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STABILITY OF LINEAR DELAY EQUATIONS
UNDER A SMALL NOISE

by S. E. A. MOHAMMED

(Received 11th March 1985)

1. Introduction

The stochastic stability of linear systems driven by white noise has been treated by
several authors e.g. Has'minskii [7], Kushner [11], Kleimann and Arnold [9], Pinsky,
[14], Friedman and Pinsky [4], Ito and Nisio [8], Mohammed [13]. Following R.
Kubo [10, 1966], the Brownian movement of a molecule in a "heat bath" is modelled in
[13, pp. 223-226] by an asymptotically stable linear f.d.e. which is forced by white noise.

In this paper, we intend to show that global asymptotic stability to an absorbing state
persists under an input noise which has a small amplitude or a short distributed
memory.

2. Preliminaries

Consider several delays dud2,...,dq,r such that 0^dt^r for i = l,2,...,q. Let J =
[ — r, 0] and take as state space the Banach space C = C(J, W) of all continuous paths
rj-.J-^W given the supremum norm

||>/||c = sup{|?7(s)|:s6J}.

On IR", | | stands for the Euclidean norm.
Suppose H:C->W is a continuous linear map such that for the deterministic linear

retarded f.d.e.

t>0

yt(s) = y(t + s), seJ, t>0 (1)

the zero solution is globally asymptoticaly exponentially stable viz. the segment y,eC
satisfies

| | | | « | | i , | | c ( 2 )

for some constants K, a > 0 and all r\ e C, t ̂  0.
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234 S. E. A. MOHAMMED

Denote by L(Rm, W) the space of all linear maps A:Um-*W given the operator norm

||/l|| = sup{|yl(t>)|:t;eRm,|i;| = l}.

For each complex number AeC, define 8(X)eL{W) by

for all v e IR". Then H is globally asymptotically exponentially stable if and only if all
solutions of the characteristic equation

det(5(A) = O

have negative real parts. (Hale [5, pp. 165-190.])
We are also given globally Lipschitz maps gt: W-*L(Rm, U"), l^i^q and q

independent m-dimensional Brownian motions w': R-° xQ->IRm, l^i^q, all carried by
the same filtered probability space {Q,^,(^t)t^0,P), with w'(0) = 0, l<,i^q.

It is known that for each r\ e C the stochastic f.d.e.

{ dx(t) = H{xt) dt+t gMt - dd) dW{t), t > 0,

possesses a path-wise unique sample-continuous solution "x:[ — r, oo)xQ->(R'' adapted
to the filtration ( J ^ o (Mohammed [13, Theorem II.2.1, pp. 36-40]). Observe that in
(3), for each t^O, the segment x,:J xfi-»i" is the continuous process x,(s, co) =
x(t + s,a>), seJ, coeQ. Indeed the trajectory field {'x,:t^0,tjeC} gives a continuous
C-valued Feller process (Mohammed [13, Chapter III]). An absorbing state for this
Feller process is a path ^°eC such that P("°xt = f/°) = 1 for every tjgO. Thus j/°eC is an
absorbing state for the stochastic f.d.e. (3) if and only if T/° is constant and

tf(>70)=o, irMo))=o (4)

for all l^i^q (Mohammed [13, pp. 111-112]). Indeed, every absorbing state r\° must
satisfy

a.s. for all t ̂  0. From the independence, mean and covariance properties of w', i = 1,2,..., q,
we easily conclude that H(r}°) = 0, g;(>7o(0))=0 for every l^i^q.

Define />0 by

/= max it
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Our main objective in this article is to show that, for sufficiently small values of the
Lipschitz constant /, the stochastic f.d.e. (3) has at most one absorbing state which must
be globally exponentially asymptotically stable in the mean:

Theorem 1.1. Suppose

Then the stochastic f.d.e. (3) has at most one absorbing state. Further, ifr\° is an absorbing
state, then there are constants, M, y > 0, depending only on K, a, /, m, n, q, dh and r such
that

E\"x(t)-no(0)\2^M\\r,-r,%e-" (6)

for all t^O and aline C.

