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Abstract

We present a simple proof of the Chebotarev density theorem for finite morphisms of quasi-projective
varieties over finite fields following an idea of Fried and Kosters for function fields. The key idea is to
interpret the number of rational points with a given Frobenius conjugacy class as the number of rational
points of a twisted variety, which is then bounded by the Lang–Weil estimates.
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1. Introduction

Let G be a finite group and let X/k be a quasi-projective variety, that is, a geometrically
irreducible, integral separated scheme of finite type over a field k, of dimension d with
a G-action. Let Y = X/G be the quotient and f : X −→ Y be the quotient morphism.
Assume that f is étale and k is finite.

For any closed point ȳ ∈ Y and any point x̄ ∈ f −1(ȳ), the decomposition group is
D(x̄) = {g ∈ G | g(x̄) = x̄}. For a closed point x̄ ∈ X, let k(x̄) denote the residue field
of x̄. There is a natural epimorphism D(x̄)→ Gal(k(x̄)/k(ȳ)) (see [7, Proposition 2.5,
page 342]), which is an isomorphism because f is étale. We call the preimage ϕȳ of the
field automorphism of k(x̄) given by α 7→ α|k(ȳ)| the Frobenius of ȳ. Its choice depends
on x̄ and altering the choice of x̄ to x̄′ ∈ f −1(ȳ) corresponds to conjugating ϕȳ by a
g ∈ G such that x̄′ = gx̄. Thus, the conjugacy class of ϕȳ is well defined.

A point y ∈ Y(Fq) is a morphism of schemes, y : Spec(Fq) −→ Y . We let {ȳ} denote
the image, so that ȳ is a closed point. With this notation, if the base of Y is Fq, then
k(ȳ) = Fq.

Theorem 1.1 (Chebotarev). With notation as above, for a conjugacy class C ⊂ G,

|{y ∈ YFq (Fq) | ϕȳ ∈ C}| =
|C|
|G|

qd + O(qd−(1/2)),
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where the implied constant depends only on |C|/|G| and the degree, dimension and
ambient dimension of an embedding of X into projective space.

The proof interprets the set of rational points with fixed Frobenius conjugacy class
as the set of rational points on a certain twist of X. Using the Lang–Weil bounds,
Theorem 1.1 follows. In the case of function fields, this idea goes back to Fried [2],
who used the cyclic case as a special first case, and to Kosters [4], who obtained a
formula in the case of non étale covers which are cyclic. Our only contribution is to
present a geometric proof for varieties of any dimension which is independent of the
structure of G. Lang’s original proof [6] uses fibrations by curves. For a more modern
proof using étale sheaves and L-functions, see [1, Theorem 4.1].

2. Proof of Theorem 1.1

Let g ∈ G be an element of order m and let C(g) be the conjugacy class of g. In
this situation, given y ∈ Y(Fq) such that ϕȳ ∈ C(g), there exists x ∈ X(Fqm ) such that
f (x) = y. Let Frob denote the q-power Frobenius of Fqm .

We define the twist1 Xg of X to be the Fq variety associated to the 1-cocycle
aσ : Gal(F̄q/Fq)→ G given by Frob 7→ g. As a variety, Xg is the quotient

X ×Spec(Fq) Spec(Fqm )/〈(g−1,Spec(Frob))〉

endowed with an Fq structure. An Fq rational point of Xg corresponds to a unique Fqm

rational point x : Spec(Fqm ) −→ XFq such that g ◦ x = x ◦ Spec(Frob). This means that
if {x̄} is the image of x in X, then gx̄ = x̄ and the image of g in Gal(Fqm/Fq) is Frob.
Thinking of G as a constant group scheme, we likewise twist G by aσ to obtain a group
scheme Gg whose Fqs rational points are

Gg(Fqs ) = {h ∈ G | gsh = hgs}.

The twist Xg is equipped with a Gg action, which is fixed-point free. Again Y is the
quotient and we denote the quotient morphism by f g. Let

Y(g, q) = {y ∈ YFq (Fq) | ϕȳ ∈ C(g)}.

