([a,j8]) and £([0,a]) must be 
vertices of distinct components of Mi. 

When a and (3 are occupied by distinct faces each of the vertices K([a, f3]) 
and K([f3, a]) has a dart in common with the face if ([a*, a*][j3*, /?*]), PD in 
the first case and PE in the second. Hence the two vertices belong to the same 
component of Mh and therefore p(M\) = p(M). 

If a and |8 are occupied by the same face A of M it may happen that 

p(M1) = £(M) + 1. Then the vertex X([a, ,3]) and the face Àr([a*, /Î*]) of 
Mi belong to the same component of Mi since they have the da r t PD in 

common. T h e vertex K([f3,a]) and the face K([fi*, a*]) then belong to some 

other component of M\. 
We summarize the foregoing results in the next two theorems. 

6.1. Let a and j3 be occupied by distinct faces, A and B respectively, of M. 

Then X"([a*, «*][#*, fi*]) is a face of M\. The remaining faces of M\ are the faces 

of M other than A and B. Moreover N{MX) = N(M) andp(Mi) = p{M). 

6.2. Let a and f$ be occupied by the same face A of M. Then K([a*, 13*]) and 

K([f3*, a*]) are faces of Mi . The remaining faces of Mi are the faces of M other 

than A. Moreover N(MX) = N(M) + 2, and p(Mi) is p(M) or p{M) + 1. 
/ / p(Mi) = p(M) + 1 then K([ay 0]) and K(\j3,a]) are vertices of distinct 

components, X and Y respectively, of Mi . Moreover K([a*, f3*]) is a face of X, 
and K([fi*, a*]) is a face of Y. 

It should be noted tha t X and Y in 6.2 are submaps of M, each having v as 
its sole vertex of a t t achment . 

By 6.1 and 6.2 we have in all cases 

(6) N(M) - 2p(M) = iV(Mi) - 2/>(Mi) - 2a(M1, M), 

where a (Mi, M) is 0 or 1. 
Having got Mi let us continue split t ing vertices until the process terminates , 

as it mus t by (4) since no premap can have more vertices than dar ts . At 
terminat ion we have a premap Mq in which each vertex is monovalent , and in 
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which therefore each component is a link-map. By 3.5 and 4.3 we have 

(7) N(Mt) - 2p(MQ) = 0. 

By repeated application of (6) we can now deduce the following theorem. 

6.3. For any premap M the integer N(M) — 2p(M) is even and non-positive. 

6.4. If M is a map then N(M) is an even integer not exceeding 2. 

Proof. See 6.3. 

6.5. Let M' be a submap of a map M. Then N{Mf) è N{M). 

Proof. If possible choose M and M' so that the theorem fails, so that ai(M) 
has the least value consistent with this condition, and so that a0(M) has the 
greatest value consistent with these requirements. 

M' must be a proper submap of M. It has a vertex v of attachment, and the 
valency of v is at least 2. We can form a premap M\ by splitting v between two 
distinct angles a and /3 so that all the darts of M' at v are in [a, 13]. We thus 
arrange that M' is a submap of M\. 

If Mx is a map then N{M') ^ N{Ml) ^ N(M), by 6.1, 6.2 and the choice 
of M and M'. 

In the remaining case M\ has exactly two components X and F, by 6.1 and 
6.2. We may suppose M' to be a submap of X, by 4.4. Then N(Mf) ^ N(X), 
by the choice of M and W. But 

(8) N(M) - 2 = N(X) - 2 + N(Y) - 2, 

by 4.3, 6.1 and 6.2. Hence N(X) ^ N(M) by 6.4, and therefore N(M') è 
N(M). 

In each case the choice of M and M' is contradicted. The theorem follows. 

For original presentations in the literature of the theory of this section 
reference may be made to [3], [5] and [8]. 

7. Planar maps. A map M is planar if N(M) = 2. Thus link-maps and 
loop-maps are planar by 3.5. 

7.1. The dual of a planar map is a planar map. 

Proof. Use 3.2 and 3.4. 

7.2. Any submap of a planar map is a planar map. 

Proof. Use 6.4 and 6.5. 

When we apply 6.1 or 6.2 to planar maps we should bear in mind the two 
following amendments. 

7.3. / / the premap M of 6.1 is a planar map, then M\ is a planar map. 
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Proof. Use 6.1. 