The proof of the above theorem turns upon a stochastic variation of parameters
formula which we shall develop in the next section. The main idea is to construct a
suitable version of a stochastic Pettis integral with values in the Banach space C.

3. Stochastic variation of parameters: Stochastic Pettis integral

Consider the stochastic f.d.e.

= H(zt)dt+g{t)dw(t), t>0

Here H:C^U" is any continuous linear map and g:M-° x£l->L(Mm, W) is a measurable
(^,)(g0-adapted process such that, for every a>0, |o£||g((, )||2dt<QO.

Let T,:C-*C, t^O, denote the semi-flow of the linear r .f.d.e. H, viz.

yt, t^O, neC. (8)

By solving the r.f.d.e. (1) for bounded Borel-measurable n:J->W it is easily seen that
each T, extends naturally to a continuous linear operator denoted also by T,:B-*B on
the Banach space B = B(J, U") of all bounded Borel-measurable paths J-»Rn, furnished
with the supremum norm.

When g is a deterministic locally square integrable function U-°-*L(Um, W), it is
known that

z< = Tit,) +} t-.Ag(u) dw(u), t>0, (9)

where A = X{0)'dR», xm is the characteristic function of {0} in B and
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236 S. E. A. MOHAMMED

f,:B(J, L(Um,W))->B(J, L(Um, W)), t^O, is the canonical semi-flow induced by T,, t^O.
Observe that, if n is continuous, the stochastic integral in (9) belongs almost surely to C.
More generally a stochastic Pettis integral can be defined for B-valued integrand
processes as follows:

Definition (Stochastic Pettis Integral)

Let O^a^b and F:[a,b]xQ->B(J,L(nm,Mn)) be a measurable map such that for
each seJ, the process F(-,-)(s) is {^,)a^,^(.-adapted and JJ||F(f,-)(s)||2dt<oo a.s. Define
the stochastic integral $ F(t) dw(t): J xf i -R" by {jb

aF(t)dw(t)}(s) = ̂ aF(t,-){s)dw(t), seJ.
For deterministic forced linear f.d.e.'s the variation of parameters formula is well

known (Hale [5], Hale and Meyer [6]). Formula (9) is obtained in [13], through joint
work with H. v. Weizsacker and M. Scheutzow, by establishing a stochastic version of
the deterministic formula. In what follows, we contend that the stochastic variation of
parameters formula (9) still holds if g is allowed to be a measurable stochastic process
RisOxfi->L([Rm, W) such that \"0E\\g{t,-)\\z dt<<X) for any a>0. To prove this we need
several lemmas.

A two-parameter process can be approximated by a sequence of "rectangular-step"
processes:

Lemma 1. Let a^O. Suppose f: J x [0, a] x Q->R is a measurable process such that

(i) / has almost all sample functions J x [0, a]-»IR bounded and Borel-measurable;
(ii) for each seJ, f(s, •, ):[0, a] xQ-*U is
(iii)

Let v be a finite Borel measure on J with total variation v(v). Then there is a sequence
of step processes fn:J x [0, a] x Q-»IR, n"^. 1, each satisfying properties (i), (ii), (iii) and

lim J J E\fn.(s, t, ) - / ( s , t, ^MvKds) dt = O.
n'—oo 0 J

Every fn, takes the form

f j] h^xj.^xdt), seJ, te[0,a],

coed, where {Ji}f=1, {IJ}'J=I are finite partitions of J and [0,a] consisting of disjoint
intervals, and each /io-e£2(Q, U; j

Proof. Let / satisfy the given conditions (i), (ii) and (iii). Therefore / can be viewed
as a measurable, (^j)Og,ga-adapted, £2(J, R; u(v))-valued process

defined by

?(t,co)(s)=f(s,t,<o), co eQ, te[0,al seJ.
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STABILITY OF LINEAR DELAY EQUATIONS 237