By construction of Xg and f g, we have Y(g, q) = f g(Xg(Fq)). If Z(g) ⊂ G is the
centraliser of g, then by definition Gg(Fq) = Z(g). Therefore,

Xg(Fq)/Z(g) = Xg(Fq)/Gg(Fq) = f g(Xg(Fq)) = Y(g, q). (2.1)

Here, we use the fact that since f g is a quotient morphism for the algebraic group Gg,
the Fq rational points of a fibre form a Gg(Fq) orbit. This fact follows because Gg acts
freely on Xg [10, Theorem (B), page 105].

Putting together (2.1) and the identity |Z(g)| = |G|/|C(g)|,

|Y(g, q)| =
|C(g)|
|G|
|Xg(Fq)|. (2.2)

1The reader new to twists should consult the Appendix.
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Since Xg is itself a variety of the same dimension d as YFq , the Lang–Weil bounds [8]
and (2.2) yield ∣∣∣∣∣|Y(g, q)| −

|C(g)|
|G|

qd
∣∣∣∣∣ ≤ Aqd−(1/2) + Bqd−1,

where A depends only on the degree of an embedding of Xg into projective space
and |C(g)|/|G| and B depend only on the degree, dimension, ambient dimension of the
embedding and |C(g)|/|G|. We fix a degree-δ embedding of X into PN such that G acts
on X via projective linear maps. Then Xg also has a degree-δ embedding into PN

Fq
(see

the Appendix). Therefore,

A =
|C(g)|
|G|

(δ − 1)(δ − 2) and B =
|C(g)|
|G|

B′,

where B′ depends only on δ, d and N [8].

3. Examples of Theorem 1.1

3.1. Zeros of degree-n polynomials. Assume that n is coprime to q. Let p(z) ∈ Fq[z]
be monic of degree n so that

p(z) = zn + an−1zn−1 + · · · + a1z + a0.

The zeros of p(z) are all defined over Fqn! . For a divisor d of n!, one can ask what
proportion of degree-n polynomials defined over Fq has zeros defined over Fqd and no
smaller extension.

The coefficients of p(z) are the standard symmetric polynomials in the zeros of p(z).
Let f : An −→ An be the morphism given by the standard symmetric polynomials,
so that f −1(a0, . . . , an−1) is the set of all permutations of the ordered zeros of p(z).
Moreover, f is the quotient morphism for An equipped with the natural action of Sn

(the symmetric group on n letters). In this case f is not étale. However, by removing
the diagonal of An one obtains an étale morphism g, which corresponds to assuming
that p(z) has no repeated zeros.

Then Fqd is the extension generated by the zeros of p(z) if and only if the Frobenius
element ϕa of a = (a0, . . . , an−1) is an order-d element of Sn. Let Cd ⊂ Sn be the set
of elements of order m, so that Cd is closed under conjugation. Note that Cd is empty
unless d is the least common multiple of the di ≤ n such that

∑
di = n. Of course if Cd

is empty there are no such polynomials.
So, the proportion of degree-n polynomials, without repeated zeros, whose zeros

generate Fqd is approximately |Cd |/n!. In particular, the proportion of polynomials
whose zeros are defined over Fq and do not repeat is 1/n!.

3.2. Legendre elliptic curves. Let X = A1 − {0, 1} be the affine line minus 0 and 1
and let Y = A1 be the affine line. The set of Möbius transformations which permute
0, 1 and ∞ in the projective line is isomorphic to S3. Therefore, S3 acts on X and the
quotient is Y . Then, for q large, approximately 1/6 of the j ∈ Y(Fq) will have a rational
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point λ ∈ X(Fq) lying above them,1 1/2 will have an element λ ∈ Y(Fq2 ) lying above
them, and 1/3 will have an element λ ∈ X(Fq3 ) lying above them. In fact, the elements
of Y can be interpreted as j-invariants of elliptic curves and an element λ ∈ X(Fqs )
lying above j as a Legendre elliptic curve, y2 = x(x − 1)(x − λ) with j-invariant j. So,
for q large, the ‘probability’ that an Fq rational j-invariant is realised by an Fq rational
Legendre elliptic curve is approximately 1/6.

