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ABSTRACT 

The raw data produced by the European Space Agency's astrometry 
satellite HIPPARCOS — mainly photon counts from the primary detector 
(IDT) and star mappers — will be analysed in full by two independent 
reduction consortia, FAST and NDAC. The aim is however to generate, by 
1993, a single catalogue of positions, proper motions, and parallaxes 
for the 105 programme stars, with additional information on photometry, 
multiple stars, and minor planets. This review outlines some practical 
and theoretical features of the data reductions. 

1. INTRODUCTION 

The relative complexity of the HIPPARCOS data reductions is not 
caused, as we might think at first, by the extreme accuracy aimed at, 
nor by the sheer size of the problem. Indeed, conditions in space are in 
several respects easier to modelise accurately than those pertaining to 
ground-based observations, and the data quantities involved in this 
project are not much greater than in many other space projects. I 
think we must rather blame the circumstance that HIPPARCOS observations 
are completely relative to each other and therefore themselves defining 
the system in which they are made. To be more specific: the basic kind 
of measurement we can make with the optical telescope with its 
modulating grid and detector, is simply the instantaneous location of a 
star image with respect to the slit pattern deposited on the grid. This 
can be derived from the raw photon counts by some rather elementary and 
unprejudiced calculations. Such a measurement depends however not only 
on the celestial position of the object, but equally on the pointing of 
the instrument (attitude) and the relation between optical field angles 
and the slit pattern (effective distortion). Thus we can write the ob­
servation equation very schematically as follows 

celestial instrument , instrument , . observed /lN . . - . + + noise = -. . (1) position pointing distortion location 

593 

//. K. Eichhorn and R. J. Leacock (eds.). Astrometric Techniques, 593-604. 
© 1986 by the IAU. 

https://doi.org/10.1017/S0074180900077093 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900077093


594 L. LINDEGREN 

The first three terms in (1) can be expressed as functions of several 
unknowns: the astrometric parameters of the object, attitude parameters, 
and distortion parameters. Depending on the modelisation of the attitude 
and distortion (e.g. as polynomials of time and field angles, respec­
tively) , their parameters will be the same for all observations in a 
time interval of minutes up to several hours. As a consequence, the 
astrometric parameters of any given star is indirectly related, via the 
attitude and distortion parameters, to those of hundreds or thousands of 
other stars observed within the same limited time interval. In the 
course of the full mission, the star is effectively connected to every 
other object in the observing programme. It is then impossible to iso­
late a given object from the remaining programme; the whole body of data 
must be treated as an entity. 

In response to an Announcement of Opportunity issued by the 
European Space Agency (ESA, 1981), two independent groups of scientists 
were set up in order to carry out the reductions: the FAST consortium 
(Fundamental Astronomy by Space Techniques) with 17 participating 
institutes under leadership of J. Kovalevsky, and NDAC (Northern Data 
Analysis Consortium) lead by E. H^g and with participants from six 
institutes (Perryman, 1982). In the following I shall attempt to outline 
the data reductions in fairly general terms, which hopefully apply with 
small modifications to both consortia; a good deal of bias towards the 
methods and terminology of NDAC is still detectable. Alternative aspects 
are taken up e.g. by Kovalevsky (1980) and in the proceedings of the 
Asiago FAST Thinkshop (ed. Bernacca). Some familiarity with the mission 
concepts will be assumed below; see e.g. H^g (1980), Kovalevsky (1982, 
1984) and Bouffard and Zeis (1983). 

2. THE OBSERVATION MODEL 

One way to regard the data reductions is as a problem of statis­
tical estimation: the raw data are the unique realization of a many-
-dimensional stochastic function the parameters of which are to be 
estimated. Using e.g. the principle of Maximum Likelihood (ML) the 
solution is in theory quite simple, once we have a complete statistical 
description of the function (the outcome of a hypothetical mission) in 
terms of all the parameters. The purpose of an observation model is to 
approximate such a description. 