By a classical argument—suitably adapted for vector valued processes—it is not hard to
see that there is a sequence {/„-}"=! of (J^o^^-adapted step processes /n:[0,a] x
fi-*£2(J, 5R; v(v)) such that

n'-»oo 0

(cf. Friedman [3, pp. 56-59]). Indeed take each

/„.(£,co) = £ b/L<D)xtLt), te[0,a],

where /, = [«,-, tj+1), 0 = ^ <t2<--- < t , + 1 =a and b,e£2(fi,£2(J, U;u(v)); J^p, lgj 'g/.
Now identify every bj with a (Borel J®2F,., Borel IR)-measurable process by.J x£l->M
belonging to £2( J x fi, R; u(v) ® P) (Dunford and Schwartz [1, pp. 196-200]). Hence
there is a sequence {bjk}™= x of Borel J ® ^-measurable step processes such that

lim j£ |b / V ) -Mv) | 2 » (v) (ds )=0
k-«oo J

VIZ.

(s,tu) = £ aijk(co)xj.{s), seJ, toed,

where aOk e £2(fi, R; J^p, and {J,}f= t is a partition of J consisting of disjoint intervals.
Define the family of step processes {/„•*: H', fe^ 1} by

Lk(s,t,<o)= X £ aifl{o})x4s)xi(t), coeCl, seJ, te[0,a].

Then for each fixed n'^ 1, we have

II
I

7 = 1

->0 as

s, t, -
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238 S. E. A. MOHAMMED

Indeed, let e>0. Then there exist no = no(e)>O and ko = ko(E) such that

o J

and

J J E\f(s, t, •) -fno(t, -)(s)\2v(y)(ds) dt<e/2

J j E\fno{t, -)(s) -?noko(s, t, -)\2v(v)(ds) dt < 8/2.

Set /c=/„„*„. Then fs is a rectangular step process of the form

i=l j=l

hy = flyko e £2(Q, R; J^.). Moreover

Jj£|/(S,t,O-/.(s,t,-)|2»(v)(is)dt<e.
o J

Note that, for each S E J , /e(s, £, •) is J^-measurable for every te[O, a] To obtain the
required sequence of rectangular-step processes, let e= 1/n' and /n==/i/n-. This completes
the proof of the lemma. |

We now employ the above lemma to show that stochastic differentials commute with
finite Borel measures viz. dw(t)dv(s)=dv(s)dw(t). As a consequence of this, we deduce
that our stochastic integral commutes with continuous linear maps on B:

Lemma 2. Let v and f satisfy the conditions of Lemma 1 and W be one-dimensional
Brownian motion. Then

(i) for each seJ, the ltd integral \a
of(s,t)dw'(t) exists and the process

{Jo/(s> 0 dw'(t): s e J} has a measurable version with almost all sample functions v-
integrable on J, i.e. the integral j ^ Jj /(s, t) dw'(t) dv(s) exists a.s.

(ii) the repeated integral JQ$jf(s,t)dv(s)dw'(t) exists and equals jj^of(s,t)dw'(t)dv(s)
a.s.

Proof. The idea is to prove the lemma for rectangular-step processes and then
approximate—via Lemma 1—in order to cover more general integrands /

First take / to be of the form

f(s, t, o) = 0 M 0 o

coeQ, seJ, fe[0,a], [ao,0o]<=J, [ y 0 A ] £ [0, a], h e £2(fi, U;
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STABILITY OF LINEAR DELAY EQUATIONS 239

Then clearly

f J f(s, t) dw'(t) dv{s) = h[w'(80) - w'(v0)] v[a0, /?<,]= j J /(*>0 dv(s) <M0-
JO 0 J

By additivity of the repeated integral, the lemma holds if / is any rectangular-step
process.

