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Abstract 

Industrial Data Analytics needs access to huge amounts of data, which is scattered across different IT 

systems. As part of an integrated reference kit for Industrial Data Analytics, there is a need for a data 

backend system that provides access to data. This system needs to have solutions for the extraction of data, 

the management of data and an analysis pipeline for those data. This paper presents an approach for this 

data backend system. 
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1. Introduction 
The spread of modern information and communication technologies (ICT) and the technological ability 

to systematically and comprehensively collect data in decentralized industrial networks make it possible 

to build dynamic information repositories of previously unknown size and quality (Eickelmann et al., 

2015b). Using ICT-supported solutions makes it possible to open up previously isolated data areas and 

make the often highly heterogeneous data available in a standardized manner (Appelrath et al., 2014). 

The interpretation and efficient use of the knowledge implicit in these information repositories to 

support decision-making in processes of dynamic value networks is increasingly becoming the focus of 

companies (Geisberger and Broy, 2012; Deuse et al., 2014). 

Against this background, modern, industrial data analysis approaches offer solution strategies as a key 

technology for value-creating, cross-company collaboration (Köksal et al., 2011; Harding et al., 2006; 

Niggemann et al., 2017; Eickelmann et al., 2015a). Thus, the integrated application of data-analytic 

methods enables efficient knowledge generation about processes, procedures, methods, and 

technologies to make them specifically usable, expand them, and make them available to all company 

divisions across the board (Abele and Reinhart, 2011). Thus, in addition to the possibility of a holistic 

increase in efficiency in the value creation network, this approach offers a high potential for opening up 

new forms of cooperation as a basis for developing innovative, data-driven services and business models 

(Gadatsch and Landrock 2017). 

At the same time, however, there is a growing realization that companies are unable to use their 

resources to make sensible use of the necessary building blocks of data analysis technology and develop 

them further in a targeted manner, from standardized procedures and use cases to cross-network business 

model developments (Stark et al., 2014). As a result, there is a lack of the necessary competencies and 

implementation strategies in the companies themselves, as well as a lack of strategically oriented, 

possible service and technology offerings to enable SMEs in particular to use the massive potential of 
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modern methods of data networking and analysis in a sustainable, low-cost and application-oriented 

manner.  

2. Research Project AKKORD and Contribution 
The overall goal of the research project AKKORD is the integrated usage of industrial data analysis for 

competency-driven collaboration in dynamic value-creation networks. The project addresses the sub-

goals of value-creating collaboration, integrated and interconnected data analysis, development of 

personnel competencies and decision recommendation, and creating an integrated data basis considering 

the triad of human, technology, and organization. 

The goals are to be reached by employing a modular reference kit that supports organizations in 

setting up and integrating dynamic collaboration for industrial data analysis. The modular kit covers 

the domains of Collaboration and Business Models, Competences and Action Recommendations, 

and Analysis Modules and Configuration. Function-wise the reference kit covers the fast and 

effortless setup and the use-case-specific customization of systems for industrial data analysis in 

dynamic value-creation networks. Therefore, an integral part of the project is developing a robust 

data backend system for the management and semantic linkage of heterogeneous data as part of the 

modular reference kit.  

 
Figure 1. General setup of the AKKORD project 

This contribution presents the work of creating a solution for the AKKORD data backend system as part 

of the reference kit described in this chapter. The results were developed according to the CASE research 

cycle (clarification – analysis – synthesis – evaluation) after Müller (Müller, 2013). Here, the initial 

position and the task of this contribution are clarified. Section three provides insight into the analysis 

phase results by giving a short overview of state of art in the corresponding fields. The current state of 

the approach's synthesis for creating a comprehensive and networked database for industrial data 

analysis is described in section four. Finally, an initial evaluation of the approach through a case study 

is implied in section five and appertains to our future intends and will be briefly addressed in the outlook 

section. 