The raw data which are to be 'explained1 by the observation model, 
are mainly 

(a) the complete record of photon counts from the primary detector 
(IDT) {N }, I = 1 to -10 ** (sample frequency 1200 Hz); 

(b) stretches of star mapper counts (N*} at the expected transits of 
programme stars across the star mapper slits (sample frequency 600 
Hz); 

(c) the complete record of gyro readings {_£ }, r = 1 to ~109, where £ 
is a 3-vector with one component for each active gyroscope. 
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The model parameters which characterize the idealized physical system 
(stars 4- instrument) at any instant are basically the following: 

(A) object parameters, for a single star the five astrometric 
parameters CXQ, 6Q> U , u., II and photometric parameters such as an 
HIPPARCOS magnitude,"H, and colour, B-V. 

(B) attitude parameters describing the temporal evolution of three 
pointing angles ex (t), 6 (t) , a)(t); 

(C) some 10 - 20 time dependent large-scale distortion parameters 
{g(t), h(t)}. mn mn 
There are of course many other data than (a) - (c) which are needed 

for the reductions; these we shall regard as fgiven', either by external 
sources (the Input Catalogue, ephemerides of the satellite and bodies of 
the Solar System) or by special calibrations (small-scale distortion, 
maps of the photometric sensitivity and OTF over the field). 

From the object parameters and the barycentric motion of the satel­
lite we have the proper direction to the object at any given instant, u.. 
This takes into account its space motion, parallax, gravitational de­
flection by the Sun and Earth (at least), and aberration. The object 
direction will now have to be expressed in a coordinate system defined 
by the instantaneous pointing of the telescope. 

A fictitious point at the centre of the grid would define two view­
ing directions £ and f_ (Fig. 1). The telescope system T = [x _y_ zl is 
then defined by 

.z = < f. x £ >, 2 i = < i + £ >» £ = .?_ x 2£ (2) 
where <> signifies vector normalization. The celestial orientation of T 
can be expressed e.g. by means of the R.A. and Dec of z^ (a , 6 ) and the 
angle in the xy-plane from the Equator to x_ (^)- These angles in turn 
can be parametrized, as functions of time, by using piecewise 
polynomials or other suitable basis functions. FAST simulations (van der 
Marel, 1983) indicate that a representation accuracy better than 1 mas 
(0.001 arcsec) is possible with about one free parameter per axis and 
minute of time. 

The field angles (n, £) of the object are established by writing 
its proper direction in T, 

ii = x. cos £ cos(n ± hy) + y_ cos £ sin(n ± hy) + .z. sin C (3) 

where y = arccos(£f£) is the basic angle and upper (lower) sign is 
chosen for the preceding (following) field. The origin of field angles 
is £ (or _f_) with the n axis approximately in the scanning direction 
normal to the slits on the primary grid (Fig. 2). 

The 'effective distortion1 of the instrument describes the slit 
pattern in terms of field angles. On the primary grid we assign an 
integer 'grid coordinate1 G to the centre of each slit, with G 
increasing by +1 for each new slit in the direction of +n, and write 
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SLIT CENTRES 
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Figure 1 (left). Definition of telescope frame [x ^ z~\ and pointing 
angles a , 6 , a) z z 
Figure 2 (right). Illustrating the relation between field angles (n> C) 
and grid coordinate (G), i.e. the effective distortion 
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Figure 3. The four main stages of reduction leading up to the HIPPARCOS 
Catalogue of astrometric results 
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G = 2 Z (g ± h ) nm Cn + d(n, C), 0 ^ m+n ^ 3 (4) 
n n mn mn 

The large-scale distortion represented by the polynomial in field angles 
includes optical effects which may be different in the two fields; this 
corresponds to h * 0. The small-scale irregularities is represented bv mn the function d, and is here assumed to be known. 

If G is the grid coordinate of a point object at the time of the 
icth IDT sample, we can now assume that the observed number of photon 
counts in that sample, N , is a Poisson process with mean value 

E(N ) = B + A[l + l^cos (2-nG) + M2COS(4TTG + v2) ] (5) 

in which B and A stand for the instantaneous brightness of the back­
ground and object, respectively, and Mj, M2, and v 2 are functions of the 
field angles known from the OTF calibrations. Note the absence of a 
phase term in the fundamental harmonic (v1 = 0), which can be taken as 
definition of the centre of the slit (G = integer) . In reality we shall 
have Mx = 0.6, M 2 = 0.25, and | v2| << 1 rad. 