More generally, let / be any process satisfying the conditions of Lemma 1. Select a
sequence of rectangular step process /n.:Jx[O,a]xQ-»R, n'^.1, as described in the
above lemma. By a property of the Ito integral, the repeated integral

Jfl
JQ|

]f(s,t,(o)dw'(t) dP(co)v(v)(ds) = $l E\f(s, t, -)|2 dtv(v)(ds) < oo.
JO

Hence, by Fubini's Theorem (Dunford and Schwartz [1, pp. 190-200]), for a.a. tueQ the
function

is u(v)-integrable. Since u(v) is finite, then the function

J 3 s i-» (a) ] f(s, t, •) dw'(t) e [
o

is v-integrable for a.a. coefi; viz. the process {Jo/(s, t)dw'(t):seJ} has a (unique up-to-
equivalence) measurable version Jxfi-+B with almost all sample functions v-integrable
on J, i.e., $j$a

of(s,t)dw'(t)dv{s)<ao a.s. (Dunford and Schwartz [1, pp. 196-200]).
Because / has bounded Borel-measurable sample functions, the integral Jj /(s, t) dv(s)

exists a.s. for every te[O, a]. Furthermore, for each fe[0, a],

$f(s,t)dv(s)

by Holder's inequality and Fubini's Theorem. So

lf(s,t)dv(s) dt ̂  v(v
0 J

, t)\2v(v)(ds) dt«x>.

Therefore the stochastic integral Ĵ  JJ/(S» 0 dv(s) dw'(t) is well-defined.
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Now look at the expression

J jf(s, t) dv(s) dW{t) - ] J/,.(5, t) dx(s) dW[t)
0 J 0 J

i= lE l{f(s,t)-fn,(s,t)}dv(s)
J

dt

as n'-co

i.e.

f 1 /(s, t) dv(s) dw'(t) = lim J j /„•(*, t) dv(s) dw'(t)
0 J B'->CD 0 J

in£ 2 .
By a similar argument, it is easily seen that

j f f(s, t) dW{t) dv{s) = lim j } /n.(s, t) dw'(t) dv(s).
JO n'-*co J 0

Complete the proof by noting that a.s.

J $fAs, t) dv{s) dw'(t) = J f Ms, t) dw'(t) dv(s)
0 J JO

for every n ' ^ 1 . |

Remark. By reducing to coordinates, the above lemma generalizes immediately to
L{Um, W)-valued /, L(K")-valued v and n-dimensional w'.

Lemma 3. Denote by the same symbol H:B—*W the natural (unique) continuous linear
extension of H:C-*W, obtained via the Riesz representation theorem.

Suppose F:[0, a] xQ->B(J,L(Um, W)) is measurable, (S^i)og,^a-adapted and satisfies the
conditions

(i) sup {||F(r,-)(s)||:te[0, a], seJ}< oo a.s.

(ii)

Let H:B(J,L(Mm, R"))->L(m, W) be the continuous linear map induced by H.
If JS F(t) dw(t) has a.a. sample paths in B, then

a.s.
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STABILITY OF LINEAR DELAY EQUATIONS 241

Proof. By the Riesz representation theorem, H corresponds to a Borel, L(IR")-valued
measure n; viz.

The map H:B(J, L(Um, W))-*L(M'n, R") is induced by H through the formula

t j / c \ / , . \ rrr c/ \/*V\n P *— Tit 1 7 f D"* D**\̂  *•> *— fD'"'

± 1 1 C 11 VI ~~ ± 1 I C l 1 1 1 ' / n C ^ - D l « / • * A u\i . u\S I I . L / C Uw .

