
Ergod. Th. & Dynam. Sys., (2024), 44, 799–828 © The Author(s), 2023. Published by Cambridge
University Press.
doi:10.1017/etds.2023.31

799

Global rigidity of higher rank lattice actions
with dominated splitting

HOMIN LEE

Department of Mathematics, Northwestern University,
Evanston 60208, IL, USA

(e-mail: homin.lee@northwestern.edu)

(Received 24 March 2021 and accepted in revised form 10 March 2023)

Abstract. Let α be a C∞ volume-preserving action on a closed n-manifold M by a
lattice � in SL(n, R), n ≥ 3. Assume that there is an element γ ∈ � such that α(γ )

admits a dominated splitting. We prove that the manifold M is diffeomorphic to the torus
T

n = R
n/Zn and α is smoothly conjugate to an affine action. Anosov diffeomorphisms and

partial hyperbolic diffeomorphisms admit a dominated splitting. We obtained a topological
global rigidity when α is C1. We also prove similar theorems for actions on 2n-manifolds
by lattices in Sp(2n, R) with n ≥ 2 and SO(n, n) with n ≥ 5.

Key words: rigidity, Zimmer program, group action
2020 Mathematics Subject Classification: 37C85 (Primary); 22E40 (Secondary)

1. Introduction
In this paper, we study topological and smooth global rigidity of higher rank lattice actions
on specific dimensional manifolds under weak hyperbolicity assumptions. Throughout
the paper, a manifold stands for a compact connected smooth Riemannian manifold
without boundary. We can state one simple corollary of our result as the following
corollary.

COROLLARY 1.1. Let � < SL(n, R) be a lattice for n ≥ 3 and α : � → Diff1(Mn) be a
volume-preserving C1 � action on a closed smooth n-dimensional manifold M. Assume
that there is a γ0 ∈ � such that α(γ0) admits a dominated splitting.

Then the manifold M is homeomorphic to the n-torus Tn = R
n/Zn. Moreover, the action

α is topologically conjugate to an affine action on the n-torus. If the action α is a C∞
action, then the topological conjugacy is smooth.

The conclusion says that, up to finite index, the action α is conjugate to the action of a
finite index subgroup of SL(n, Z) by automorphisms on T

n.
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Recall that Anosov diffeomorphisms and partial hyperbolic diffeomorphisms admit
a dominated splitting. Even in the case where α(γ0) is an Anosov diffeomorphism,
Corollary 1.8 gives a new rigidity result.

The existence of C0 conjugacy implies that there is a finite index subgroup �1 < � such
that there is an unbounded group homomorphism from �1 to SL(n, Z). For instance, if �

is a cocompact, then such an action α cannot exist. In other words, in that case, � cannot
act on n-manifolds smoothly with an element which admits a dominated splitting.

The main motivations of this paper are twofold.
(1) Recently Brown, Fisher, and Hurtado proved that for a lattice � in SL(n, R),

n ≥ 3, any volume-preserving smooth � action on an (n − 1)-dimensional manifold
should factor through finite group action [BFH16, BFH20, BFH21]. The above
Corollary 1.1 says that in an n-dimensional case, which is right after the critical
dimension, if your action has a uniform hyperbolic phenomenon, then the action
should be a standard action.

(2) Conjecturally, a smooth lattice action with a uniform hyperbolic diffeomorphism is
smoothly conjugate to an algebraic action, see [Gor07, Fis11]. Corollary 1.1 gives
an evidence for the conjecture.

The rigidity of higher rank lattice actions on manifolds with hyperbolicity is studied by
many authors under various assumptions. We indicate some previous results related to this
paper. For these works, n ≥ 3.

First, without specifying the base manifold, Feres proved that C∞ global rigidity
for actions on n-manifolds by lattices in SL(n, R) assuming that the action preserves a
connection, is non-isometric, and is ergodic volume-preserving [Fer95]. In [FL98], Feres
and Labourie proved the C∞ global rigidity result for a lattice in SL(n, R) action on
a n-manifold under certain assumptions including an Anosov property of the induced
action on the suspension space. In [GS99], Goetze and Spatzier proved C∞ global rigidity
of higher rank lattice volume-preserving Cartan actions on manifolds without assuming
dimension assumptions.

Assuming the manifold is a torus, Katok and Lewis proved that topological and smooth
global rigidity of actions on the n-torus by finite index subgroup of SL(n, Z) under certain
assumptions including the existence of one Anosov element [KL96]. In [KLZ96], Katok,
Lewis, and Zimmer proved the smooth global rigidity of actions on the n-torus by SL(n, Z)

assuming that the action has an ergodic fully supported probability measure and has one
Anosov element. In [MQ01], Margulis and Qian proved topological global rigidity of
higher rank lattice actions on tori or nilmanifolds assuming that the action lifts to the
universal cover, has an invariant measure, and has one Anosov element. Recently, Brown,
Rodriguez Hertz, and Wang proved both topological and smooth global rigidity of higher
rank lattice actions on nilmanifolds only assuming a certain lifting condition and the
existence of an Anosov element [BRHW17].

1.1. Statement of main theorem. In this paper, we study the global rigidity of � actions
on M in the cases SL, Sp, and SO. Roughly speaking, the main theorem says that in these
cases, if there is a uniform hyperbolicity from one element, then the entire group action
should be algebraic. Throughout the paper, we use the following notation.
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Notation 1.2. (Cases SL, Sp, and SO)
SL. Let n ≥ 3, G = SL(n, R), and M be a closed n-dimensional manifold. Let d = n.
Sp. Let n ≥ 2, G = Sp(2n, R), and M be a closed 2n-dimensional manifold. Let

d = 2n.
SO. Let n ≥ 5, G = SO(n, n), and M be a closed 2n-dimensional manifold. Let d = 2n.
In the above cases, let � < G be a lattice in G.

Recall that the symplectic group Sp(2n, R) and the indefinite orthogonal group
SO(n, n) are defined as

Sp(2n, R) = {g ∈ SL(2n, R) : gtrJg = J }, J =
[

0n In

−In 0n

]
,

SO(n, n) = {g ∈ SL(2n, R) : gtrIn,ng = In,n}, In,n =
[

0n In

In 0n

]
,

where In is an n × n identity matrix and 0n is an n × n zero matrix.

Remark 1.3. In the case of SO, we require that n ≥ 5 although n ≥ 2 is enough to get
higher rank. When n = 2, 3, we have isomorphisms

so(2, 2) � sl(2, R) × sl(2, R), so(3, 3) � sl(4, R).

Therefore, in those cases, either the group is not simple or does not fit into the dimension
condition. When n = 4, Spin(8, C) (or so(8, C)) admits three non-trivial 8-dimensional
representations, a defining and two half-spin representations, so-called triality (e.g. [FH91,
§20.3]). We avoid this case for simplicity.

Recall that we say that C1 diffeomorphism f on M admits a dominated splitting if there
is an f -invariant continuous non-trivial splitting T M = E ⊕ F , and constants C, λ > 0
such that for all x ∈ M and n ≥ 0, we have

‖Dxf
n(v)‖

‖Dxf n(w)‖ < Ce−λn,

for all v ∈ E, w ∈ F with ‖v‖ = ‖w‖ = 1.

Example 1.4. Recall that f ∈ Diff1(M) is called an Anosov diffeomorphism if there is an
f -invariant continuous non-trivial splitting T M = Es ⊕ Eu, and constants C > 0, λ < 1
such that for all x ∈ M and n ≥ 0,

‖Dxf
n(v)‖ ≤ Cλn‖v‖, ‖Dxf

−n(w)‖ ≤ Cλn‖w‖,

for all v ∈ Es and w ∈ Eu. The subbundles Es and Eu are called the stable and unstable
distribution, respectively.

All Anosov diffeomorphisms admit a dominated splitting. More generally, partially
hyperbolic diffeomorphisms (for definition, see [Pes04]) admit a dominated splitting.

Now the main result in this paper is the following theorem.
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THEOREM 1.5. (Main theorem) Let G, �, M, and d be as in Notation 1.2. Let
α : � → Diff1

Vol(M) be a C1 volume-preserving action. Assume that there is an element
γ0 ∈ � such that α(γ0) admits a dominated splitting. Then the action has an Anosov
element, that is,

there exists γ ′
0 ∈ � such that α(γ ′

0) is an Anosov diffeomorphism.

Furthermore, in the case of SL, the manifold M is homeomorphic to a torus. In the cases
of Sp and SO, the manifold M is homeomorphic to a torus or an infra-torus.

Remark 1.6. In Theorem 1.5, we actually prove that α(γ ) is an Anosov diffeomorphism on
M for all hyperbolic elements γ ∈ �. An element g ∈ G is said to be hyperbolic if there is
no eigenvalue (over C) of g with modulus 1. This will allow us to prove that the manifold
is a torus or an infra-torus.

Remark 1.7. In this paper, the only use of the volume-preserving condition is to
make sure that the cocycle L : � × M → R, L(γ , x) = ln | det Dx(α(γ ))| is trivial
in Proposition 4.6. Actually, if L is continuously cohomologous to the constant
cocycle (γ , x) �→ 0, then the same arguments still hold. In [KLZ96, Lemma 2.5]
and the paragraph before their lemma, the same conclusions were deduced as in our
Proposition 4.6. In our proof of Proposition 4.6, L being trivial is used to promote
continuous equivariant projective framing to continuous framing up to sign. Therefore,
we can prove that α(γ ) is an Anosov diffeomorphism if γ ∈ � is hyperbolic. Presumably,
in [KLZ96], they construct a continuous conjugacy between L and the trivial cocycle to
deduce the same conclusion. We, however, could not see how they construct a continuous
conjugacy between L and the constant cocycle using a fully supported �-invariant ergodic
measure μ in [KLZ96]. We note though that, in [BRHW17], they build a continuous
conjugacy between � actions (α and its linear data) and then prove that L is continuously
cohomologous to the trivial cocycle using the conjugacy, when we have an Anosov action
on the torus. This shows that the measure assumption is redundant in the setting of
[KLZ96].