The star mapper slits are arranged in two groups: a 'vertical' with 
slits nearly parallel to _z_ or the £ axis, and an 'inclined' chevron 
group with slits at 45 to the vertical. Each group consists of four 
parallel slits, but we need for the moment only consider the central 
line of each group, described by some equation n = n (c) different for 
the two groups and perhaps also for the two fields. The counts from the 
star mapper PMTs can now be modelled as a Poisson process with mean 
value 

E(N*) = B* + A* S[(t* - i)fl] (6) 

B* and A* are the background and stellar brightness, S the known star 
mapper response function (consisting of four humps corresponding to the 
slits in a group), T is the time of transit across the central line, and 
Q = (d/dt) [11 - n (C)] is the effective scanning speed across the group. 

The gyroscope readings are taken at a frequency (~10 Hz) much 
higher than the bandwidth of perturbing torques (-0.01 Hz) and can 
therefore be regarded as measurements of the instantaneous inertial 
rotation about the input axis of each gyro (which is of course very 
nearly fixed in T). If w , OJ , co are the angular velocities about x, y, 

X V Z- — 
_z (readily expressed in terms or the time derivatives of the pointing 
angles), we write 

g = K (u> a) a) ) f + b + n (7) 
■̂-r — x y z — —r 

The rows of the (3,3)-matrix J( are determined by the sensitivity and 
orientation (in T) of the gyro input axes and are known from laboratory 
calibrations, b is a vector of slowly varying biases (drift rates) and 
n. is a noise vector; these could for instance be represented by poly­
nomials and white gaussian noise, respectively. 

Equations (3) - (7) plus an astrometric model of the object consti­
tute a complete, albeit not very sophisticated, observation model. 
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3 . MAIN STAGES OF THE REDUCTIONS 

3.1. Attitude Determination 

The natural starting point for the data reductions is the estima­
tion of the pointing angles u , 6 , OJ, or rather the polynominal coeffi­
cients (or similar) by which they are represented. A least-squares fit 
to the real-time attitude may provide a first approximation, accurate to 
about 1", adequate for linearizing the equations. This is then improved 
by processing observation equations for the star mapper transits and 
gyro readings. Basically, each stellar transit across one of the slit 
groups of the star, mapper is an observation of the absolute pointing 
about an axis parallel to the slits, and gives an observation equation 

C (Act A6 Aco)f + noise = x , - T . (8) 
— z z obs calc 

for the corrections to the attitude angles, (^ being a known row vector 
and T the transit tine. The observed T is obtained via the model (6) by 
feeding the photon counts N* through a numerical filter matched to the 
response function S; this is closely related to a ML estimation of T. 

The gyro readings measure the angular velocities about certain axes 
fixed in T and give observation equations similar to (7) with velocity 
components written in terms of the derivatives of the attitude angles. 

In the final iteration, the attitude must be known to about 0.1" in 
all three axes. This cannot be achieved immediately, since the precision 
in (8) is limited to 1-2" as set by the precision of the Input Cata­
logue. A first pass of updating the positions is thus required before 
the final attitude determination. 

3.2. Image Location 

The next stage shall determine the grid coordinates (G) of observed 
objects at given instants, e.g. the fram mid-times. (A frame is the 
period of 2.133.. s = 2560 IDT samples in which the sensitive detector 
spot is cyclically switched in a fixed pattern between the stars in the 
fields of view). From the attitude determination we know the angular 
velocity of the instrument perpendicular to the slits (essentially GO) 
and hence, to a first approximation, G. The grid coordinate in (5) is 
consequently known up to an integration constant, say the grid 
coordinate at mid-frame G(t ). The photon counts can now be Fourier 
analysed with respect to the reference phase 

H J l-2n[G J l-G(t o)] (9) 

yielding ML estimates of the trigonometric coefficients in 

N ~ a0 + aicos H + a2cos 2H + bxsin H + b2sin 2H (10) 

By means of the model (5) it is now easy to find the mid-frame coor­
dinate as well as the stellar and background intensities A and B. It is 
also possible to make a ML fit of (5) directly to the counts. 
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3.3. Great-Circle Reduction 

The observed locations — in the form of grid coordinates at frame 
mid-times — shall now be combined as in (1) to improve the position of 
the object, the pointing angles, and the instrument distortion. It would 
be easy to set up such observation equations directly with the astro-
metric parameters as unknowns. But in order to solve these, one would 
then have to combine such observations from the entire length of the 
mission, and the number of unknowns would become totally prohibitive. 