7.4. If the premap M of 6.2 is a planar map then the alternative p(M\) = 
p(M) + 1 = 2 must hold. The components X and Y of Mi are planar submaps 
ofM. 

Proof. Use 6.4 and 7.2. 

8. Cuttings and belts. The results of this section constitute a somewhat 
generalized combinatorial form of Jordan's Theorem. They describe a partition 
of a planar map into a ' 'cutting" and a complementary submap. 

Let M be any premap. If a and /3 are distinct angles of M at the same vertex 
v we shall refer to the sequence [a, j8] as a sector of M at v. 

A cutting of M is a map C whose edges are edges of M and whose vertices 
are vertices of M and closures of disjoint sectors of M. Vertices of C of these 
two kinds are its inner and outer vertices respectively. We call C a proper 
cutting of M if it does not include all the darts of M. 

A cutting of M is not necessarily a submap of M; it may have more than one 

outer vertex in a single vertex of M. 

If C is any cutting of M let us write M'(C) for the subpremap of M on the 
dart-set of C. Evidently each inner vertex of C is an inner vertex of Mf(C), 
and each outer vertex of C is contained in some vertex, inner or outer, of 
M'(C). If vertices are considered simply as sets of darts we can deduce that the 
outer vertices of M' (C) are unions of outer vertices of C, and that some inner 
vertices of M''(C) may also be such unions. The other inner vertices of M''(C) 
are inner vertices of C. 

8.1. / / C is a cutting of a premap M, then M''(C) is a submap of M and 
N(C) ^ N(M''(C)). Hence C is planar if M is a planar map, by 6.4 and 7.2. 

To prove this we observe that C can be derived from Mf (C) by splitting 
vertices. Since p(C) = 1 we must have p(M'(C)) = 1 and N(C) ^ N(Mf(C)), 
by 6.1 and 6.2. 

8.2. A cutting C of a map M is uniquely determined when its outer vertices are 
given. 

For if we are given M and the outer vertices of C we can find the outer 
vertices of M'(C), and M''(C) itself by 4.6. Thence we get the inner vertices 
of C. 

Let k be any positive integer. A belt of order k in the premap M is a cyclic 
sequence 

(9) B = (au Fu Pu a2, F2, 02, . . . , ak, Fk, ft), 

where the Fj are k distinct faces of M, and the at and ft are 2k distinct angles 
of M, and which satisfies the following conditions. 

(i) Fj occupies a^ and ft, for each suffix j . 
(ii) The angles ft and aJ+i are at a common vertex vjt for each j . 

https://doi.org/10.4153/CJM-1979-091-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-091-3


ORIENTED MAPS 995 

Addition in the suffixes is modulo k; e.g. k + 1 is identified with 1. 
In this definition we do not require the k vertices Vj to be all distinct. If they 

are we call B a circular belt. 
The left sectors of B are the sequences [aJ+i, fij] and the right sectors the 

sequences [/3jy a J + i] . The left segments are the sequences [a*, P*] of M*, and 
the right segments the sequences [(3*, a*]. 

The left swirl of B is the cycle 

and the rig/^ smV/ is the cycle 

#([&*, « , * ] . . . [ft*, «2*] [01*. «!*]). 

The belt B is admissible if its & left sectors are disjoint. Thus any circular 
belt is admissible. If B is admissible we define its left sweep as the cycle 

K([au Bk][ak, 0t_i] . . . [a3, /32][«2, 0i]). 

I had intended to eschew diagrams in this paper because of their topological 
flavour. (Shall we by Topology cast out Topology?) But I introduce one here 
in order to show how an admissible belt B looks in a planar map of the topo
logical kind briefly described in Section 1. 
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In the Figure B is 

(au Fh 0i, a2, F2, 02, a3, ^3 , 0s). 

T h e broken line shows how we can split the map into two pieces by cut t ing 
round the belt. T h e assertion tha t we can indeed do this is a form of Jo rdan ' s 
Theorem. 

We cut across the face F\ from the angle on into the angle 0i. We continue 
through the vertex v\ into the angle a2, and across F2 into f32j and so on. In 
passing through v\ we snip off the left sector a2, 0i and leave it on the left. In 
cut t ing across Fz, or any other face of B, we part i t ion its boundary into two 
pieces, representing its left and right segments. 

In our Figure the cut passes through V\ twice, severing the two left sectors 
a2, 0i and a3, 02- These are disjoint by the admissibility of B, and so the cut 
does not cross itself a t V\. 