Equivalently,

/, L{Um, W)).
It is clear that H is continuous linear, with | |H| |g | |H| | . Since F has almost all sample
paths bounded, then so does the process [0, a ]a t i - f #[F(t)]eL((Rm, R"). Thus the
integral Jo /f [F(t)] dw(i) is well-defined. So by Lemma 2 we get

H J F(t) dw{t) \ = Un(s) \ f F(t) dw(t)} (s) = J dfi(s) J F(t)(s) dw(t)
Lo J J \(.o J / J \o /

a.s. |

Remark. It is not hard to see that each Tt and ft, t > 0, admit representations of the
form

r,sB

I S eB(J, L(Rm, R"))

where v, is a B(J, L((R"))-valued measure. Under the conditions of the above lemma, it
therefore follows that, for each t^O, Jo 7J[F(u)] dw(u) is a version of 7;[|SF(u)dw(w)].

The following lemma is probably well-known. The same symbol %, £^0, is used to
denote the induced semi-flow(s) by Tt, t^O, on B(J, L(Rm, W)) or B(J,

Lemma 4. T/ie semi-flow {7J},g0 satisfies the identities

eB(7,^R' ^ , R-)) (10)

^ 0 , fo = id (11)

- (12)

EM.S—E
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242 S. E. A. MOHAMMED

Proof. Recall that ft and ft, t^O, are defined by

for £eB(J,L(Mm, W)), veUm,seJ. It is easy to see that

(Tt+s(0(0),

Therefore the path

(tt(t;)(O), t>0
[-r, co)sth-> <

Uto, teJ

corresponds to the unique solution of ft through £, because

This proves identity (10).
The semi-group property (11) follows directly from the definition of ft, or

alternatively from the continuation property of the ri.d.e. (10).
It remains to demonstrate (12). Let AeL(Mm, R"), ^e^J.I^R")). Then the path

belongs to B(J, L(Um, W)). Then, for seJ,veUm,

Hence (12) holds, and the proof of the lemma is complete. |

Our final lemma in this section tells us how to "differentiate inside a stochastic
integral sign":

Lemma 5. Let f: [0, a] x [0, a]-*L(Um, W) and its partial derivative (t, u)\-^(d/dt)f(t, u)
be continuous on the triangle T={(t,u):0^u^t^a}. Suppose z is a sample continuous
process such that the stochastic (McShane) integral

= \f{t,u)dz(u), fe[0,a]
o
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STABILITY OF LINEAR DELAY EQUATIONS 243

exists. Then X is a sample continuous semi-martingale and

, 0<t<a. (13)

Proof. Without loss of generality, assume that z(0) = 0 a.s.

Suppose first that / is C2 on the triangle T. Define the process X:[0,a] xQ^R" by

) = \f(t,u)dz(u),
o

We may integrate by parts (Elworthy [2, pp. 79-80]) to get

X(t) = z{t)f(t, t) - j z(u) -?- f(t, u)du, 0 ̂  t g a.
o ou

Taking stochastic differentials gives

^t-z{t)^-u f(t,u)

Using the fact that / is C2 and the Chain Rule, one gets

t) — f{t,
• dt

=f(t, t) dz(t) + j j j t f(t, u) dz(u)\ dt.

To prove the lemma for continuous f with continuous first partial derivative on T,
select a sequence of C2 (or even C00) functions fk: T-+L(Um, W), fc^l, such that

fk(t,u)-+f(t, u)

and

as k-KX> uniformly for (t, u)eT. This can be done as follows: pick two sequences of
smooth functions {^}^=1, {h£}r=i such that hk-{t,u)-+(d/dt)f(t,u) and hj(u,u)^f(u,u) as
fe-*oo, uniformly for (t,u), (u,u). Define the required sequence {/*}"=! by

fk(t,u) = h2
k(u,u)+\hl{v,u)dv, (t,u)eT, fel.
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Now let {Xk}£L j be the sequence of processes

X\t) = J fk(t, u) dz(u), * £ 1, t e [0, a],
o

Then, by what has already been proved,

Xk(t) = J fk(u, u) dz(u) + J | J jj- fk(v, u) dz{u)\ dv (15)

for all te[0, a] and fe^l. But, for each te[O,a],

Sfk(u,u)dz(u)-jf(u,u)dz(u)
2 (
^M]\fk{u,u)-f(u,u)\2du-*0 as/c-+oo

and

f f — fk(v, u) dz(u) dv — f f — f(v, u) dz(u) dv
o o oi; ooov

dudv

' dV ' '

->0 as k-*co,

by uniform convergence, where M > 0 is some constant. Similarly,

•0 as /C-KX>, for each te [0, a].