In our setting, even we assumed the Anosov � action, we stick with the volume-
preserving assumption since we could not see how to produce a continuous conjugacy
using a general fully supported �-invariant measure μ. When we assumed the action is
Anosov, then a slightly weaker assumption on the measure is enough. For instance, if
the Anosov � action has a fully supported invariant measure μ which has a local product
structure for the Anosov element (for instance, when μ is a measure of maximal entropy for
the Anosov element), then one can deduce that there is a �-invariant smooth measure using
Livšic’s theorem. In this case, we can conclude that the cocycle � × M → R, (γ , x) �→
ln | det Dx(γ )| is continuously cohomologous with the constant cocycle (γ , x) �→ 0, and
hence the same conclusion as in our theorems hold.

1.2. Global rigidity of the action. The main theorem implies that the action is indeed
algebraic under a lifting assumption.
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COROLLARY 1.8. Assume the same settings as in Theorem 1.5. In the cases of Sp and SO,
we further assume that there is a finite index subgroup �0 in � such that the action α|�0

lifts to the finite cover M0 of M that is homeomorphic to a torus. Denote the lifted action
of �1 on M0 as α0. In the case of SL, simply denote �0 = � and M0 = M .

Then, there is a finite subgroup �1 < �0 such that the lifted action α0 of �1 on M0

is topologically conjugate to its linear data ρ0. More precisely, there is a finite index
subgroup �1 < �0 and a homeomorphism h : M0 → M0 such that

ρ0(γ ) ◦ h = α0(γ ) ◦ h for all γ ∈ �1,

where ρ0 : �1 → Aut(M0) � SL(d, Z) is the associated linear data of α0. If α is a C∞
action, then the conjugacy h is indeed C∞ as well.

As we discussed earlier, Corollary 1.8 also says that such α cannot exist unless the
unbounded group homomorphism ρ0 exists. This implies that � is commensurable to G(Z)

due to Margulis’ normal subgroup theorem as in [Zim84, Ch. 7]. Here, G(Z) is SL(n, Z),
Sp(2n, Z), or SO(n, n, Z) in the cases of SL, Sp, or SO, respectively.

In Corollary 1.8, h intertwines the entire α0(�0) action on M0 with an affine action on
M0 (see for instance [MQ01, Lemma 6.8.]). In particular, in the case of SL, the entire �

action is conjugate to an affine action. This shows Corollary 1.1.

1.3. Organization of the paper. The paper is organized as follows. In §2, we provide
some settings and preliminaries for the proof. In §3, we prove some algebraic properties
of G and � that we need. We prove that we can arrange any two subspaces into general
position using G on one subspace. This will be used in the proof of Theorem 1.5. In §4,
we prove Theorem 1.5. The main idea is a comparison between the continuous data from
dominated splittings and the measurable data from the superrigidity. We extend and modify
the idea in [KLZ96]. In §5, we prove Corollary 1.8 based on [BRHW17].

2. Preliminaries
Throughout the paper, we fix a vector space V = R

d with the standard inner product. Also,
M stands for a d-dimensional manifold. Here, d is the number in Notation 1.2.

In the cases of Sp and SO, we will put additional structures on it.

2.1. Settings. We fix some notation which will be used throughout the paper.
In all cases, there are at most three homomorphisms from G to GL(V ), up to

conjugation, namely the trivial, defining, and contragredient representations due to the
dimension condition. Throughout the paper, we denote trivial, defining, and contragredient
representation as π0, π1, and π2, respectively.

In the case of SL, π1 and π2 are not an isomorphic representation. Nevertheless, we
may assume that π1(G) = π2(G) = SL(V ) as SL(n, R) is invariant under transpose.

In the case of Sp, π1 and π2 are isomorphic as a representation. We put the symplectic
form ω and the symplectic basis B on V. More precisely, we fix basis B and a symplectic
form ω on V as
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B = {e1, . . . , en, f1, . . . , fn},

ω(ei , fj ) = δij , ω(ei , ej ) = ω(fi , fj ) = 0

for all i, j ∈ {1, . . . , n}. Here, δij is the Kronecker delta symbol. Without loss of
generality, we may assume that π1 = π2 and

π1(G) = π2(G) = Sp(V , ω),

where

Sp(V , ω) = {A ∈ SL(V ) : ω(Av, Aw) = ω(v, w) for all v, w ∈ V }.
In the case of SO, π1 and π2 are isomorphic as a representation again. We can define a

signature (n, n) quadratic form Q and a basis C on V as

C = {x1, . . . , xn, y1, . . . , yn},

Q

( n∑
i=1

(aixi + biyi)

)
=

n∑
i=1

a2
i −

n∑
i=1

b2
i .

Without loss of generality, we may assume that

π1(G) = π2(G) = SO(V , Q),

where

SO(V , Q) = {A ∈ SL(V ) : Q(Av) = Q(v) for all v ∈ V }.
Note that in all cases, π1 and π2 are irreducible.

2.2. Cocycle superrigidity theorem. On a d-dimensional manifold M, we denote the
frame bundle P on M. We identify the fibers of the frame bundle P at x ∈ M as the set
of linear isomorphisms V → TxM .

First, SLn and Sp2n are algebraically simply connected. For the case of SO, the
algebraically universal cover is Spin2n. As we assume that n ≥ 5, there is a unique
(complex) non-trivial 2n-dimensional representation of Spin2n up to conjugation which
is the defining representation of Spin2n(C). The defining representation factors through
SO(2n, C). Therefore, we can restate the non-ergodic version of the cocycle superrigidity
theorem [FMW04, Theorem 4.5] as follows.

THEOREM 2.1. (Cocycle superrigidity, non-ergodic case [FMW04]) Let �, G, and M be
as in the cases of SL, Sp, or SO. Let P be the frame bundle on M.

Then there is:
(1) a measurable section σ : M → P ;
(2) a measurable �-invariant map ι : M → {0, 1, 2};
(3) compact subgroups κi ⊂ GL(V ); and
(4) measurable cocycles Ki : � × ι−1(i) → κi for i = 0, 1, 2,
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such that:
(1) for μ almost every x and every γ ∈ �,

Dx(γ )σ (x) = σ(α(γ )(x))πι(x)(γ )Kι(x)(γ , x);

(2) πi(G) commutes with κi for i = 0, 1, 2.

If we denote by {μi}i∈I the ergodic decomposition of μ with respect to the � action,
then we have a partition of I into I0, I1, and I2 such that, for μi almost every x, we
have ι(x) = i if and only if i ∈ Ii for i ∈ {0, 1, 2}. Note that ι−1(i) is an α(�) invariant
measurable set for all i ∈ {0, 1, 2}. For each i ∈ {1, 2, 3}, let us denote by μi the integration
of ergodic components in Ii ,

μi =
∫

j∈Ii

μj .

Then we can decompose μ as

μ = μ0 + μ1 + μ2.

Let us denote by Xi the support of μi . Here, Xi is a compact �-invariant subset in M for
all i ∈ {0, 1, 2}.

In all cases, by Schur’s lemma and dimension considerations, we have

ZGL(d,R)(π1(G)) = ZGL(d,R)(π2(G)) = R
× · IV .

Therefore, κ1 and κ2 are compact subgroups of R
× · IV so that they are subgroups of

{±IV }. In particular, K1 and K2 take values in {±IV }.
In [FMW04, Theorem 4.5], the statement is not written in the bundle theoretic form.

However, Theorem 2.1 can be directly deduced from it.

2.3. Franks–Newhouse and Brin–Manning theorems. In this section, we recall some
facts on Anosov diffeomorphisms. An Anosov diffeomorphism is said to be codimension 1
if the dimension of stable or unstable distribution is 1. The first theorem due to the
Franks–Newhouse theorem states that if a manifold M admits a codimension 1 Anosov
diffeomorphism, then the manifold is homeomorphic to the torus R

d/Zd (See [Hir01,
New70, Fra70]).

THEOREM 2.2. (The Franks–Newhouse theorem) If f : M → M is a codimension 1
Anosov diffeomorphism, then M is homeomorphic to the torus Td = R

d/Zd .

If we can control the dilation on the stable and unstable distribution, then we can use the
Brin–Manning theorem as follows. Let M be a manifold and f : M → M be an Anosov
diffeomorphism. The map f induces a bounded linear operator f∗ on the Banach space of
a continuous vector field on M as

f∗X(x) = Df −1(x)(X(f −1(x)))

for a continuous vector field X on M. Then the spectrum of f∗ is contained in the interior
of two annuli with the radius 0 < λ1 < λ2 < 1 and 1 < μ2 < μ1 < ∞.
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THEOREM 2.3. (The Brin–Manning theorem, see [BM81]) Let f : M → M be an Anosov
diffeomorphism on M. Let μ1, μ2 and λ1, λ2 be as above. Assume that

1 + log μ2

log μ1
>

log λ1

log λ2
,

and

1 + log λ2

log λ1
>

log μ1

log μ2
.

Then, M is homeomorphic to a torus or a flat manifold.

Note that if M is a flat manifold, then M is an infra-torus or torus by Bieberbach’s
theorem [Bie11, Bie12].

3. Auxiliary lemmas for SL, Sp, and SO
The proof of the main theorem requires some properties of SL(V ), Sp(V , ω), and
SO(V , Q). In this section, we will prove such facts. We retain the notation in the previous
section.

First, we will use the following fact that is about the normalizer in GL(V ) which is a
special case of [Fer95, Lemma 2.5].

LEMMA 3.1. Let H ⊂ GL(V ) be an real algebraic subgroup in GL(V ). Let G be either
SL(V ), Sp(V , ω), or SO(V , Q). Assume that H is normalized by G. Then H contains G or
is contained in R

× · {IV }.
In all cases, G is a R-split group. Denote the R-rank of G as rkR(G). Note that

rkR(SL(n, R)) = n − 1, and rkR(Sp(2n, R)) = rkR(SO(n, n)) = n.

The following theorem in [PR01] ensures the existence of higher rank free abelian
subgroup Z

n−1 in �.

THEOREM 3.2. (Prasad and Rapinchuk [PR01]) In all cases in Notation 1.2, there is a
subgroup �0 < � and a maximal R-split torus A � R

rkR(G) in G such that A = A ∩ �0 �
Z

rkR(G) is a lattice in A.