By restricting to observations in a time interval of 6-12 hours, in 
which the satellite scans some 3-6 complete circles on the sky, there 
are only about 2000 stars involved at a time and we get normal equations 
of reasonable size. Since the observations are confined to a rather 
narrow strip on the sky (a few degrees wide), they can however only give 
measurements in one coordinate, i.e. along the scans. For such a set of 
observations we introduce a provisional coordinate system on the sky, 
with abscissae measured along a fixed reference great circle (RGC) and 
ordinates perpendicular to it. The origin of abscissae can be chosen 
quite arbitrarily (in fact we have at this stage no means of relating 
the abscissa exactly to R.A. and Dec; this is the purpose of the stage 
called Spherical Reduction). 

With Au. denoting the correction to the abscissa of star number i, 
we have 

D Aw. - E Aw. + I. I nm £n (Ag ± Ah ) + noise = G , - G - (11) l k m n °mn mn obs calc 
where D and E are known coefficients and Aco. is the correction to the 
third pointing angle in the kth frame. 

When solving the system of equations (11) for a set, various 
assumptions can be made concerning the smoothness of the attitude 
motion. In one extreme case, the geometrical solution, the corrections 
AOJ, are solved independently for each frame. This is far simpler but 
also less accurate than using the so-called numerical (or dynamical) 
smoothing, in which case a polynomial or other smooth representation as 
function of time is inserted instead of Aco, . In either case the attitude 
unknowns can be eliminated successively while forming the normal equa­
tions, leaving a system with about 2000 unknowns, viz. the abscissa 
corrections and 10-20 distortion corrections. 

For successful determination of the distortion parameters it is 
necessary to process at least a few, partly overlapping great-circle 
scans, so that the same stars cross the fields at different £-coordi-
nates. The finite width of such a set requires, on the other hand, that 
the distances of stars from the RGC are known to about 0.1", in order 
that projection errors onto the RGC from the slightly skew scans shall 
be negligible; for a similar reason the pointing angles a and 6 are 
needed to similar accuray. The great-circle reductions will therefore 
have to be iterated after a first improvement of the astrometric 
results. 

The method of least-squares solution chosen by NDAC is via the re­
ordered normal equations and Cholesky decomposition. Due to the unspeci­
fied abscissa origin the system has a rank defect of 1, which is handled 
with a simple modification producing the generalized solution. — FAST 
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has considered several alternative solution methods, including iterative 
ones (van Daalen, 1983; Tommasini-Montanari, 1983). 

3.4. Spherical Reduction 

The great-circle reductions produce star coordinates (abscissae) in 
many independent systems: each set of 6-12 hours1 observation has its 
own RGC and a quite arbitrary abscissa origin. The purpose of the 
spherical reduction is to bring together the results in a common, global 
coordinate system. There are several possible ways of doing this; the 
method now adopted by NDAC was proposed by this author in 1976 and 
depends on solving first for corrections to the abscissa origins. Let 
u. . be the abscissa derived for star number i in the great-circle re­
duction of set number j, and let c. be the correction required to bring 
the abscissae in the set on a glofral system. The equations input to the 
least-squares solution are 

F (Aa . A6 . Ap . Aur. An.)f - c. + noise = u° b S - uCal° (12) — oi oi cti oi l j ij ij 
with _F a known row vector. If the abscissae have been sorted by star 
number, we can eliminate the corrections to the astrometric parameters 
while forming the normal equations, so that in the end we have a system 
of linear equations with the set zero points c. as only unknowns; there 
are about 2-3000 of these. In this process ix is important to avoid 
using suspected multiple stars and other 'bad1 observations which might 
introduce systemtatic errors into the global coordinates. 