Therefore, for each te[0,d], we can take £2-limits as fc->oo in (15) to get

X(t) = J /(«, u) df(M) + j j f /(», u) dz(«) d».
o o o oi;

The lemma is proved. |

The way is now clear to prove the stochastic variation of parameters formula for our
stochastic f.d.e. (7):

Theorem 3.1. With the given conditions on H and g, the trajectory of the stochastic
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STABILITY OF LINEAR DELAY EQUATIONS 245

f.d.e. (7) satisfies

(9)
b

where A = x(0)idRn.

Proof. Fix any a > 0. Assume first that for each 1e [0, a], g(t, •) e £2(Q, L(Rm, W)) and
the function

[0,a-]st^E\\g{t,-)\\2eU

is (Lebesgue) a.e. continuous and bounded.
Define the process Y:\_-r,a] xQ-»R" by

Tt(r,)(0) + \{Tt_uAg(u)}(0)dw(u),
o

i(t), teJ.

Then

(17)

Set 2{i) = \'og{u)dw{u), t^O. Then z is a martingale and the map [0, a] 311-» z(t) e 22(Cl, W)
is ^-Holder continuous. Therefore the substitution formula (McShane [12, pp. 134-138])
gives

\ (18)
o

Using Lemma 5 we can take differentials in (18) to get

dY(t) = H(TM) dt + dz(t) + j j t (7J-uA)(0) dz(u) dt

= H(Tt(r,)) dt+g(t) dW(t) + j j H{f,-u*Mu) dw(u)J dt

= H(T,(r,)) dt+g(t) dw(t) + j j HLft-uAg («)] dw(u)\ dt

l Tt_uAg(u)dW(u)\dt+g(t)dW(t), t > 0

where we have used Lemmas 3 and 4.

https://doi.org/10.1017/S0013091500017612 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017612


246 S. E. A. MOHAMMED

Now observe that

Yt=Tt(r,) + \f,-uAgiu)dW(u), t^O; (20)

o

so (19) becomes

= H(YJdt+g(t)dw(t), t>0

i.e., Y is the unique (J^^-adapted continuous solution of the stochastic f.d.e. (7)
through rjeC; so a.s.

zt=Yt=Tt(r,)+\t,-uAg(u)dw(u)
o

(Mohammed [13, pp. 36-39]).
Finally, let g be measurable, (#",)(,g,ga-adapted and such that jS£||g(t, -)||2dt<oo for

every a>0.
Pick a sequence of measurable, (J^o^rsa-adapted processes gk:[0,a] xQ-fL(Um, U"),

k^l, such that

(i) for each k^l, ]E\\gk{t,-)\\2dt<oo;
o

(ii) for each k^. 1, the function

is continuous (Lebesgue) a.e. and is bounded;
(iii) lim]E\\gk(t,-)-g(t,-)\\2dt = 0.

*->oo 0

For each fc^ 1, let z*:[ — r, a] x Q-^R" be the unique solution of

() (?)gk()(t), 0<t<a

Employing (7) and (21), a simple application of Gronwall's lemma gives Kx>0 such
that

E\\^-zt\\
2

c^Kl UE\\gk(u)-g(u)\\2du\e2a"HU2<^0, as fc-*oo for each te[O,a].