In following subsections, we prove that for any two subspaces W1 and W2 in V, there
is g ∈ G such that the subspaces gW1 and W2 are in general position (Corollaries 3.7 and
3.11). Recall that two subspaces W1 and W2 are in general position if

dim(W1 ∩ W2) = max{0, dim W1 + dim W2 − dim V }.
Note that this can be checked easily in the case of SL(V ) as SL(V ) acts transitively on the
space of all k-dimensional subspaces of V for all k.

3.1. Properties of Sp. Throughout this subsection, we always denote (V , ω) to be a
d = 2n-dimensional symplectic vector space as in the case of Sp in §2.1. Recall that we
put the symplectic form ω and the symplectic basis

B = {e1, . . . , en, f1, . . . , fn}
on V. Also, Sp(V , ω) is denoted by the symplectic group for the symplectic form ω on V.
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For any subspace W < V , let

W⊥ = {v ∈ V : ω(v, w) = 0 for all w ∈ W }
and ωW be the bilinear form on W induced by the restriction of ω.

Recall that a subspace W < V is said to be:
(1) symplectic if W ∩ W⊥ = {0} (equivalently, ωW is symplectic form);
(2) Lagrangian if W⊥ = W (equivalently, ωW = ωW⊥ = 0);
(3) isotropic if W ⊂ W⊥ (equivalently, ωW = 0); and
(4) coisotropic if W⊥ ⊂ W (equivalently, ωW⊥ = 0).

The following decomposition will be useful (for the proof, see for instance [RS13,
Theorem 7.3.3]).

LEMMA 3.3. (Witt–Artin decomposition) Let (V , ω) be a symplectic space. For any
subspace W in V, if subspaces H and J satisfy

W = H ⊕ (W ∩ W⊥), W⊥ = J ⊕ (W ∩ W⊥),

then H and J are symplectic. Furthermore, V can be decomposed into an ω-orthogonal
direct sum

V = H ⊕ J ⊕ (H ⊕ J )⊥

and W ∩ W⊥ is a Lagrangian subspace in (H ⊕ J )⊥.

From the definition and Lemma 3.3, the following lemma can be deduced directly.

LEMMA 3.4. Let W < V be a subspace. Let r = dim(W ∩ W⊥) and p = dim W . Then:
(1) r ≤ p;
(2) r ≤ n;
(3) r ≤ 2n − p;
(4) p − r is even.

The following is also an application of Lemma 3.3.

LEMMA 3.5. For any two subspaces W1, W2 < V , if

dim W1 = dim W2 and dim(W1 ∩ W⊥
1 ) = dim(W2 ∩ W⊥

2 ),

then there is an h ∈ Sp(V , ω) such that

hW1 = W2.

Proof. Assume that two subspaces W1, W2 < V satisfy dim W1 = dim W2 and dim
(W1 ∩ W⊥

1 ) = dim(W2 ∩ W⊥
2 ). Using Lemma 3.3, we know that if subspaces H1 and J1

satisfy

W1 = H1 ⊕ (W1 ∩ W⊥
1 ), W⊥

1 = J1 ⊕ (W1 ∩ W⊥
1 ),

then H1 and J1 are symplectic. Furthermore, V can be decomposed into an ω-orthogonal
direct sum

V = H1 ⊕ J1 ⊕ (H1 ⊕ J1)
⊥

and W1 ∩ W⊥
1 is a Lagrangian subspace in (H1 ⊕ J1)

⊥.
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Similarly, for subspaces H2 and J2 that satisfy

W2 = H2 ⊕ (W2 ∩ W⊥
2 ), W⊥

2 = J2 ⊕ (W2 ∩ W⊥
2 ),

then H2 and J2 are symplectic. Furthermore, V can be decomposed into an ω-orthogonal
direct sum

V = H2 ⊕ J2 ⊕ (H2 ⊕ J2)
⊥.

Moreover, W2 ∩ W⊥
2 is a Lagrangian subspace in (H2 ⊕ J2)

⊥.
Note that the above decomposition shows that we can decompose ω as

ω = ωH1 + ωJ1 + ω(H1⊕J1)⊥ = ωH2 + ωJ2 + ω(H2⊕J2)⊥ .

Furthermore, by our assumptions about dimension,

dim H1 = dim H2, dim J1 = dim J2, dim(W1 ∩ W⊥
1 ) = dim(W2 ∩ W⊥

2 ).

This implies that, as each direct summand is symplectic, we can find linear maps
h1 : H1 → H2, h2 : J1 → J2, and h3 : (H1 ⊕ J1)

⊥ → (H2 ⊕ J2)
⊥ so that they satisfy the

following:
(1) h1 maps ωH1 to ωH2 ;
(2) h2 maps ωJ1 to ωJ2 ;
(3) h3 maps ω(H1⊕)⊥ to ω(H2⊕J2)⊥ .
Furthermore, as W1 ∩ W⊥

1 and W2 ∩ W⊥
2 are Lagrangians in (H1 ⊕ J1)

⊥ and (H2 ⊕ J2)
⊥,

respectively, we can further require that h3 satisfies

h3(W1 ∩ W⊥
1 ) = W2 ∩ W⊥

2 .

Combining h1, h2, and h3, we can find a h ∈ Sp(V , ω) such that

h(H1) = H2, h(J1) = J2, h((H1 ⊕ J1)
⊥) = (H2 ⊕ J2)

⊥, and

h(W1 ∩ W⊥
1 ) = W2 ∩ W⊥

2 .

This implies that h(W1) = W2 for some h ∈ Sp(V , ω).

LEMMA 3.6. With the above notation, let W1 and W2 be subspaces in V such
that dim W1 + dim W2 = dim V = 2n. Then there is a h ∈ Sp(V , ω) such that
hW1 ∩ W2 = {0}.

Proof. First, we claim that there are subspaces Y1 and Y2 such that

Y1 ∩ Y2 = {0}, dim Wi = dim Yi , and dim(Wi ∩ W⊥
i ) = dim(Yi ∩ W⊥

i )

for all i = 1, 2. If we can find such Y1 and Y2, then we can prove the lemma using
Lemma 3.4 to each Wi .

We will find Y1 and Y2 explicitly. Let

dim W1 = p, dim W2 = q, dim(W1 ∩ W⊥
1 ) = r , and dim(W2 ∩ W⊥

2 ) = s.
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Note that

p + q = 2n, max(r , s) ≤ min(p, q), and 2|(p − r), 2|(q − s).

We may assume that p ≥ q without loss of generality.
Case 1: r is even. In this case, r , s, p, and q are all even. Let

B1 = {e1
1, . . . , e1

(p−r)/2, e2
1, . . . , e2

(q−s)/2, e3
1, . . . , e3

(r+s−2)/2} ∪ {e4
1}

∪ {f 1
1 , . . . , f 1

(p−r)/2, f 2
1 , . . . , f 2

(q−s)/2, f 3
1 , . . . , f 3

(r+s−2)/2} ∪ {f 4
1 }

be a symplectic basis on V that satisfies ω(e
j
i , el

k) = ω(f
j
i , f l

k ) = 0 and ω(e
j
i , f l

k ) =
δikδjl for all i, j , k, l. We can find Y1 and Y2 in the claim as follows.
(1) Case 1-1. r + s ≤ q + 1:

Y1 = span({e1
1, . . . , e1

(p−r)/2} ∪ {f 1
1 , . . . , f 1

(p−r)/2} ∪ {e4
1}

∪ {(e3
(s+1)/2 + f 2

1 ), . . . , (e3
(r+s−2)/2 + f 2

(r−1)/2)}
∪ {(f 3

(s+1)/2 + e2
1), . . . , (f 3

(r+s−2)/2 + e2
(r−1)/2)}),

Y2 = span({e2
1, . . . , e2

(q−s)/2} ∪ {f 2
1 , . . . , f 2

(q−s)/2} ∪ {f 4
1 }

∪ {(e3
1 + f 1

1 ), . . . , (e3
(s−1)/2 + f 2

(s−1)/2)}
∪ {(f 3

1 + e1
1), . . . , f 3

(s−1)/2 + e1
(s−1)/2}).

(2) Case 1-2. q + 1 ≤ r + s ≤ p + 1:

Y1 = span({e1
1, . . . , e1

(p−r)/2} ∪ {f 1
1 , . . . , f 1

(p−r)/2} ∪ {e4
1}

∪ {(e3
(s+1)/2+1 + f 2

1 ), . . . , (e3
(q−1)/2 + f 2

(q−s)/2)}
∪ {(f 3

(s+1)/2 + e2
1), . . . , (f 3

(q−1)/2 + e2
(q−s)/2)}

∪ {(e3
(q+1)/2 + f 3

1 ), . . . , (e3
(r+s−2)/2 + f 3

(r+s−q−1)/2)}
∪ {(f 3

(q+1)/2 + e3
1), . . . , (f 3

(r+s−2)/2 + e3
(r+s−q−1)2)}),

Y2 = span({e2
1, . . . , e2

(q−s)/2} ∪ {f 2
1 , . . . , f 2

(q−s)/2} ∪ {f 4
1 }

∪ {(e3
1 + f 1

1 ), . . . , (e3
(s−1)/2 + f 2

(s−1)/2)}
∪ {(f 3

1 + e1
1), . . . , (f 3

(s−1)/2 + e1
(s−1)/2)}).