This system has a rank defect of 6, due to the unspecified orienta­
tion and rotation of celestial coordinates. A generalized solution 
method can be used as in the great-circle reductions. Having solved the 
zero points c., it is a simple matter to insert them in the eliminated 
equations andJobtain the solution for the astrometric parameters. 

A different approach was recently proposed by Betti et al. (1983) 
in the FAST consortium: the results of the great-circle reductions are 
used to get the angles between stars separated by approximately the 
basic angle (58 ); these are then expressed directly in terms of the 
astrometric parameters. The latter are thus determined for groups of, 
say, 6000 stars, yielding systems of equations with ~ 30,000 unknowns. 

3.5. Iteration 

The four main stages of the data reductions are schematically shown 
in Fig. 3. As already indicated, the full precision of the astrometric 
parameters (a few mas) will not be reached in a first pass through these 
stages, the positional errors in the Input Catalogue being too large to 
permit sufficiently accurate attitude determination and. projection of 
measurements onto the RGCs. But it will probably not be necessary to 
iterate the full solution if the star catalogue is regularly updated as 
the mission progresses. Initially, it will be advantageous to use 
exclusively star mapper observations for updating those stars which are 
bright enough to give good transits; this eliminates the slit ambiguity 
problem for these stars and gives a quicker improvement in two coordi­
nates. 
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4. SPECIAL PROBLEMS 

4.1. Double Stars 

It is estimated that some 10-15 % of the programme stars are double 
or multiple systems of a category that may require special treatment in 
the reductions (magnitude difference < 3, separation 0. 1 - 20"). Only 
part of them will be known prior to the mission, and automatic proce­
dures for recognizing potential double stars must be established. These 
will be based on several statistical tests on the intensity modulation 
and residuals of various solutions. After recognition, increasingly 
complex object models will be tried until a satisfactory fit is ob­
tained. The associated statistical and numerical problems are very con­
siderable and to this date only superficially studied. 

4.2. Slit Ambiguities 

The expression for the modulated intensity (5) or (10) is invariant 
to an integer shift in grid coordinate. The image location taken by 
itself is therefore ambiguous as to which slit the coordinate refers to; 
this will have to be decided from the current catalogue position. Since 
the grid period is 8n/3G = 1.2", of the same order as the positional 
errors of the Input Catalogue, it will very often happen that initially 
the wrong slit is chosen. For stars brighter than 10th magnitude the 
star mapper observations will help to update the catalogue positions to 
a precision where this problem is avoided. For fainter stars it is 
possible to find the correct solution in the spherical reduction by 
trying several positions in a small area around the catalogue position. 
This is basically a non-linear minimization problem with periodic 
instead of quadratic loss function. 

4.3. Adjustment to an External Reference System 

HIPPARCOS observations are by nature purely differential (albeit on 
a global scale) and external information must be injected to fix the 
orientation and rotation of the system of positions and proper motions. 
It is intended to link the HIPPARCOS system to FK5 but also to the 
extragalactic VLBI frame by means of radio stars, which are observed 
directly with the satellite, and optical quasars via the Space Telescope 
(Froeschle and Kovalevsky, 1982; Duncombe and Hemenway, 1986). It is 
imperative that the internal inconsistencies of other systems such as 
FK5 are not allowed to propagate into the HIPPARCOS system. This is 
avoided if the reductions are made entirely without regard to prior 
system information and the results only afterwards transformed into 
agreement with external data by rigid rotation of the system. 

5. ORGANIZATION AND STATUS OF PLANNING 

The scientific organization of HIPPARCOS has been outlined by 
Perryman (1982), who also lists the participating institutes. The reduc-
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tion consortia will receive data on high-density tapes 1-2 times per 
week throughout the scientific operation of the satellite (ca 
1988.5-91.0). The European Space Operations Centre (ESOC) in Darmstadt 
(Germany) is responsible for operating the satellite, receiving, 
decommutating, monitoring and distributing the data. 