In the par t of the m a p outside the broken curve we t rea t the various de
tached left sectors as separate vertices. Accordingly this pa r t is a cut t ing of the 
original map M, corresponding to C in the following combinatorial proofs. 

The residue of V\ after the de tachment of two left sectors is still t reated as a 
single vertex. We can therefore say t ha t the interior of the broken curve is 
occupied by a single submap of M (with a cut-vertex a t v\). This corresponds 
to the "r ight s u b m a p " M"'(C) of the following proofs. 

I t is easy to identify the combinatorial analogue of a cut around a belt. 
We have to perform the operation of vertex-spli t t ing a t vjy for each suffix j of 
the belt. Theorem 8.3 investigates the effect of a single vertex-spli t t ing. T h e 
belt By if its order exceeds 1, is replaced by a shorter belt B3; in a simpler map 
M j . Theorem 8.4 is concerned with the effect of the complete set of vertex-
splittings, the part i t ion of M into C and M"'(C). 

Our semi-topological digression is finished; we resume the combinatorial 
story. 

We go on to some definitions t ha t are to be applied only when k ^ 2. Then 
for each suffix j we define H3 as the cycle K([fi*, f3*][aj+i*, aj+i*]). This can be 
wri t ten a t greater length as follows. 

(10) H, = K{[a,*, !»/][«,+ !*, 0 m * ] [ 0 , + 1*, « m * ] [ 0 / , a*})-

We write M j for the premap derived from M by split t ing v3 between 07 and 
aj+i. Using 6.1 we see t ha t the only change in the passage from M to Mj is 
t h a t Vj is replaced by the two new vertices K([aj+i, /3j]) and K([j3j, aj+i]), 
and t h a t the two faces Fj and Fj+i are replaced by the single new face H j . 

Finally we write Bj for the cyclic sequence derived from B be replacing the 
subsequence 

(a3> Fj, Pj> aj+u Fj+l, 0j+1) 

by the subsequence (ajt Hj, 0j+i). 
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8.3. / / B is an admissible belt of M of order k ^ 2, then Bj is an admissible 

belt of Mj of order k — 1. Its left sectors are those of B, with the omission of 

[ctj+u Pf\. Its left and right swirls are those of B. 

Proof. The terms of B3; are k — 1 distinct faces of Mj and 2(& — 1) distinct 
angles of Mj. Moreover each face occupies the two adjacent angles. 

Consider the angles ai+\ and pt of M, where i ^ j . They are a t the vertex 
vt of M. They appear also as angles of Mj in Bj. If vt is distinct from Vj then the 
two angles are a t the vertex vt in Mj. If vt = Vj neither angle can be a t the 
vertex K([aj+i, P3]) of Mj, by the admissibility of B. Hence both ai+i and pt 

must be a t the vertex K([P3, ct3+i\) of Mj. Considering all possible values of i 
we see tha t Bj satisfies all the conditions for a belt, of order k — 1, of Mj. 

I t follows from the results of the preceding paragraph, and the admissibility 
of B, t ha t the sector [a i + i , pt] of M appears also as the sector [ai+i, P J of Mj, 
either a t the vertex K([P3J aj+i]) or a t a vertex vt distinct from Vj. We can 
therefore assert t ha t the left sectors of Bj are those of B, with the omission of 
[aj+i, P3]. Consequently Bj is an admissible belt of Mj. 

The left segments of Bj are those of B except tha t [a/*, P3*] and 
[aj+i*, Pj+i*], corresponding to Fj and Fj+\, are replaced by the single left 
segment [a*, Pj*][aj+i*, Pj+i*] corresponding to H j . (See (10)). I t follows tha t 
B and Bj have the same left swirl. Similarly they have the same right swirl. 

8.4. If B is an admissible belt of a planar map M then M has a cutting C with 
the following properties. The outer vertices of C are the closures of the left sectors 
of B. The left swirl of B is a face of C, and the other faces of C are faces of M. No 
dart of the right swirl of B belongs to C. 

Proof. Suppose first tha t the order k of B is 1. Then B = (ai, F\, pi), and 
«i and P\ are distinct angles a t the same vertex V\. Split V\ between them to 
transform M into a new premap M\. By 6.2 and 7.4 M\ has exactly two com
ponents, one of which has the closure of the single left sector of B as its only 
outer vertex. By 6.2 this component of Mi is a cut t ing of M having the proper
ties required for C. 