3. Current approaches in data integration and analysis 
This chapter presents main results of our analysis according to the CASE research methodology. It was 

conducted mainly by studying literature and was supplemented by empirical interviews with project and 

research partners.  
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When it comes to Industrial Data Science, there are different solutions for many aspects, but there is no 

holistic solution that manages data, processes, and analytics in a unified approach. Therefore, in the 

following, possible approaches for some aspects of Data Integration, Industrial Data Science, and 

platforms for those processes are presented. 

Alongside the product lifecycle, dozens of tools generate or store data about products, processes, or 

surrounding information. For example, product Lifecycle Management (PLM) or Enterprise Resource 

Planning (ERP) software aims to store as much company-relevant information as possible inside their 

database. However, they are rarely used as a monolithic approach due to historical reasons. Instead, 

companies tend to use many parallel software tools for data management, even using more than one tool 

for the same task (Quirmbach, 2015) and up to a hundred tools to store data alongside the product 

lifecycle. Therefore, Data Integration has been a topic in science and industry for many years. One 

challenge is data availability, but the bigger one affects the mapping of different data sources and the 

data itself so that human users and machines can understand the meaning of data. There are three 

different solutions regarding this problem: Data mapping using ontologies and semantic web 

technologies (Woll et al., 2015, Abramovici et al., 2016), data mapping using standards (Eckert et al. 

2005), and data mapping using RESTful web services (Franke et al., 2014, Pencius et al., 2014). 

Eickhoff et al. give a deeper insight into those three approaches (Eickhoff et al., 2020). 

Another problem is the large variety of data structures. A heterogeneous IT architecture with various 

systems fulfilling different tasks has different data structures. For example, a well-structured bill of 

materials in mechanical engineering, but network-alike structures in software development (Eigner et 

al., 2016), or unstructured data from IoT sources. Inside the research project AKKORD, there are data 

sources from various phases across the product lifecycle. Engineering data is stored in a various 

specialized databases, quality data in an SQL database and business data inside an ERP system to name 

some examples.  

Industrial Data Science combines computer science, statistics, and engineering science (Bauer et al., 

2018). It aims to optimize products and processes on an industrial scale. Arnarsson et al. 2016, 2018) 

show potential use-cases in product development, Strauss et al. (2018) and Wöstmann (2019) show 

predictive maintenance applications of Industrial Data Science in brownfield situations. A considerable 

part of Industrial Data Science and process models like CRISP-DM (Cross-Industrial Standard Process 

for Data Mining) or the newer ASUM-DM (Analytical Solutions Unified Method) (IBM, 2016) is the 

data acquisition and pre-processing. As described above, data is scattered alongside the product 

lifecycle, and data integration tools need to be connected to Industrial Data Science tools. Current 

research projects try to develop platform concepts for Industrial Data Science that integrate as many 

process steps as possible. For example, (Wöstmann et al. 2020) developed a reference architecture for 

machine learning in the process industry. Such a reference architecture needs a data connection 

management, where pipelines of data streams can be established from databases to the training 

environment or the deployment environment of machine learning applications. Available commercial 

solutions like AWS, ADAMOS, AXOOM, MindSphere, Thingworx often support some data sources 

from one kind, like IoT. However, they cannot unify data from software alongside the product lifecycle 

like PLM, ERP and other data sources while providing a common interface for users to build and have 

insights into a metadata model. 

4. Conceptual Approach 
After the initial analysis, this chapter describes the synthesis of the research process according to the 

CASE methodology. 

As part of the integrated reference kit for Industrial Data Analytics, the AKKORD data backend system 

must be suitable for a wide range of industrial use-cases and reflect the heterogeneity of company IT 

architectures. Therefore, the AKKORD data backend system does not provide just one tool but different 

approaches and respective tools to choose from. In the following, two approaches are focused. First, an 

integrated System Lifecycle Management (SysLM) Backbone (Eigner et al., 2014), which centralizes 

the data along the product lifecycle in one system and a semantic metadata repository providing links to 

the different data sources, connecting them over system borders. The SysLM Backbone is a conceptual 

solution based on PLM's technology and IT architecture. Therefore, it is best used in engineering-centric 
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companies that want to expand the scope of their PLM implementation. On the contrary, the semantic 

metadata repository is best suited in companies, where the IT is very heterogeneous and can fit for any 

possible system, that makes its data accessible. 