For the FAST consortium the processing will be done entirely at the 
CNES computing centre in Toulouse (France) using mainframe computers 
(type CDC CYBER 170). NDAC has taken a - different approach and will 
distribute the work load between England (attitude determination and 
image location) and Denmark (great-circle and spherical reductions), 
using moreover super-minicomputers type VAXl1/780 (RGO) and HP9000 
(DSRI). Both consortia use the FORTRAN 77 programming language. 

Considering the voluminal difference between the two consortia it 
is not surprising that they have also tried rather different ways to 
arrive at the final design of the software. FAST has explored a wide 
range of possibilities — as demonstrated most impressively by the 
Asiago Thinkshop — and emphasized the detailed simulation of payload 
and mission. NDAC has by necessity restricted analysis to a single and 
largely preconceived plan for the reductions and will not make very 
extensive simulations. Both consortia now seem to have reached the point 
where the functional architecture is relatively frozen and some of the 
actual coding started. 
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Discussion: 

de VEGT: What is the scale value in the grid plane (in units of 
"/mm)? 
LINDEGREN: We donTt have a millimeter scale - we have arcseconds 
per slit. The focal length is 1.4m. 
de VEGT: The system of original condition equations in nonlinear. 
Is it necessary to iterate the original system for better linearization? 
LINDEGREN: This is one of the reasons for redoing the equations. 
EICHHORN: Are you making a one-shot global solution or are you 
using an iteration scheme? 
LINDEGREN: It is an iteration scheme but the system is effectively 
linear. 
GUINOT: Do you assume that the relativistic deviation of light is 
known a priori or do you intend to solve for its amplitude? 
LINDEGREN: General relativity is assumed in the reductions, but we 
have the possibility to solve for corrections to it in terms of a more general 
metric. This will certainly be tried although we do not expect any deviations at 
the level of a fraction of a milliarcsecond. 
GUINOT: If this amplitude is solved for, would it provide a check 
of the general theory of relativity? 
LINDEGREN: Since we are observing about 19° from the Sun, the 
average deviation is 0V004. We probably can detect this to a fraction of one 
percent. I donTt know whether we can establish any deviations from relativity at 
that level. 
THORNBURG: How much data processing do you do on board the 
satellite? 
LINDEGREN: The raw photon counts are transmitted and used for the 
reduction, no processing is made on board except as needed for operating the 
satellite. 
THORNBURG: So if you get unexpected distortion, etc., after launch, 
you can (try to) correct it on ground? 
LINDEGREN: Yes. 
HARRINGTON: What guarantees, numerical or analytic, are built into 
this system to assure convergence of this colossal iterative scheme? 
LINDEGREN: We know that it converges for fewer than 100,000 stars. 
Adding more stars improves the rigidity of the system. 
EICHHORN: I believe that Jefferys proved some time ago that 
systems of this type converge. Are you smoothing the attitude of the satellite 
numerically or dynamically? If the former, how do you take care of the 
discontinuities between different sets of parameters? 
LINDEGREN It is possible to use either dynamical or empirical 
modeling. Gas jet actuations and shadowing effects will give discontinuous 
derivatives which would make spline functions very suitable for empirical 
modeling. 
de VEGT: Can you describe the structure of the original normal 
equations (Full number of unknowns)? 
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LINDEGREN: The matrix of the full normal equations including the 
attitude unknowns is very sparse and of simple structure. After elimination of the 
attitude parameters the normal equation for the great-circle solution are much 
more complex and perhaps 20% full. The normal equation for the global solution 
are nearly 100% full. 
HUGHES: I understand that there are two groups who are doing the 
data reduction. What is the difference between the two groups? Are they 
carrying out the data reduction parallel or by different methods? 
LINDEGREN:* There is a lot of difference in modeling, the way we do 
the computations etc. The two consortia essentially work independently of each 
other. 
HBKk Let me add that the two consortia will work 
independently in parallel but we will make comparisons on simulated and real data 
at different levels of the data reduction. This is an important part of our strategy 
to enable us to arrive at one unique HIPPARCOS catalogue in the end. 
KOVALEVSKY: Both consortia cooperate, but the more our methods will 
be different, the more confidence one can have in the final results. 
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