3.3. L-functions of curves. Chavdarov [1] proved a conjecture of Katz that the
proportion of curves whose L-function is irreducible in an algebraic family over
Fq approaches 1 as q approaches infinity (provided the family has so-called ‘big
monodromy’). By combining Chebotarev’s theorem and sieve theory, Kowalski
obtained more precise bounds on the number of hyperelliptic curves in a family over
A1 over Fq whose L function is not irreducible [5, page 178], making more explicit the
results of Chavdarov. In addition, Kowalski gave bounds on the number of curves in
such families whose number of Fq rational points is a square [5, page 193].

Appendix

This appendix establishes the result needed for the implicit constant, namely that
for some N there is an embedding of X into PN of degree δ such that all the twists Xg

also admit embeddings into PN of degree δ.
In this section k will be a field, K/k a finite Galois extension, X/k a quasi-projective

variety and G ⊂ Aut(XK) a finite group. We will call a variety X′/k a G-twist of X if
for some finite Galois extension K/k there is an isomorphism

Ψ : X′K −→ XK

inducing a 1-cocycle

aσ : Gal(K/k)→ G : σ 7→ (σΨ) ◦ Ψ−1.

The cocycle aσ defines a twisted action of Gal(K/k) on X ×Spec(k) K by letting σ act
as (aσ, σ), and the quotient by this action is X′K . Moreover, each 1-cocycle defines a
twist of X (by [12, Ch. III, Proposition 5], as X is quasi-projective). If G ⊂ Aut(Xk)
is considered as a constant group scheme over k, then aσ defines a twisted action of
Gal(K/k) on G ×Spec(k) K, which defines a twisted algebraic group G′/k isomorphic to
G over K. The action of G′(S ) on X′(S ) is exactly the same as that of G(SK) on X(SK)
as the former are respective subsets of the latter. There is an isomorphism between the
quotients2 (X′/G′)K and (X/G)K induced by Ψ and the universal property of quotients,
which descends to k as the action of G is trivial on the quotients.

Propositions A.1 and A.2 establish that there is an N so that if X′ is any twist then X
and X′ both embed into PN and are isomorphic over K under an element of GLN+1(K).

1For λ being Fq rational means that ϕ j is the identity element, so |C| = 1 and |G| = 6. Likewise λ being
Fq2 rational means that ϕ j is a 2-cycle, so |C| = 3, etc.

2That the quotients exist is shown on [10, page 105].
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Proposition A.1 is slightly more general than what we need, as it also applies to cases
where some of the automorphisms of X are not defined over k (but are all defined
over K).

PropositionA.1. Let ϕ : X −→ PN
k . Let ρ :G −→GLN+1(K) be a group homomorphism

compatible with ϕ. If X′ is a G-twist of X, then there is an embedding of X′ into PN
K and

an element γ ∈GLN+1(K) inducing an isomorphism between X′K and XK . In particular,
if X has degree δ under ϕ, then X′ does too.

Proof. Let Ψ : X′K −→ XK be an isomorphism and let aσ be the corresponding 1-
cocycle. It follows that X′ is determined, up to k-isomorphism, by the class of
aσ ∈ H1(Gal(K/k),G). It therefore suffices to show two things:

(i) every element of H1(Gal(K/k),G) has the form (σγ)γ−1 for some γ ∈ GLN+1(K);
(ii) if aσ = (σγ)γ−1, then there is an embedding X′ ⊂ PN

k and γ gives an isomorphism
between X′K and XK .