(3) Case 1-3. p + 1 < r + s:

Y1 = span({e1
1, . . . , e1

(p−r)/2} ∪ {f 1
1 , . . . , f 1

(p−r)/2} ∪ {e4
1}

∪ {(e3
1 + f 2

1 ), . . . , (e3
(q−s)/2 + f 2

(q−s)/2)}
∪ {(f 3

1 + e2
1), . . . , (f 3

(q−s)/2 + e2
(q−s)/2)}

∪ {(e3
(q−s+2)/2 + f 2

(q−s+2)/2), . . . , (e3
(2r+s−q−2)/2 + f 3

(2r+s−q−2)/2)},
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Y2 = span({e2
1, . . . , e2

(q−s)/2} ∪ {f 2
1 , . . . , f 2

(q−s)/2} ∪ {f 4
1 }

∪ {(e3
(2r+s−q)/2 + f 1

1 ), . . . , (e3
(r+s−2)/2 + f 1

(q−r)/2)})
∪ {(f 3

(2r+s−q)/2 + e1
1), . . . , (f 3

(r+s−2)/2 + e1
(q−r)/2)})

∪ {(e3
(q−s+2)/2 − f 3

(q−s+2)/2), . . . , (e3
(2r+s−q−2)/2 − f 3

(2r+s−q−2)/2)}).
Case 2. r is odd: In this case, r , s, p, and q are all odd. Let

B2 = {e1
1, . . . , e1

(p−r)/2, e2
1, . . . , e2

(q−s)/2, e3
1, . . . , e3

(r+s)/2}
∪ {f 1

1 , . . . , f 1
(p−r)/2, f 2

1 , . . . , f 2
(q−s)/2, f 3

1 , . . . , f 3
(r+s)/2}

be a symplectic basis on V that satisfies ω(e
j
i , el

k) = ω(f
j
i , f l

k ) = 0 and ω(e
j
i , f l

k ) =
δikδjl for all i, j , k, l. We can find Y1 and Y2 in the claim as follows.
(1) Case 2-1. r + s ≤ q:

Y1 = span({e1
1, . . . , e1

(p−r)/2} ∪ {f 1
1 , . . . , f 1

(p−r)/2}
∪ {(e3

(s+2)/2 + f 2
1 ), . . . , (e3

q/2 + f 2
r/2)} ∪ {(f 3

(s+2) + e2
1), . . . , (f 3

q/2 + e2
r/2)}),

Y2 = span({e2
1, . . . , e2

(q−s)/2} ∪ {f 2
1 , . . . , f 2

(q−s)/2}
∪ {(e3

1 + f 1
1 ), . . . , (e3

s/2 + f 2
s/2)} ∪ {(f 3

1 + e1
1), . . . , f 3

s/2 + e1
s/2}).

(2) Case 2-2. q ≤ r + s ≤ p:

Y1 = span({e1
1, . . . , e1

(p−r)/2} ∪ {f 1
1 , . . . , f 1

(p−r)/2}
∪ {(e3

(s+2)/2+1 + f 2
1 ), . . . , (e3

q/2 + f 2
(q−s)/2)}

∪ {(f 3
(s+2)/2 + e2

1), . . . , (f 3
q/2 + e2

(q−s)/2)}
∪ {(e3

(q+2)/2 + f 3
1 ), . . . , (e3

(r+s)/2 + f 3
(r+s−q−1)/2)}

∪ {(f 3
(q+2)/2 + e3

1), . . . , (f 3
(r+s)/2 + e3

(r+s−q−1)/2)}),
Y2 = span({e2

1, . . . , e2
(q−s)/2} ∪ {f 2

1 , . . . , f 2
(q−s)/2}

∪ {(e3
1 + f 1

1 ), . . . , (e3
s/2 + f 2

s/2)}
∪ {(f 3

1 + e1
1), . . . , (f 3

s/2 + e1
s/2)}).

(3) Case 2-3. p ≤ r + s:

Y1 = span({e1
1, . . . , e1

(p−r)/2} ∪ {f 1
1 , . . . , f 1

(p−r)/2}
∪ {(e3

1 + f 2
1 ), . . . , (e3

(q−s)/2 + f 2
(q−s)/2)}

∪ {(f 3
1 + e2

1), . . . , (f 3
(q−s)/2 + e2

(q−s)/2)}
∪ {(e3

(q−s+2)/2 + f 2
(q−s+2)/2), . . . , (e3

(2r+s−q)/2 + f 3
(2r+s−q)/2)},
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Y2 = span({e2
1, . . . , e2

(q−s)/2} ∪ {f 2
1 , . . . , f 2

(q−s)/2}
∪ {(e3

(2r+s−q)/2 + f 1
1 ), . . . , (e3

(r+s−2)/2 + f 1
(q−r)/2)})

∪ {(f 3
(2r+s−q)/2 + e1

1), . . . , (f 3
(r+s−2)/2 + e1

(q−r)/2)})
∪ {(e3

(q−s+2)/2 − f 3
(q−s+2)/2), . . . , (e3

(2r+s−q)/2 − f 3
(2r+s−q)/2)}).

Finally, we can deduce the following corollary from Lemma 3.6.

COROLLARY 3.7. For any two subspaces W1, W2 < V , there is an element h ∈ Sp(V , ω)

such that hW1 and W2 are in general position. In particular:
(1) hW1 ∩ W2 = 0 if dim W1 + dim W2 ≤ 2n;
(2) V = hW1 + W2 if dim W1 + dim W2 ≥ 2n.

Proof. Denote dim W1 = s and dim W2 = k.
If k, s ≥ n, then we can find n-dimensional subspaces X1 and X2 such that X1 < W1

and X2 < W2. If k, s ≤ n, then we can find n-dimensional subspaces X1 and X2 such that
X1 > W1 and X2 > W2. If k ≤ n ≤ s and k + s ≥ 2n, then we can find n-dimensional
subspaces X1 and X2 such that X1 < W1 and X2 > W2. Finally, if k ≤ n ≤ s and
k + s ≤ 2n, then we define X1 = W2 and find a (2n − k)-dimensional subspace X2 such
that X2 > W1. For the s ≤ n ≤ k case, we take X1 and X2 similarly.

In all cases, using Lemmas 3.5 and 3.6, one can find h ∈ Sp(V , ω) such that hX1 and
X2 are in general position. This implies that hW1 and W2 are in general position.

3.2. Properties of SO. Throughout this subsection, let (V , Q) be a d = 2n-dimensional
vector space V with a quadratic form Q as in the case SO. Recall that we put a basis

C = {x1, . . . , xn, y1, . . . , yn}
and a quadratic form

Q

( n∑
i=1

(aixi + biyi)

)
=

n∑
i=1

a2
i −

n∑
i=1

b2
i

on V. Also, SO(V , Q) is denoted by the group of linear isomorphisms on V that preserves
Q. The elements of SO(V , Q) are called an isometry.

For any subspace W < V , we define the signature of the restricted quadratic form Q|W
on W as

sign(W) = (l, p, q)

if Q|W admits orthogonal diagonalization

Q|W
( l+p+q∑

i=1

cizi

)
= c2

l+1 + · · · + c2
l+p − c2

l+p+1 − · · · − c2
l+p+q

for some basis {z1, . . . , zl+p+q} in W. For instance,

sign(V ) = (0, n, n).
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Note that Sylvester’s law of inertia says that the signature is well defined for every
subspace. (See [Jac85, Theorem 6.8].)

Recall that the quadratic form Q gives bilinear symmetric form B on V as

B(x, y) = Q(x + y) − Q(x) − Q(y)

for all x, y ∈ V . For any subspace W in V, define the orthogonal complement of W as

W⊥ = {v ∈ V : B(v, w) = 0 for all w ∈ W }.

The subspace W ∩ W⊥ is called the radical of W and we will denote rad(W) = W ∩ W⊥.
Also, we denote orthogonal direct sum of two subspaces W1 and W2 in V as

W1 ⊕ W2 = W1 ⊥ W2

when B(w1, w2) = 0 for all w1 ∈ W1 and w2 ∈ W2. The following lemma characterizes
possible signatures.

LEMMA 3.8. Let W < V be a subspace of V. Let sign(W) = (l, p, q). Then:
(1) l + p ≤ n, l + q ≤ n; and
(2) dim W = l + p + q.
Conversely, assume that a triple of numbers (l, p, q) satisfies l, p, q ≥ 0, l + p ≤ n,
l + q ≤ n, and l + p + q ≤ 2n. Then we can find a subspace W in V such that sign(W) =
(l, p, q).

Proof. Let W < V be a subspace with sign(W) = (l, p, q). If l = 0 and p > n, then we
can find (n + 1) linearly independent vectors w1, . . . , wn+1 ∈ W such that Q(wi) = 1.
However, as sign(V ) = (0, n, n), this gives a contradiction. The same arguments hold
for q.

When l ≥ 1, the radical of W is non-tirvial. Let r = dim(W ∩ W⊥) ≥ 1. Fix a basis
{w1, . . . , wr} of rad(W). Write W = W ′ ⊕ rad(W) for some W ′. Then we can find a
subspace U and a basis z1, . . . , zr of U satisfies the following conditions (see [Jac85,
Theorem 6.11]):
(1) the restricted quadratic form Q|W⊕U is non-degenerate;
(2) dim rad(W) = dim U = r;
(3) for each i ∈ {1, . . . , r}, a pair (zi , wi) spans hyperbolic plane Hi , and

W ⊕ U = W ′ ⊥ H1 ⊥ · · · ⊥ Hr .

Recall that a two-dimensional subspace is called a hyperbolic plane if the restriction of Q
on it is non-degenerate and it contains a vector u so that Q(u) = 0. This implies that

sign(W ⊕ U) = (0, l + p, l + q).

As W ⊕ U is a subspace of V, the arguments for the l = 0 case can be applied for W ⊕ U

so that we can deduce l + p, l + q ≤ n.
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Conversely, if we have triple numbers (l, p, q) as in the statement, then we can just take
subspace W as

W = span{x1 + y1, . . . , xl + yl , xl+1, . . . , xl+p, yl+1, . . . , yl+q}.

The next lemma says that if two subspaces have the same signature, then we can find an
element in SO(V , Q) so that it transforms one subspace to the other subspace.

LEMMA 3.9. For any two subspaces W1, W2 < V , if

sign(W1) = sign(W2),

then there is an element h ∈ SO(V , ω) such that

hW1 = W2.

Proof. Let W1 and W2 be subspaces in V with the same signature. As they have the same
signature, there is a linear isometry h between W1 and W2. Witt’s extension theorem says
that h can be extended to an element in SO(V , Q). See [Jac85, p. 369]. That means that
there is an element h ∈ SO(V , Q) such that hW1 = W2 as we desired.