We now proceed by induction over k. Our inductive hypothesis asserts tha t 
the theorem is true when k is less than some integer g ^ 2, and we consider 
the case k = q. Choosing a suffix j we construct M3 and Bj. We observe tha t 
Mj is a planar map, by 7.3. 

By 8.3 and the inductive hypothesis Mj has a cut t ing C with the following 
properties. The outer vertices of C are the closures of the left sectors of B, with 
the omission of K([aj+i, Pj]). The left swirl of B is a face of C, and the other 
faces of C are faces of Mj. No dar t of the right swirl of B belongs to C. 

If a face F of C is a face of Mj it is also a face of M. For otherwise it would be 
Hj by 6.1, and Hj meets the right swirl of B. 

Consider the inner vertices of the cut t ing C of Mj. One of them is 
K([aj+i, pj]) since this has the second dar t of aj+i in common with the left 
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swirl, and does not meet any outer vertex. But K(\$j, oij+i]) is not an inner 
vertex of C since it has the second da r t of fij in common with the right swirl. 
So the inner vertices of C, other than K([aj+l, /3 j ) , mus t be vertices of M. W e 
deduce t ha t C is a cut t ing of Af, and t ha t its outer vertices are the closures of 
the k left sectors of B. By the preceding considerations the cut t ing C of M has 
all the other properties required by the theorem. 

The theorem follows, by induction. 

8.5. The cutting C of 8.4 is uniquely determined. 

Proof. See 8.2. 

We call C the left cutting of B, and M'(C) the left subrnap of B. 

C is a proper cut t ing of M since it does not meet the right swir) of B. Hence 

M''(C) is a proper submap of M and has a complementary subpremap M" (C) 

in M. We call M" (C) the complementary subpremap of C in M. 

8.6. If B is an admissible belt of a planar map M and if C is the left cutting of 

B in M, then M" (C) is a submap of M having the right swirl of B as one face. 

Proof. We use the proof of 8.4, supplementing it as follows. 

When k = 1 one of the two components of Mi is identified as C. T h e other 
is M" (C). I t has the properties s tated in the enunciation, by 6.2. 

When k = q we obtain C initially as the left cu t t ing of Bj in M j . Assume 
8.6 to hold when k < q. Then if N is the complementary subpremap of C in 
Mj it is a submap of Mjf and by 8.3 it has the right swirl of B as one face. Bu t 
N includes no da r t from the inner vertex K([aj+i, /3j\) of C in Mj. Hence N 
is also a submap of M. We can thus deduce from our assumption tha t 8.6 
holds also when k = q. 

Considering successive values of q from 2 upwards we arrive a t an inductive 
proof of 8.6. 

We call M"(C) the right submap of B. 
We add one more to the list of maps associated with a belt. Let B be an 

admissible belt of a planar m a p M, with left cut t ing C. We can form a p remap 
L from C by replacing its outer vertices by the left sweep of B as a single new 
vertex. We call L the left contraction of B. 

We can think of L as being derived from M by contract ing the whole r ight 
submap into a single vertex. 

8.7. Let L be the left contraction of an admissible belt B in a planar map M. 
Then L is a planar map. Its faces are the closures of the left segments of B and the 
inner faces of the left cutting C. 

Proof. We use the notat ion of equat ion (9). Let us write C = (Pf, 6) and 
L = (P/f, 6'), where 0' is a restriction of 6. Let Dj be the second da r t of aj 
and Ej the first da r t of /3jf for each suffix j . Then P' and P" have the same 
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effect on each dart of C except for the last darts of the segments [aj+h /?J, 
that is the darts Ejt We have P'Ej = Dm and P ' % = Djt 

We deduce that P'B' and P"d' have the same effect on each dart of C except 
for the darts 0%. But P"0' transforms O'Ej into Dj} that is it maps the last 
dart of the sequence [a/\ jS/*] onto the first. We conclude that the faces of L 
are as s tated in the enunciation. 

Any connecting sequence in C becomes one in L when each outer vertex of 
C in it is replaced by the left sweep of B. Hence L is a map. I t has k — 1 fewer 
vertices than C, and k — 1 more faces. Hence N(L) = N(C) = 2, by 8.1. 

As a consequence of 8.7 we can assert tha t L* is a submap of M*. 

9. Circular be l t s . A cut t ing C of a premap i f is simple if no vertex of M 
contains more than one outer vertex of C. Equivalently a simple cut t ing of M 
is a submap of M in which each outer vertex is the closure of a sector of M. 