For (i), ρ induces a morphism

H1(Gal(K/k),G)→ H1(Gal(K/k),GLN+1(K))

and the latter is trivial by Hilbert’s theorem 90 [11, Proposition 3, page 151].
For (ii), let aσ = (σγ)γ−1 be a 1-cocycle, let x0, . . . , xN be the homogeneous

coordinate functions of PN
k , let I1 ⊂ k[x0, . . . , xN] be the homogeneous ideal defining

the closure of Xk and let I2 be the homogeneous ideal defining the closed variety Zk ⊂

PN
k such that Xk = X̄k − Zk. Note that if g ∈ ρ(G) and F ∈ Iε , then F(gx0, . . . , gxN) ∈ Iε ,

where ε ∈ {1, 2}. Consider the twisted Gal(K/k) action on K[x0, . . . , xN] given by
letting σ ∈ Gal(K/k) act on xi by xi 7→ (σγ)γ−1(xi) and on λ ∈ K by λ 7→ σ(λ).
Let yi = γ−1xi. Then yi is invariant under the twisted action of Gal(K/k). Let
{F1,ε , . . . , Fmε ,ε} ⊂ Iε be a set of ρ(G)-invariant generators. Put

Hi,ε(y0, . . . , yN) = Fi,ε(γy0, . . . , γyN).

Let X′′K be the variety defined by the locus of the Hi,1 with the locus of the Hi,2 removed.
The set of Hi,ε is invariant under the twisted action of Gal(K/k) as

σ(Hi,ε(y0, . . . , yN)) =σ(Fi,ε(γy0, . . . , γyN))
= Fi,ε(σ(γ)y0, . . . , σ(γ)yN)
= Fi,ε((σγ)γ−1x0, . . . , (σγ)γ−1xN)
= F j,ε

for some j as (σγ)γ−1 ∈ ρ(G). Thus, X′′K descends to a variety X′′ defined over
k. Moreover, X′′K is isomorphic to XK via γ and has a 1-cocycle aσ. Therefore,
X′′ �k X′. �

Proposition A.2. There exists an N, an embedding ϕ : X −→ PN
k and a group

homomorphism ρ : G −→ GLN+1(k) compatible with ϕ if the quotient X/G is a quasi-
projective variety.
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Proof. Let f : X −→ Y be the quotient morphism. Since Y is quasi-projective, it has
an ample line bundle L. The morphism f is finite (see, for example, [10, page 105])
and therefore f ∗L is also an ample line bundle. This is because ample means that
F ⊗ ( f ∗L)⊗n is globally generated for sufficiently large n, but, as L is ample, f∗F ⊗ L⊗n

is globally generated and therefore so is f ∗ f∗F ⊗ f ∗L⊗n. But the latter surjects onto
F ⊗ f ∗L⊗n as f is finite and hence affine (see [9, page 39]).

Therefore, for some n > 0, the power M = ( f ∗L⊗n) is very ample. For any line
bundle T over a variety Z, we let [T ] denote the geometric line bundle corresponding
to T . So, [T ] is a scheme over Z, with structure morphism p : [T ] −→ Z, such that
there is an open cover Ui of Z and isomorphisms ϕi : p−1(Ui) � Ui × A1, so that
ϕi ◦ ϕ

−1
j|Ui∩U j

: Ui ∩ U j × A1 � Ui ∩ U j × A1 respects the vector space structure of A1.
The sections of p over any open set U are T (U).

There is an equivalence between the category of geometric line bundles and line
bundles. We will use the fact that [ f ∗T ] � [T ] ×Y X. This follows as [T ]/Y is affine,
so [T ] = Spec(A) for some quasi-coherent OY -algebraA (actuallyA is the symmetric
algebra of T ). So, [ f ∗T ] � Spec( f ∗A) � Spec(A) ×Y X. See, for example, [13, Tags
01S5 and 01M1] or [3, Proposition 1.7.11, page 17].

In particular, [M] � [L⊗n] ×Y X. There is an action of G on [L⊗n] ×Y X given by
g(a, x) = (a, gx), where (a, x) ∈ [L⊗n] ×Y X(S ) and S/X is a scheme over X. Therefore,
there is an action of G on M. The action on M induces an action of G on H0(X,M) and
a group homomorphism ρ : G −→ GLN+1(k) which is compatible with the embedding

X → P(H0(X,M)) : x 7→ [s0(x) : s1(x) : · · · : sN(x)],

where N + 1 is the dimension of H0(X,M) as a k-vector space. �
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