Next, we see that if there are two subspaces, then we can find subspaces that are in
general position with the same signatures respectively.

LEMMA 3.10. Assume that l1, p1, q1, l2, p2, q2 ∈ N>0 satisfies the following conditions:
(1) l1 + p1, l1 + q1 ≤ n;
(2) l2 + p2, l2 + q2 ≤ n; and
(3) l1 + p1 + q1 + l2 + p2 + q2 = 2n.
Then there are two subspaces Y1, Y2 < V such that:
(1) Y1 and Y2 satisfy

sign(Y1) = (l1, p1, q1), sign(Y2) = (l2, p2, q2); and

(2) Y1 and Y2 are in general position.

Proof. We fix a basis C = {x1, . . . , xn, y1, . . . , yn} on V such that Q(xi) = 1,
Q(yi) = −1 for all i ∈ {1, . . . , n}. We construct Y1 and Y2 explicitly. Without loss of
generality, we need to construct Y1 and Y2 in the following two cases.
(1) Case I. p1 ≥ q1 and p2 ≤ q2.
(2) Case II. p1 ≤ q1 and p2 ≤ q2.
When p1 ≥ q1 and p2 ≥ q2, one can change the role of x and y from Case II.

Case I. p1 ≥ q1 and p2 ≤ q2: Without loss of generality, we may assume

p1 − q1 ≤ q2 − p2.

Indeed, we can change roles of x and y from below for the other case.
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Case I-1. p1 + p2, q1 + q2 ≤ n:
(1) if 0 ≤ l1 − n + q1 + q2, 0 ≤ l2 − n + q1 + q2, then we can take Y1 and Y2 as

Y1 = span{xp1+p2+1 + yq1+1, . . . , xn−l2 + y2q1+l1−n+q2}
⊥ span{xq1+q2+1 + yq1+q2+1, . . . , xn + yn}
⊥ span{x1, . . . , xq1 , xq1+p2+1, . . . , xp2+p1}︸ ︷︷ ︸

positive definite

⊥ span{y1, . . . , yq1}︸ ︷︷ ︸
negative definite

Y2 = span{xn−l2+1 + y1, . . . , xq1+q2 + yq1+q2+l2−n}
⊥ span{xq1+q2+1 − yq1+q2+1, . . . , xn − yn}
⊥ span{yq1+1, . . . , yp2+q2}︸ ︷︷ ︸

negative definite

⊥ span{xq1+1, . . . , xq1+p2}︸ ︷︷ ︸
positive definite

;

(2) if l1 − n + q1 + q2 ≤ 0 ≤ l2 − n + q1 + q2, then we can take Y1 and Y2 as

Y1 = span{xn−(l1−1) + yn−(l1−1), . . . , xn + yn}
⊥ span{xq1+p2+1, . . . , xp1+p2 , x1, . . . , xq1}︸ ︷︷ ︸

positive definite

⊥ span{y1, . . . , yq1}︸ ︷︷ ︸
negative definite

Y2 = span{xp1+p2+1 + y1, . . . , xn−l1 + yn−(l1+p1+p2)}
⊥ span{x1 + yq1+q2+1, . . . , xn−(l1+q1+q2) + yn−l1}
⊥ span{xn−(l1−1) − yn−(l1−1), . . . , xn − yn}
⊥ span{xq1+1, . . . , xq1+p2}︸ ︷︷ ︸

positive definite

⊥ span{yq1+1, . . . , yq1+p2}︸ ︷︷ ︸
negative definite

;

(3) if l2 − n + q1 + q2 ≤ 0 ≤ l1 − n + q1 + q2, then we can take Y1 and Y2 as

Y1 = span{xn−(l2−1) + yn−(l2−1), . . . , xn + yn}
⊥ span{xp1+p2+1 + yq1+1, . . . , xn−l2 + yn−l2−p2−p1}
⊥ span{xq1+1 + yq1+q2+1, . . . , xn−l2−q2 + yn−l2}
⊥ span{xq1+p2+1, . . . , xp1+p2 , x1, . . . , xq1}︸ ︷︷ ︸

positive definite

⊥ span{y1, . . . , yq1}︸ ︷︷ ︸
negative definite
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Y2 = span{xn−(l2−1) − yn−(l2−1), . . . , xn − yn}
⊥ span{xq1+1, . . . , xq1+p2}︸ ︷︷ ︸

positive definite

⊥ span{yq1+1, . . . , yq1+q2}︸ ︷︷ ︸
negative definite

.

Case I-2. q1 + q2 ≤ n ≤ p1 + p2: We can take Y1 and Y2 as

Y1 = span{xp1+p2+q1+q2+l2−n+1 + yq1+1, . . . , xn + yq1+l1}
⊥ span{x1, . . . , xq1 , xq1+p2+1, . . . , xp1+q2}︸ ︷︷ ︸

positive definite

⊥ span{y1, . . . , yq}︸ ︷︷ ︸
negative definite

Y2 = span{xp1+p2+q1+q2−n+1 + yq1+q2−n+1, . . . , xp1+p2+q1+q2−n+l2 + yq1+q2+l2−n}
⊥ span{xq1+1, . . . , xq1+p2}︸ ︷︷ ︸

positive definite

⊥ span{xp1+q2+1 + √
2y1, . . . , xp1+p2+q1+q2−n + √

2yq1+q2−n}︸ ︷︷ ︸
negative definite

⊥ span{yq1+1, . . . , yn}︸ ︷︷ ︸
negative definite

.

Case I-3. q1 + q2 ≥ n ≥ p1 + p2: one can construct desired Y1 and Y2 from case I-2
after changing the role of x and y.

Case II. p1 ≤ q1, p2 ≤ q2: without loss of generality, we may assume that l1 ≤ l2. We
divide into two cases.

Case II-1. p1 + p2 ≤ n:
(1) if n − p1 − p2 ≤ l1 and n − p1 − p2 ≤ l2, then we can take Y1 and Y2 as

Y1 = span{xp1+p2+1 + yp1+p2+1, . . . , xn + yn}
⊥ span{xp1+1 + yq1+q2+1, . . . , xp1+l1−n+p1+p2 + yq1+q2+l1−n+p1+p2}
⊥ span{x1, . . . , xp1}︸ ︷︷ ︸

positive definite

⊥ span{y1, . . . , yq1}︸ ︷︷ ︸
negative definite

Y2 = span{xp1+p2+1 − yp1+p2+1, . . . , xn − yn}
⊥ span{x1 + yq1+q2+l1−n+p1+p2+1, . . . , xl2−n+p1+p2 + yp1+p2}
⊥ span{xp1+1, . . . , xp1+p2}︸ ︷︷ ︸

positive definite

⊥ span{yq1+1, . . . , yq1+q2}︸ ︷︷ ︸
negative definite

;
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(2) if l1 ≤ n − p1 − p2 ≤ l2, then we can take Y1 and Y2 as

Y1 = span{xn−(l1−1) + yn−(l1−1), . . . , xn + yn}
⊥ span{x1, . . . , xp1}︸ ︷︷ ︸

positive definite

⊥ span{y1, . . . , yq1}︸ ︷︷ ︸
negative definite

Y2 = span{xn−(l1−1) − yn−(l1−1), . . . , xn − yn}
⊥ span{xp1+p2+1 + y1, . . . , xn−l1 + yn−l1−p1−p2}
⊥ span{x1 + yq1+q2+1, . . . , xn−l1−q1−q2 + yn−l1}
⊥ span{xp1+1, . . . , xp1+p2}︸ ︷︷ ︸

positive definite

⊥ span{yq1+1, . . . , yq1+q2}︸ ︷︷ ︸
negative definite

.

Case II-2. p1 + p2 ≥ n: we can take Y1 and Y2 as

Y1 = span{xp1+1 + yp1+p2+q1+q2−n+1, . . . , xl1+p1 + yl1+p1+p2+q1+q2−n}
⊥ span{x1, . . . , xp1}︸ ︷︷ ︸

positive definite

⊥ span{y1, . . . , yq1}︸ ︷︷ ︸
negative definite

Y2 = span{x1 + yl1+p1+p2+q1+q2−n+1, . . . , xl2 + yn}
⊥ span{xp1+1, . . . , xn}︸ ︷︷ ︸

positive definite

⊥ span{√2x1 + yq1+q2+1, . . . ,
√

2xp1+p2−n + yp1+p2+q1+q2−n}︸ ︷︷ ︸
positive definite

⊥ span{yq1+1, . . . , yq1+q2}︸ ︷︷ ︸
negative definite

.

The above case by case constructions show that we can find desired subspaces Y1

and Y2.

As a result, we can deduce the following corollary that is analogous to Corollary 3.7.
The proof is the same as Corollary 3.7 using Lemmas 3.9 and 3.10 instead of Lemmas 3.5
and 3.6.

COROLLARY 3.11. For any two subspaces W1, W2 < V , there is an element h ∈
SO(V , Q) such that hW1 and W2 are in general position. In particular:
(1) hW1 ∩ W2 = 0 if dim W1 + dim W2 ≤ 2n;
(2) V = hW1 + W2 if dim W1 + dim W2 ≥ 2n.
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4. Proof of Theorem 1.5
We follow the notation of Notation 1.2 and the previous sections. Throughout this section,
V = R

d is the fixed vector space and M is a d-dimensional manifold.
Recall that we identified the fiber of frame bundle P at x ∈ M with the group of linear

isomorphisms V → TxM .
Let α : � → Diff1(M) be a C1 action. In Theorem 1.5, we assumed the following

hold.
(1) There is a γ0 ∈ � so that α(γ0) admits dominated splitting. We can find continuous

α(γ0) invariant subbundles E and F, some constant C, λ > 0 so that

T M = E ⊕ F ,
‖Dxα(γ n

0 )(v)‖
‖Dxα(γ n

0 )(w)‖ < Ce−λn for all n > 0

for any unit vectors v ∈ E and w ∈ F .
(2) α is a volume-preserving action, so we have an α invariant probability measure μ on

M that is fully supported.
As in §2.2, let π0, π1, and π2 be the trivial, defining, and contragredient representations

of G on V, respectively. If π1 is isomorphic to π2, then we assumed π1 = π2 after a
conjugation. Without loss of generality, in all cases, we also assumed that the image
of π1 and π2 is the same, π1(G) = π2(G), after conjugation. In §2.2, we showed that
there is a measurable section σ : M → P , measurable map ι : M → {0, 1, 2}, a compact
subgroup κi ⊂ GL(V ), and measurable cocycle Ki : � × ι−1(i) → κi for i = 0, 1, 2 such
that:
(1) for μ almost every x ∈ M and for every γ ∈ �,

Dx(γ )σ (x) = σ(α(γ )(x))πι(x)(γ )Kι(x)(γ , x)

with respect to the measurable framing σ ;
(2) πi(G) commutes with κi for i = 0, 1, 2;
(3) K1, K2 ⊂ {±IV }.