I t may happen tha t a simple cut t ing C has a complementary subpremap 
which is also a simple cut t ing of M. If so we speak of complementary simple 
cutt ings. Complementary simple cutt ings of non-zero order can occur only in 
a map , by 4.4. 

Consider a circular belt B of a planar map M. Let it be described by equation 
(9). We can write the terms of B in the reverse cyclic order, so obtaining a 
circular belt B~l of M. The left and right sectors, segments and swirls of B~l 

are the right and left sectors, segments and swirls of B respectively. We refer 
to the left cut t ing and left sweep of B~l as the right cutting and right sweep 
of B. Similarly the left contraction of B"1 is the right contraction of B. 

Using the definitions of Section 8 we can verify t ha t the right and left 
cut t ings of B are complementary simple cutt ings of M, identical with the right 
and left submaps of B respectively. 

B being given by (9) the cyclic sequence 

(11) B* = (ttl*f vk, &*, . . . , a3*, v2, 02*f a2*, vu ft*) 

is a circular belt of the planar map M*. We call it the dual belt of B. I ts right 
and left sectors, segments, sweeps and swirls are the right and left segments, 
sectors, swirls and sweeps of B respectively. Using 8.7 and 4.6 we obtain 

9.1. The dual of the left (right) cutting of B* is the left (right) contraction of B. 

I t is convenient to describe a planar map M as separable if it has a (neces
sarily circular) belt of order 1, tha t is if some face occupies two distinct angles 
a t some vertex. If M is not separable we say it is 2-connected. 

We say tha t a 2-connected planar map M is 2-separable if it has a circular 
belt of order 2 for which the right and left cutt ings have each a t least two 
edges, and is ^-connected otherwise. 

I t is not difficult to show tha t M is 2-connected or 3-connected if and only 
if its graph G(M) is 2-connected or 3-connected respectively, according to 
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the definitions of [7]. This result belongs to the third theory mentioned at the 
end of Section 1. 

We conclude this section with two elementary theorems on connectivity. 

9.2. Let M be a planar map. Then M* is separable, 2-connected or ̂ -connected 
according as M is separable, 2-connected or ^-connected respectively. 

This is because each circular belt B of M has a dual belt B* of M* of the same 
order, and because the left and right cuttings of B* have the same numbers of 
edges as the left and right cuttings of B respectively, by 9.1. 

9.3. Let M be a 2-connected planar map. If a vertex or face of M contains 
two opposite darts D and 3D, then M is a loop-map or link-map respectively. 

Proof. Suppose the vertex v of M = (P, 6) to contain both D and 6D. 

Consider the angles (D, PD) and (P~l6D, 6D) of M. They are both occupied 
by the face containing BP~W, Pd(dP~ldD) = 6D and P8(dD) - D. They are 
both at v. Hence they are identical. Accordingly 6D = PD = P6(6D), and 
(6D) is a face of M. Similarly (D) is a face of M. Hence M is a loop-map. 

Replacing M by M* in this we complete the proof. 

10. Rings. A ring of a planar map M = (P, 6) on a dart-set 5 is a cyclic 
sequence 

(12) R = (D1,H1,D2jH2,...,DmiHm), 

where the Dt are m distinct darts of M and the Hf are m distinct faces of M, 
and where D{ and 6Di+i belong to Ht for each suffix i. Addition in the suffixes is 
modulo the positive integer m. The term "ring" is taken from the theory of 
map-colourings. 

We write U(R) for the set of all darts Bi and 6Du (1 ^ i g m). We define 
MR as the subpremap of M on 5 — U(R), provided that that set is non-null. 
We refer to the cyclic sequence 

(Dm, An-i, . . . , D2, Dx) 

as the sweep Sp(R) of R. 
Let jf denote the angle (P~lDu Dt), and 8t the angle (Di+1, PDi+1). Both 

these angles are occupied by Ht. 
If ji and of are distinct we say that 7J7 is frontal in R. In the remaining case 

we have 

(13) P(Di+1) = D , 

To begin with we will assume that R has at least one frontal face. We then 
enumerate the frontal faces of R as 

(14) (Fu F2, . • . , Fk) 

in the cyclic order of their appearance in R. We can put Fj = Hw(i), where 
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1 ^ n{\) < n(2) < . . . < n(k) ^ m, and then write 

(15) <Xj = yn(j), 13 j = ôn(j), 

for each suffix j of (14). We note that the 2k angles aj} /3;- are all distinct. 
Using (13) we see that the linear sequence 

(16) (Dn(j+D, Z>w(j+i)_i, . . . , Dn(j)+2, Dn(j)+\) 

is a sector of M a t some vertex Vj. I t is in fact the sector [aj+i, ft]. We call 
it a left sector of R. We can now assert t ha t the cyclic sequence 

(17) B(R) = (au Flf ft, *2, F2, ft, . . . , a*, Fk, ft) 

is an admissible belt of M whose left sectors are the left sectors of R. I ts left 
sweep is Sp(R). 