Now, by the first part of this proof, each z* satisfies

zf = TM) + j 7;_UA^(U)dw(u), O^t^a (22)

for fe>l.
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If we evaluate (22) at any seJ and let fc->oo in £2, we immediately get from property
(iii) of the gk that

j(s) = lim z^s) = TM(s) + lim j (f,_llA)(s)gk(U) dw(u)
*->oo k->coO

(23)

Since z has continuous sample paths (Mohammed [13, pp. 36-39]), the equivalence (23)
implies that the integral f/0 f,_uAg(u)dw(u) has almost all sample paths continuous and
the formula (9) then holds on a set of full P-measure which is independent of t e R - °
and s 6 J. This concludes the proof of the theorem. |

4. Asymptotic stability of absorbing states

In this section we employ the stochastic variation of parameters formula to give a
proof of Theorem 1.1.

Recall the notations and assumptions of Section 2. The following lemma on the
asymptotic stability of H is well-known (Hale [5, pp. 185-187]):

Lemma. Suppose H is asymptotically stable with constants K,a>0 satisfying
inequality (2) viz.

Then

for allt^O and all AeUUm, W).

Proof. Approximate Xm'-J-*
{»k}k'=i such that

(2)'

(24)

pointwise by a sequence of continuous functions

= lim tf(s),

and ||»/*||c^l for all fc^l, e.g.

—r
k
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Let AeL(nm,W), veUm, seJ. Using (2)' and the weak continuity of Tt,
(Mohammed [13, pp. 193-194]), we get

T,(x{0)A)(s)(v)= lim [7;
* - > C O

Therefore

, = sup sup |7fa{0)^)(s)(t;)|^K||4|e-°'
seJ p e R"

l»l = l

for all t ̂  0. This proves the lemma. |

Proof of Theorem 1.1. Suppose H is asymptotically stable and let

For any ̂ e C, nx:[ — r, oo) x Q-̂ IR" is the unique solution of

d"x(t) = H("xt) dt+j] giex(t - dt)) dw'it), t>0,
; i

(3)

Since the Brownian motions {w'}?=l are independent, then the process w=©?=1w':
IR-0 xQ-^IR"1)11 is an mg-dimensional Brownian motion on {il,^,(^,^0,P). Define the
processes gt:U-° x Q-»L(Rm> R")> S-R-° x&->mWm)9, W) by

gi(t)=giCx(t-di)), i=l,2,...,q

Then (3) takes the form

d"x(i) = //(%) +g(t)dw(t). (3)'

Note that the Lipschitz property of the g,'s implies that g is a measurable (^,
adapted process satisfying the conditions of Theorem 3.1. Thus we obtain

"xt=Tt{rj)+ t\f.-u^gi("x(u-di))dwi(u), t^O. (25)
i = l 0
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If r]° is any absorbing state for (3), it therefore follows that, for t ̂  r, we have

E\«x(t)-r,°(0)\2^2\{Tt(r,-r,0)}(0)\2

du
o

J£ J e2'u\ri(u)-r]0(0)\2du-e2adi

i l d

i=l
'e2*uE\"x(u)-rio(0)\2du

i = l

Set

M = :

i = l

Then, for every t ̂  r, we get

A similar inequality holds for 0 g t ̂  r; so by Gronwall's lemma it follows that

E\"x{t)-rio(O)\2^M\\ri-r,%e-y' for all t^O.

Note that the inequality (5) means that y>0 and so inequality (6) of the theorem is
established.

To see that there is at most one absorbing state of (3), observe that if fj is any (other)
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absorbing state then putting r\ = fj in (6) immediately gives

for all £^0. Thus r\ = n°.
The proof of the theorem is complete. |

By an easy modification of the above argument, one can prove asymptotic stability in
the case of several random delays:

Theorem 4.1. In the stochastic f.d.e. (3), suppose the delays dh i=l,...,q, are
^-measurable P-essentially bounded random variables d;:Cl->M-° such that

for all l^i^q. Define lt, i = 1,2,...,q, by

Suppose that

t Ife2xd'<—%-s (26)

,=i qm K

and n° is an absorbing state for (3). Then the conclusion (6) of Theorem 1.1 holds with

M = 2K2\l+^(ilf{Ee2«"-l})]
L 2(X v=i / J

>> = 2a-2qm2/C2 J / ?e 2 <

Remark. Note that when the dt are all deterministic, condition (26) implies condition
(5) of Theorem 1.1.