The proof will be divided into the following steps. In §4.1, we prove that ι−1(0) is a
μ-measure zero set using the dominated splitting. This allows us to focus on non-trivial
representations π1 and π2. In §4.2, we prove that, after projectivization, the measurable
section is the same as the continuous section almost everywhere using a comparison
between the measurable data from the superrigidity theorem and the continuous data
from dominated splittings. Until this point, every proof works under the existence
of a fully supported invariant Borel probability measure μ assumption instead of a
volume-preserving assumption. Under the volume-preserving assumption, we conclude
that, for all hyperbolic elements γ ∈ �, α(γ ) is an Anosov diffeomorphism. In §4.3, using
the Franks–Newhouse theorem in the case of SL and the Brin–Manning theorem in the
cases of Sp and SO, we deduce that M is a torus or infra-torus. This gives a proof of
Theorem 1.5.

4.1. Nullity of ι−1(0). The following lemma says the set ι−1(0) is a null set under our
assumptions so that we can assume that there is no π0 and κ0.
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LEMMA 4.1. Under the same notation and assumptions as in Theorem 1.5, we can find
a measurable section σ : M → P and a measurable map ι : M → {1, 2} such that for μ

almost every x, every γ ∈ �,

Dx(α(γ ))σ (x) = ±σ(α(γ )(x))πι(x)(γ )

for μ almost every x ∈ M and every γ ∈ �.

Proof. We fixed a standard inner product on V = R
d . To obtain a contradiction, suppose

that ι−1(0) has positive μ measure.
As π0 is the trivial representation, for any n ≥ 0 and μ-almost every x ∈ ι−1(0), we

have

Dx(α(γ n
0 ))σ (x) = σ(α(γ n

0 )(x))K0(γ
n
0 , x), (1)

where K0 : � × ι−1(0) → κ0 is the compact group valued cocycle.
For any c > 0, define

Sc = {x ∈ ι−(0) : x satisfies equation (1) and ‖σ(x)‖, ‖σ(x)−1‖ < c},
where ‖σ(x)‖ is the operator norm of σ(x) : V → TxM with respect to standard norm on
V and the Riemannian metric on TxM . Note that Sc ⊂ M is measurable. Since we assumed
that μ(ι−1(0)) has positive measure, we can find sufficiently large number C0 > 0 such
that

μ(SC0) > 0.

Using the Poincaré recurrence theorem for the measure-preserving transformation
α(γ0), for μ-almost every x0 ∈ SC0 , one can find a sequence {nk}k∈N ⊂ N such that:
(1) n0 = 0, nk → ∞ as k → ∞;
(2) equation (1) holds; and
(3) for all k ≥ 0,

‖σ(α(γ
nk

0 )(x0))‖ < C0 and ‖σ(α(γ
nk

0 )(x0))
−1‖ < C0.

Fix x0 ∈ SC0 and the sequence {nk} as above.
For any unit vector v ∈ E, set vV = σ(x)−1(v) ∈ V . Using equation (1) and the bound

of σ , we get

1
C0

‖vV ‖ < ‖Dx0(α(γ
nk

0 )(v)‖ = ‖σ(α(γ
nk

0 )(x0))K0(γ
nk

0 , x0)(vV )‖ < C0‖vV ‖.

This implies

lim
k→∞

1
nk

ln ‖Dx0(α(γ
nk

0 ))(v)‖ = 0.

Similar arguments can be applied for all unit vectors in F so that we have

lim
k→∞

1
nk

ln ‖Dx0(α(γ
nk

0 ))(v)‖ = lim
k→∞

1
nk

ln ‖Dx0(α(γ
nk

0 )(w)‖ = 0

for any unit vector v ∈ Ex0 and for all w ∈ Fx0 .
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However, as γ0 ∈ � admits a dominated splitting, for all x ∈ M , there is a positive λ > 0
such that[

lim
k→∞

1
nk

ln ‖Dx(α(γ
nk

0 ))(v)‖
]

−
[

lim
k→∞

1
nk

ln ‖Dx(α(γ
nk

0 )(w)‖
]

< −λ.

This gives a contradiction.

4.2. Continuity of the projectivized measurable framing. In this section, we modify
and extend ideas in [KLZ96] (see also [BRHW17, §8.3]). We continue to use the same
notation as in the previous section. We fixed V = R

d and identified the fiber of the frame
bundle P over M at x with the set of linear isomorphisms from V to TxM . Let us denote by
P the projective frame bundle over M. Each fiber is naturally identified with PGL(V ). We
will use the bracket notation [−] for the projectivization of a linear map.

As we discussed in §2.2, π1 is not isomorphic to π2 only in the case of SL. In this
case, the measure μ can be decomposed into μ = μ1 + μ2 where μ1(ι

−1(1)) = 1 and
μ2(ι

−1(2)) = 1 unless μ = μ1 or μ = μ2. We denote by X1 and X2 the support of μ1 and
μ2, respectively. Note that X1 and X2 are α(�) invariant compact set with M = X1 ∪ X2

since μ is fully supported on the compact manifold M. When μ = μ1 or μ = μ2, set
X2 = ∅ or X1 = ∅, respectively. When π1 = π2, set X1 = M and X2 = ∅.

PROPOSITION 4.2. (Continuity of the projectivized measurable framing) Let G, �, M,
and d be as in Notation 1.2. Let α : � → Diff1(M) be a C1 action and μ be a α(�)

invariant fully supported Borel probability measure on M. Assume that there is an element
γ ∈ � such that α(γ ) admits a dominated splitting. Then, there are continuous sections
Ci : Xi → P to the projective frame bundle over M on each Xi for i ∈ {1, 2} such that

[Dxα(γ )]Ci (x) = Ci (α(γ )(x))[πi(γ )]

for any x ∈ Xi and γ ∈ �.

Enumerate elements of � into � = {γ0, γ1, . . .}, where γ0 is the distinguished element
where α(γ0) admits dominated splitting. Then, for all γj ∈ �, α(γjγ0γ

−1
j ) also admits

dominated splitting. More precisely, there is Cj > 0 and λ > 0 such that

T M = Ej ⊕ Fj ,
‖Dx(α(γjγ

n
0 γ −1

j ))(v)‖
‖Dx(α(γjγ

n
0 γ −1

j ))(w)‖ < Cje
−λ,

for all x ∈ M , unit vectors v ∈ Ej , w ∈ Fj , and n ≥ 0. Note that Ej = α(γj )E and
Fj = α(γj )F . In particular, dim Ej and dim Fj do not depend on j. Let us denote
dim Ej = s and dim Fj = u.

Let C : M → P denote the projectivization of the measurable section σ in Lemma 4.1.
Note that the map C is just measurable a priori. Lemma 4.1 says that the derivative is
(measurably) conjugate to the representation π1 or π2 up to ±IV . Therefore, there are
non-trivial subspaces W

j

E,1, W
j

E,2, W
j

F ,1, and W
j

F ,2 in V such that, for μ-almost every (a.e.)
x ∈ M , we have

C(x)W
j

E,1 = E
j
x , C(x)W

j

F ,1 = F
j
x for a.e x ∈ ι−1(1)
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and

C(x)W
j

E,2 = E
j
x , C(x)W

j

F ,2 = F
j
x for a.e. x ∈ ι−1(2).

Furthermore, W
j
E,∗ and W

j
F ,∗ are corresponding subspaces for the dominated splitting

of the linear map π∗(γj γ0γ
−1
j ) on V for ∗ ∈ {1, 2}. Therefore, W

j
E,∗ = π∗(γj )W

0
E,∗ and

W
j
F ,∗ = π∗(γj )W

0
F ,∗ for any j and ∗. Note that for all j, we have dim W

j

E,1 = dim W
j

E,2 = s

and dim W
j

F ,1 = dim W
j

F ,2 = u.
Let Gr(V , s) and Gr(V , u) denote the Grassmannian varieties of dimension s and u

subspaces in V, respectively. We have the standard algebraic GL(V ) actions on Gr(V , s)

and Gr(V , u).

LEMMA 4.3. We can find m ≥ 0 such that

m−1⋂
j=0

StabGL(V )(W
j
E,∗) ⊂ R

× · {IV } and
m−1⋂
j=0

StabGL(V )(W
j
F ,∗) ⊂ R

× · {IV }

for each ∗ ∈ {1, 2}. Here, for a subspace W in V, StabGL(V )(W) is the stabilizer of W in
GL(V ) for the linear action on V by GL(V ). When we define StabPGL(V )(W) similarly,

m−1⋂
j=0

StabPGL(V )(W
j
E,∗) =

m−1⋂
j=0

StabPGL(V )(W
j
F ,∗) = {[IV ]}.

Proof of Lemma 4.3. For simplicity, denote Stab for StabGL(V ). Define for each ∗ ∈ {1, 2},

SE,∗ =
∞⋂

j=0

Stab(W
j
E,∗) =

∞⋂
j=0

Stab(π∗(γj )W
0
E,∗) =

∞⋂
j=0

π∗(γj )Stab(W 0
E,∗)π∗(γj )

−1.

We first claim that SE,∗ is contained in R
× · {IV }. Since � is Zariski dense in G by Borel

density theorem [Bor60], we have

SE,∗ =
⋂
g∈G

π∗(g)Stab(W 0
E,∗)π∗(g)−1.