We denote the right submap of B(R) by W(R), and the left contraction 
by Q(R). One vertex of Q(R) is Sp(R). We call the others its residual vertices. 

If we write the terms of (12) in the opposite cyclic order and then replace 
each dar t Dt by BDt we obtain a ring R~l of M. We note tha t (R-1)'1 = R. 
If R~x has a frontal face we can form B(R~l), W(R~l) and QiR-1). We propose 
to investigate the relation between W(R) and W(R~~X). We need some prepara
tory définitions. 

If D and E are distinct dar ts of M in the same vertex v we write [D, E] for 
the linear sequence 

( A PD, PW, . . . , Pr£> = E) 

of distinct dar ts of v. If instead Z> and E are distinct dar ts of the same face F 
we write [D, E]* for the linear sequence 

(D, (P0)D} (Pd)W, . . . , (Pd)sD = E) 

of distinct dar ts of F. 
The right vertices of i? are the vertices of M containing the dar ts Dt of R, 

and the left vertices of R are those containing the dar ts 6Dt of i£_1 . For each i 
the da r t £>* belongs to a unique left sector [aj+i, 13 J of i?, and we have ^ as the 
corresponding right vertex of R. 

10.1. Le/ i? and R~l each have a frontal face. Then MR has exactly two com
ponents, these being W(R) and W(R~l). The vertices of attachment of W(R) and 
W{R~l) in M are the right and left vertices of R respectively. 

Proof. Let C be the left cut t ing of B (R). 
Consider any right vertex Vj of R. I t contains the second dar t of Bj. But this 

belongs to the right segment [/3*,a*] of B(R) and therefore to W(R), by 
8.6. On the other hand Vj includes the dar ts of [aj+i, ft], which are in C. Hence 
Vj is a vertex of a t t achment of W(R) in M. 

Now let x be any vertex of a t t achment of W(R) in M. By the definition of a 
right submap some outer vertex of C is contained in x. Hence x includes some 
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dart Dt of R, and is a right vertex of R. Any dart of x that is not a dart of R 
can belong neither to an outer nor an inner vertex of C, and so must be a dart 
of W(R). We infer that W(R) has no vertex of attachment in MR. It is a 
component of MR, by 4.5. 

Similarly WiR^) is a component of MR having the left vertices of R as its 
vertices of attachment in M. Any component of MR other than W(R) and 
WiR'1) would be a component of the map M, by 4.5, which is absurd. 

It remains only to show that W(R) and W(R~1) are distinct. 
Suppose a face Ht of i? is frontal in both R and Rr~l. Then iJ* contains the 

right segment [ô*, y*] of B(R). Since 

5,* = (6Di+1,PDt+1) and 7** = {eP~'Du Dt) 

this right segment is a subsequence of [0Z\-+i, -DJ*, actually containing all but 
its first and last members. 

Similar reasoning with R~l shows that the right segment of B(R~l) in Ht is 
a subsequence of [Du 6Di+i]*. But this is the left segment [Y**, 8*] of B(R)} 

and so lies in C by 8.4. 
Now consider the case of a face Ht of R that is frontal in R~l but not in R. 

It includes the dart Du which belongs to C but not to the left swirl of B(R). 
Hence Ht is a face of C, by 8.4. Accordingly the right segment of B (R~1) in Ht 

lies in C. 
Combining these results we see that no dart of the right swirl of B(R_1) 

belongs to W{R). But this swirl is a face of W(R~l) by 8.6. Hence W{R~l) is 
distinct from W(R) and the proof is complete. 

COROLLARY. NO vertex of M is both a right and a left vertex of R. 

Theorem 10.1 is a dual form of Jordan's Theorem, showing that a ring 
divides a planar map into two parts. There is perhaps some slight advantage 
in stating it in terms of Q(R) and QÇR"1). We proceed to do this. 