For distributed random delays, we consider the stochastic f.d.e.

dx(t) = H(xt) dt + \ \ g(s, x(t - d(s))) ds 1 dw(t), t > 0

(27)
xo = neC

where g:J xR"-*L(Um,W) is continuous with g(s, •) globally Lipschitz such that the
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function l:J-*Ui0,

belongs to 22(J, U). The delay process d:JxQ-*U is (Borel J®S?0, Borel R)-
measurable and essentially bounded such that

d° = essupd(s, co)^r
to

for all seJ . Then (27) has a unique continuous solution through neC (cf. Mohammed
[13, pp. 228-230]) given by

( 0

x(t) = Tt(ri){0)+UTt-uA){0) f g(s,x(u-d(s)))dsdw(t<).
0 - r

Therefore, we deduce

Theorem 4.2. For the stochastic fd.e. (27), assume that

) l{s)
2e2*i*ds<-4-iir rm2K2

and let n° be an absorbing state. Then the conclusion of Theorem 1.1 is satisfied with

M = 2K2+— ? l(s)2{Ee2xdis)-l}ds
Ot - r

= 2a-2m2K2r J /
-r

5. Linear Perturbations

Consider the linear stochastic f.d.e.

() (,) (,){), t>0

where H is as before (Section 2), G:C->L(Um, W) is continuous linear and w is
wi-dimensional Brownian motion on (Cl,^,(^,),^0,P). By the Riesz representation
theorem, G corresponds to a Borel, L(R", L(IRm, R"))-valued measure /z' on / with total
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(29)

Note that >7o = 0 is clearly an absorbing state for (28). Using the stochastic variation of
parameters formula (Theorem 3.1), the solution 'x of (28) through any r/eC is given by

J dn' t>0

Squaring and taking expectations we get

E\"x(t)\2 ^2K2e"-2«'\\ri\\2 +2m2 $ K2 e-2«'-«
o

g 2K2 e2 e~ 2xt 11n112 + 2m2K2 e"+ 2m2K2 e" 2<"I;(

J d^ du

]\e2"'E\'>x{u + s)\2duv{ii'){ds)
- r O

2K2m2K

for all £ ̂  0, t] e C. Gronwall's lemma then gives

where

m2K2 °
2K2+ v(fx')(J) \{e-2°*-\)v{ti'){ds)

0C —r
(30)

= 2a-2m2K2v(n')(J) j e~ 2asv(n'){ds). (31)
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In this way we obtain

Theorem 5.1. In the linear stochastic f.d.e. (28), assume that

J e-
r m A.

Then the zero solution is globally asymptotically exponentially stable in mean square viz.

for all £^0, r/eC, where M,y>0 are given by (30) and (31).

Here are some simple examples which are covered by the above theorem:
Let g:J x Rn->L([Rm, W) be continuous with g(s, •) linear for each seJ and the map

J B s i->g(s, •) e L(W, L{Um, W))

is fi1 (Lebesgue-measure). Suppose also that G:C^>L(M'n,W) is continuous linear. Then
for sufficiently small e>0 the zero solutions of the following stochastic f.d.e.s are
globally asymptotically exponentially stable in mean square:

sG(xt)dw(t), t>0

dx(t) = H(xt) dt + i] g(s, x(t + s)) ds\ dw(t), t > 0

= H(x,)dt + \ )+Cg(s,x(t + s))ds\dw(t), t>0.
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