This implies that SE,∗ is normalized by π∗(G). Note that SE,∗ is an algebraic group defined
over R as it is defined by intersection of stabilizers of the algebraic action. Recall that for
the case SL, we assumed that

π1(G) = π2(G) = SL(V ).

For the case Sp, as in §2.1, we put the symplectic form ω on V so that

π1(G) = π2(G) = Sp(V , ω).

Finally, for the case SO, as in §2.1, we put the quadratic form Q with signature (0, n, n) on
V so that

π1(G) = π2(G) = SO(V , Q).
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By Lemma 3.1, SE,∗ contains π∗(G) or is contained in R
× · {IV }. As π∗ is irreducible,

because of dimension considerations, SE,∗ should be contained in R
× · {IV }. This proves

the claim. We can define and argue similarly for SF ,∗ so that we have

SF ,∗ =
∞⋂

j=0

Stab(W
j
F ,∗) ⊂ R

× · {IV }.

Here, Stab(W
j
E,∗), Stab(W

j
F ,∗), SE,∗, and SF ,∗ are all real algebraic groups as they

are defined by the stabilizer or the intersection of stabilizers of the algebraic action. By
Noetherian property, in all cases, we can find m ≥ 1 such that

SE,∗ =
m−1⋂
j=0

Stab(W
j
E,∗), SF ,∗ =

m−1⋂
j=0

Stab(W
j
F ,∗)

for each ∗ ∈ {1, 2}.
From now on, we fix m as in Lemma 4.3. Let Gr(s) and Gr(u) be the Grassmannian

bundle over M that consists of dimension s and u subspaces of the tangent space,
respectively. Let Gr(TxM , s) be the fiber of Gr(s) at x ∈ M . We have the linear action
of PGL(TxM) on Gr(TxM , s)m × Gr(TxM , u)m for each x ∈ M . Recall that we identify
the fiber of P at x as PGL(TxM). This leads to defining maps 
0∗ for each ∗ ∈ {1, 2} as


0∗ : P → ((Gr(s)m) × (Gr(u)m))


0∗(x, [px]) = (x, ([px](W 0
E,∗), . . . , [px](Wm−1

E,∗ )), ([px](W 0
F ,∗), . . . , [px](Wm−1

F ,∗ ))).

LEMMA 4.4. With the above notation, 
0∗ is a smooth injective local embedding.
Furthermore, the inverse map (
0∗)−1 defined on 
0∗(P ) is continuous.

Proof of Lemma 4.4. This appears in [KLZ96, Proof of Lemma 2.3] and [BRHW17,
p. 953]. For the convenience of the reader, we sketch the proof here.

Note that PGL(TxM) actions on Gr(TxM , s) and Gr(TxM , u) are algebraic, so that the
map 
0∗ is an algebraic map between fibers. As 
0∗ is identity on the base, it is smooth.

For linear PGL(V ) actions on Gr(V , s) and Gr(V , u), Lemma 4.3 implies that the
common stabilizer of {Wj

E,∗}j is trivial as well as for the common stabilizer of {Wj
F ,∗}j .

Furthermore, the orbit of PGL(V ) is locally closed as the action is algebraic. Combining
these facts with the inverse function theorem, the map 
0∗ is injective local embedding and
the inverse map is continuous on 
0∗(P ).

Now we are ready to prove Proposition 4.2.

Proof of Proposition 4.2. Recall that we denoted m as in Lemma 4.3.
Define the map

τ : M → ((Gr(s)m) × (Gr(u)m))

τ (x) = (x, (E0
x , . . . , Em−1

x ), (F 0
x , . . . , Fm−1

x )).

As the splitting is continuous, we know that the map τ is continuous.
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Let us denote by U∗ the image of 
0∗ for each ∗ ∈ {1, 2} and U = ⋃
∗∈{1,2} U∗. We

denoted the measurable section C : M → P as the projection of σ that comes from
Lemma 4.1. For μ-almost every point x ∈ τ−1(U), we have

τ(x) = 
0∗(C(x)),

where ι(x) = ∗. As μ is fully supported, there is M0 ⊂ τ−1(U) so that:
(1) μ(M0) = 1 (in particular, M0 is dense in M); and
(2) for all x ∈ M0, we have

τ(x) = 
0∗(C(x)),

where ι(x) = ∗ ∈ {1, 2}.
First, we claim that τ(M) ⊂ U . To get a contradiction, assume that M �= τ−1(U). Then,

for any x0 ∈ M \ τ−1(U), we can find a sequence {xn}n∈N ⊂ M0 so that xn → x0 as
n → ∞. We may assume that ι(xn) = 1 or 2 for all n after passing to a subsequence.
For simplicity of notation, denote ι(xn) = ∗ for all n.

As xn ∈ M0 for any n, we have

τ(xn) = 
0∗(C(xn)).

We use a local trivialization of the fiber bundle P at x0. That is, there is an open
neighborhood O of x0 and a homeomorphism ϕ : O × GL(V ) → P |O, such that ϕ(x, ·)
is identity, using the trivialization TO � O × V , for each x ∈ O. Here, ϕ induces the
trivialization of the projective fiber bundle over O as ϕ : O × PGL(V ) → P |O that is a
homeomorphism and the identity map from PGL(V ) to P x for all x ∈ O the same as ϕ.
Let us denote by ϕy the linear isomorphism ϕy = ϕ(y, ·) : GL(V ) → Py for y ∈ O.

For sufficiently large n, we may assume that xn ∈ O. Then we can find sequence gn ∈
GL(V ) such that:
(1) {‖gn‖}n∈N is bounded; and
(2) ϕ(xn, [gn]) = C(xn).

Passing to a subsequence, we can find an endomorphism L on V, or equivalently, matrix
L ∈ MV (R) so that gn → L as n → ∞. If L ∈ GL(V ), then using continuity of τ and 
0∗,

τ(x0) = lim
n→∞ τ(xn)

= lim
n→∞ 
0∗(C(xn)) = lim

n→∞ 
0∗(ϕ(xn, [gn]))

= 
0∗(ϕ(x0, [L])).

This contradicts our assumption that x0 ∈ M \ τ−1(U). Therefore, L /∈ GL(V ) so that we
will denote by K and R the non-trivial subspaces

K = ker L and R = L(V ) ⊂ V

in V.
The following lemma allows us to make Wl

E,∗ and Wl
F ,∗ be in general position with K.
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LEMMA 4.5. There is a γl ∈ � so that

π∗(γl)W
0
E,∗ = Wl

E,∗ and π∗(γl)W
0
F ,∗ = Wl

F ,∗
are in general position with K.

We will prove Lemma 4.5 later. As a Grassmannian variety is compact, passing to a
subsequence, we may assume that

gnW
l
E,∗ → QE , gnW

l
F ,∗ → QF as n → ∞

for some QE ∈ Gr(V , s) and QF ∈ Gr(V , u).
Let W be the subspace of V = R

d which is in general position with respect
to K and gnW converges to W0 in the appropriate Grassmannian variety. Then, if
dim W + dim K < d, then W ∩ K = {0} and W0 = limn→∞ gnW = L(W) ⊂ L(V ) =
R. Otherwise, we have dim W + dim K ≥ d , in which case, K + W � V = R

d , and
hence W0 = limn→∞ gnW ⊃ L(V ) = R. We can apply these arguments to QE =
limn→∞ gnW

l
E,∗ and QF = limn→∞ gnW

l
F ,∗ since, by Lemma 4.5, Wl

E,∗ and Wl
F ,∗

are in general position with respect to K. Then, either QE , QF ⊂ R, QE ⊂ R ⊂ QF ,
QF ⊂ R ⊂ QE , or R ⊂ QE , QF . In any case, QE and QF are not transversal.

Let continuous maps τE : M → Gr(s) and τF : M → Gr(u) be given by

τE(x) = El
x , τF (x) = F l

x

using the existence of the dominated splitting of α(γlγ0γ
−1
l ) and the continuity of the

splitting TxM = El
x ⊕ F l

x . By construction, we have

τE(xn) = ϕ−1
xn

(gnW
l
E,∗), τF (xn) = ϕ−1

xn
(gnW

l
F ,∗).

Using continuity of τE and τF , we can deduce that

τE(x0) = ϕ−1
x0

(QE), τF (x0) = ϕ−1
x0

(QF ).

In particular, QE and QF are transversal since TxM = El
x0

⊕ F l
x0

. This contradicts the
fact that QE and QF are not transversal. Therefore, if x ∈ M is the limit of a sequence
{xn}∞n=1 ⊂ ι−1(i) ∩ M0, then τ(x) ∈ Ui for all i ∈ {1, 2}. As M is connected, we prove
that M = τ−1(U).

Recall that μ can be decomposed into μ = μ1 + μ2, where μ1(ι
−1(1)) = 1,

μ2(ι
−1(2)) = 1 unless μ = μ1 or μ = μ2. We denoted X1 and X2 by the support of

μ1 and μ2, respectively. As μ is fully supported, M = X1 ∪ X2.
Define the map C1 : X1 → P and C2 : X2 → P ,

C1(x) = (
0
1)

−1 ◦ τ(x), C2(y) = (
0
2)

−1 ◦ τ(y)

for all x ∈ X1 or y ∈ X2, respectively. In the above discussions, we proved not only
M = τ−1(U) but also C1 and C2 is well defined on X1 and X2, respectively. Furthermore,
C1 and C2 are continuous by Lemma 4.4 and

C(x) = C1(x) = (
0
1)

−1 ◦ τ(x),

C(y) = C2(y) = (
0
2)

−1 ◦ τ(y)
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for all x ∈ ι−1(1) ∩ M0 and y ∈ ι−1(2) ∩ M0. Therefore,

[Dxα(γ )]Ci (x) = Ci (α(γ )(x))[πi(γ )]

for all γ ∈ �, for all x ∈ Xi , and for all i ∈ {1, 2}. This proves the proposition.

We prove Lemma 4.5 here.