10.2. Under the conditions of 10.1 the vertices of Q(R) are Sp(R), the left 
vertices of R and the inner vertices of W(R~l). Its faces are the inner faces of C 
and the closures of those sequences [D u 6Di+i\* for which Ht is frontal in R. The 
corresponding propositions hold for the vertices and faces of Q(R~1). 

It is sufficient to prove this for Q(R). We observe that we can form a cutting 
of M from W(R~l) by replacing its outer vertices by the left vertices of R, and 
then adjoining the closures of the left sectors of R as new vertices. This cutting 
is C, by 8.2. But Q(R), by definition, is obtained from C by replacing the outer 
vertices by Sp(R). This establishes the part of 10.2 dealing with vertices. The 
part concerning faces follows from 8.7. 

We note that if Hf is not frontal in R the closure of [Du dDi+i]* is simply 
Hf, by (13). We can eliminate the references to Cand W(R~l) in 10.2 by using 
the following variation. 
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10.3. Let R and R~l each have a frontal face. Then each dart of S — U{R) 

belongs to just one of Q(R) and Q(R~l). Each vertex of M is a residual vertex of 

just one of Q(R) and QCR-1)* and each face of M not in R is a face of exactly 

one of them. The other faces of Q(R) are the closures of the sequences [Di} 0Z) i+1]*, 
and the other faces of Q(R~X) are the closures of the sequences [0Di+i, Dt]*. 

This theorem follows from 10.1 and 10.2. 

Let us write X(R) for the planar map whose vertices are Sp(R) and 
Sp(R~1), and whose faces are therefore the cycles (Dt, 6Di+i). 

We can extend 10.3 to the case in which one or both of R and R'1 has no 
frontal face. For R to have no frontal face it is necessary and sufficient t ha t 
Sp(R) shall be a vertex of M, by (13). We then define Q(R) as M and Q(R~l) 
as X(R). Similarly if R-1 has no frontal face we put QiR"1) = M and Q(R) = 
X(R). If neither R nor R-1 has a frontal face then M = X(R) by 4.5. So, 
consistent with the above definitions, we write Q(R) = <2(P_1) = X(R). 

With these definitions Theorem 10.3 extends trivially to a general R. 

11. Jordan ' s t h e o r e m . In this section we put 10.3 into dual form. There 
is no real change of content. I t may however be convenient to work with 
submaps rather than contractions, and to have a closer terminological analogy 
with other s ta tements of Jordan 's Theorem. 

A directed circuit of a planar map M = (P , 6) is a cyclic sequence 

(18) / = (£>i, vu L>2, v2, • • • , Dm, vm), 

where the Dt are m > 1 distinct dar ts of M and the vt are m distinct vertices 
of M} and where vt includes Dt and Di+1 for each i. The same sequence is a 
ring in M*. We refer to the cyclic sequence 

(Dm, Dm^i, . . . , D2, D\) 

as the swirl SI (J) of J. 

11.1. Let J be a directed circuit of M, given by (18). Then there is a unique 
submap A (J) of M in which the closures of the sequences [Du 6Di+i] are vertices, 
and in which all other vertices are vertices of M. One face of A (J) is SI (J). 

Proof. Consider the contraction Q{J) for the ring / of M*. I ts dual map is a 
submap of M having the vertices and face specified, by 10.2 and the extended 
form of 10.3. Uniqueness follows from 4.6. 

Let us refer to the faces of A (J) other than Sl(J) as its residual faces. 
Writ ing the terms of (18) in the reverse cyclic order, and replacing Dt by 

ODf for each i, we obtain a directed circuit J~l of M called the opposite of J. 
From the extended form of 10.3, applied to M*, we obtain the following rule. 
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11.2. Each dart or vertex of M not in J belongs to just one of A (J) and A (J - 1)-
Each face of M is a residual face of exactly one of A (J) and A (J - 1)-

One more fact should be pointed out. Let us say that a set U of vertices or 
faces of M, or any other premap, is interconnected if for each partition { C/i, Ui\ 
of U into two non-null subsets there exists a dart D in a member of U\ such 
that 6D is in a member of £/2. Then the following proposition holds. 

11.3. The set of residual faces of A (J) (or of A (J - 1 ) ) is interconnected. 

Apart from the trivial case in which A (J) is the dual of X(J) this follows 
from the fact that W(J) is a map. 
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