Proof of Lemma 4.5. Note that

UE,∗ = {g ∈ π∗(G) : gW 0
E,∗ is in general position with K},

and

UF ,∗ = {g ∈ π∗(G) : gW 0
F ,∗ is in general position with K}

are Zariski open subsets for any ∗ ∈ {1, 2}.
In the case of SL, as SL(V ) acts transitively on Gr(s) and Gr(u), UE,∗ and UF ,∗

are non-empty Zariski open subsets. Therefore, the intersection UE,∗ ∩ UF ,∗ is also a
non-empty Zariski open subset as SL(V ) is an irreducible variety. As � is Zariski dense
in G, by the Borel density theorem, we can find γl ∈ � so that π∗(γl)W

0
E,∗ = Wl

E,∗ and
π∗(γl)W

0
F ,∗ = Wl

F ,∗ are in general position with K.
In the cases of Sp and SO, using Corollaries 3.7 and 3.11, respectively, we have

UE,∗ = {g ∈ π∗(G) : gW 0
E,∗ is in general position with K} �= ∅.

Therefore, U0
E,∗ is non-empty Zariski open in π∗(G). Similarly,

UF ,∗ = {g ∈ π∗(G) : gW 0
F ,∗ is in general position with K}

is a non-empty Zariski open subset in π∗(G). Using irreducibility of π∗(G), we know that
U0

E,∗ ∩ U0
F ,∗ is also a non-empty Zariski open subset. Again using the fact that � is Zariski

dense in G, there is γl ∈ � such that π∗(γl)W
0
E,∗ = Wl

E,∗ and π∗(γl)W
0
F ,∗ = Wl

F ,∗ are in
general position with K.

Now, using the volume-preserving assumption, we can find lots of Anosov diffeomor-
phims. Recall that, using Theorem 3.2, we can find a finite index subgroup �0 in � and a
maximal R-split torus A in G such that A = A ∩ �0 is a cocompact lattice in A.

PROPOSITION 4.6. (Abundance of Anosov diffeomorphisms) Let G, �, M, and d be as
in Notation 1.2. Let α : � → Diff1

Vol(M) be a C1 volume-preserving action. Assume that
there is γ0 ∈ � such that α(γ0) admits dominated splitting. Then every hyperbolic element
γ ∈ �, especially γ ∈ A, is an Anosov diffeomorphism.

Proof. Using Proposition 4.2 for the measure with positive density, we can find continuous
sections to projective frame bundle over M on each Xi , Ci : Xi → P for i ∈ {1, 2} such that

[Dxα(γ )]Ci (x) = Ci (α(γ )(x))[πi(γ )]
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for any x ∈ Xi and γ ∈ �. As we assumed α(�) preserves volume, for any γ ∈ � and for
each i ∈ {1, 2}, there is a continuous map C̃i : Xi → [P/{±I }]|Xi

such that for all x ∈ Xi ,

Dxα(γ )C̃i (x) = C̃i (α(γ )(x))πi(γ ). (2)

Here, we use the facts that the Jacobian determinant of Dxα(γ ) is ±1 and the determinant
of πi(γ ) is always 1.

For any hyperbolic element γ ∈ �, denote Es
π1(γ ) and Eu

π1(γ ) by the direct sum of gener-
alized eigenspaces corresponding to an eigenvalue less than 1 and bigger than 1 of π1(γ ),
respectively. Here, Eu

π2(γ ) and Eu
π2(γ ) can be defined similarly. We have decomposition

V = Es
π1(γ ) ⊕ Eu

π1(γ ) = Es
π2(γ ) ⊕ Eu

π2(γ )

with respect to π1(γ ) and π2(γ ), respectively. Then, we can define a splitting

TxM|X1 = C1E
s
π1(γ ) ⊕ C1E

u
π1(γ ),

TxM|X2 = C2E
s
π2(γ ) ⊕ C2E

u
π2(γ )

which is continuous on X1 and X2, respectively.
Using equation (2), we know that exponential growth of Dxα(γ n) and πi(γ

n) is
compatible so that there are constants C′ > 0, 0 < λ < 1 such that

‖Dxα(γ n)vs
i ‖ < C′λn, ‖Dxα(γ −n)vu

i ‖ < C′λn

for all x ∈ Xi , vs
i ∈ CiE

s
πi(γ ), vu

i ∈ CiE
u
πi(γ ), and n > 0. This shows that α(γ ) is an

Anosov diffeomorphism.

Remark 4.7. The proof shows that the dimension of stable distribution for α(γ ) is the same
as the dimension of Es

π1(γ ) or Es
π2(γ ). The same holds for the unstable distribution.

Remark 4.8. As the referee pointed out, even if we assumed the existence of a fully sup-
ported invariant Borel probability measure instead of the volume-preserving assumption
for instance, we still conclude the following with the similar argument with the proof of
Proposition 4.6. Under the same assumptions, let γ ∈ � be an element so that, in the
standard representation, it has simple eigenvalues. That is, it is C diagonalizable and every
eigenspace is a one-dimensional subspace. Then, α(γ ) admits a fine dominated splitting
into one-dimensional distributions.

4.3. Characterizing the manifold M. We characterize M in this subsection. We prove
that M is a torus or a flat manifold in the cases of SL, Sp, and SO under the assumptions
in the theorem.

4.3.1. Case SL. Theorem 3.2 implies that there is a subgroup �0 and a maximal R-split
torus A such that A = A ∩ �0 � Z

n−1 is a lattice in A � R
n−1. Up to conjugacy, we may

assume that the maximal R-split torus A in the Theorem 3.2 is of the form:

A = {diag(eλ1 , . . . , eλn) : λ1, . . . , λn ∈ R, λ1 + · · · + λn = 0}.
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We define a one-parameter subgroup {aλ} = {diag(e(n−1)λ, e−λ, . . . , e−λ) : λ ∈ R}
which makes a line in A � R

n−1.
We know that in the torus A/A � R

n−1/Zn−1, the image of irrational line is dense.
Therefore, there are elements of A � Z

n−1 either on the line {aλ} (when the line is rational)
or arbitrarily close to it (when the line is irrational). This implies that we can find γ ∈ A =
A ∩ �0 such that γ is a semisimple hyperbolic element such that every eigenvalue is a
positive real number and only one eigenvalue is bigger than 1. Proposition 4.6 implies
that α(γ ) is a codimension one Anosov diffeomorphism. Therefore, the manifold M
is homeomorphic to the torus due to the Franks–Newhouse Theorem 2.2. This proves
Theorem 1.5 in the case of SL.

4.3.2. Cases Sp and SO. Up to conjugacy, we may assume that the maximal R-split
torus A in the Theorem 3.2 is of the form:

A = {diag(eλ1 , . . . , eλn , e−λn , . . . , e−λ1) : λ1, . . . , λn ∈ R≥0}.
We can give a metric on A so that A is isometric to R

n using the similar argument as in the
case of SL.

For each positive real number λ ∈ R>0, define an element aλ ∈ A as

aλ = diag(λ, . . . , λ︸ ︷︷ ︸
n

, λ−1, . . . , λ−1︸ ︷︷ ︸
n

).

Again, note that A = A ∩ �0 � Z
n is a lattice in A � R

n. Using the same arguments
as above, there are elements of A � Z

n either on the line {aλ} or arbitrarily close to it.
Therefore, we can find γ ∈ A = A ∩ �0 such that eigenvalues eλ1 > eλ2 > · · · > eλn >

1 > e−λn > · · · > e−λ1 of γ ∈ �0 satisfy the inequality

1 + λn

λ1
>

λ1

λn

, 1 + λn

λ1
>

λ1

λn

as the above inequality holds if all λi are close to each other.
For such γ ∈ �0, Proposition 4.6 says that α(γ ) is an Anosov diffeomorphism.

Furthermore, the above inequalities show that it satisfies conditions in the Brin–Manning
Theorem 2.3. Therefore, M is homeomorphic to a torus or a flat manifold. In particular,
there is a finite cover M0 of M so that M0 is homeomorphic to a torus. This proves
Theorem 1.5 in the cases of Sp and SO.

5. Proof of Corollary 1.8
In this section, we prove Corollary 1.8, topological rigidity and smooth rigidity. Retaining
the notation in the Corollary 1.8, Theorem 1.5 says that there is a finite cover M0 of M, so
that M0 is homeomorphic to the d-dimensional torus Td = R

d/Zd . Recall that we assumed
that there is a finite index subgroup �0 < � such that we can lift �0 action to M0.

To see that there is a C0 conjugacy, we will use the theorems in [BRHW17] for M0.
We denote the lifted �0 action on M0 as α1. Note that �0 is still a lattice in G. We can
find a hyperbolic element γ ∈ �0. As we assumed the action is volume preserving, there
is a fully supported Borel probability measure μ0 on M0 that is preserved by α1(�0).
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The [BRHW17, Proposition 9.7] implies that the action α1 lifts to the universal cover of
M̃ . Using [BRHW17, Theorem 1.3], we can deduce that there is finite index subgroup
�1 < �0 so that α1|�1 is topologically conjugate to its linear data ρ1 of α1. Indeed, the
α1(γ ) is an Anosov diffeomorphism so that we have topological conjugacy h, that is,

ρ1(γ ) ◦ h = h ◦ α1(γ )

for all γ ∈ �1. This proves that there is a C0 conjugacy between α1 and ρ1 as in
Corollary 1.8.

Remark 5.1. After we know that the M0 is homeomorphic to the torus and the action
lifts to the universal cover, one can also use [MQ01, Theorem 1.3] to get a topological
conjugacy.

For the smooth conjugacy, we need to use the theorems in [RHW14]. Now, we assumed
α is C∞. We will prove the C0 conjugacy that we already found as above is indeed smooth.
We know that for every non-identity hyperbolic element in γ ∈ �2, α1(γ ) is an Anosov
diffeomorphism. Again, using [PR01], we can find free abelian subgroup Z of rank 2 in
�2 such that every non-identity element z ∈ Z is hyperbolic. This implies that the linear
data ρ1|Z does not have rank one factor. (See [RHW14, Lemma 2.9].) So we can deduce
that the h is indeed smooth due to [FKS13] or [RHW14]. This proves smoothness of the
conjugacy so that completes the proof of Corollary 1.8.
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