Both approaches provide suitable functions for data networking and data analysis, specific the ability 

to build up a data model of heterogeneous data and the ability to feed this data into an analysis 

pipeline. To do so, there are two main processes: First, the preparation of the backend itself, linking 

data and creating a semantic net and second, creating a data pipeline from the backend into data 

analytic modules. Both processes can be iterative, making the data backend a "living" tool that is 

extended on the fly.  

The preparation of the data backend can be triggered at any time, but especially when preparing a new 

data analytics use-case. Figure 2 illustrates the process: The relevant data sources and their respective 

data models have to be selected (1). Then, using the semantic metadata repository, the data model can 

be generated inside the Data Model Canvas and be used as a basis for data connections between the 

backend itself and the data sources (2). If necessary data is spread across different source systems, but 

has a similar meaning or should be linked in any way, those connections are made visible inside the data 

backend (3). In the last step, additional information can be added to provide more value and insight into 

existing data (4).  

Before the first process run, the data backend is an empty space, but as the process is iterative, it will 

build up further every time the process is run. As an alternative, the data understanding process can be 

run without a specific data analytics use-case in mind, just to connect and describe potentially all data 

sources one company possesses. If a company decides to follow the iterative or the complete alternative 

is a strategic decision, the AKKORD approach to build a data backend supports both. 

In general, the first two steps of the process are conceptual and can be modelled on paper or with the 

help of an IT solution, the third and forth step have to be run inside a technical solution, either the 

SysLM backbone or the semantic metadata repository. 

To help facilitate building the domain and IT data-models, we created a Data Model Canvas as an easy-

to-use tool. Users can create data types and attributes by drawing graph nodes on a canvas and 

connecting them afterwars.  

 
Figure 2. Data understanding process as part of the CRISP-DM 

After building up the data backend and its data model, data analytics use-cases need pipelines for direct 

access to data. Therefore, the second process is now triggered. Data analysts can specify their data needs 

inside a file or start with a blank process. Either way, they can explore the available data models within 

the Data Model Canvas. It is possible to look directly in the source systems for further details and 

example data. Alternatively, they can rapidly build a data pipeline by choosing data types and attributes, 
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creating a URL to access the data in .csv-format and looking further inside their data analytics solution. 

After checking the data quality, the data pipeline can be used permanently by storing the URL into a 

data needs file. 

 
Figure 3. Metadata model 

Aside the processes, the approach consists of a metadata model (cf. Figure 3), which allows to identify 

each data object within connected systems. The stored data is sufficient for building a data model for 

analysis and with the help of the system-specific connector sent data into an analysis pipeline, even if 

the underlying system is not capable of providing data by default. Another benefit of the metadata model 

is the possibility of tagging and commenting every object, making clear connections and providing 

additional context to data. 

The data backend approach is a facilitation for data analysts, as it can directly access and provide 

data from all connected systems. The data access is live; therefore, the data analysis always has the 

most recent data at hand, which is a huge improvement to a workflow with downloaded files. Another 

benefit is data integration. In the traditional approach, data from different systems needs to be 

downloaded and put into the analytics process. The data backend can do this and therefore integrate 

data from different source systems and provide it to the data analytics process via one single 

interface. Consistency regarding the provision and management of data objects along the whole 

product lifecycle can be challenging, as the lifecycle stages have various requirements concerning 

data models and objects (cf. chapter 3). For example, organization and resource management follow 

a more generic management approach, while asset management is highly instance-centric. With the 

metadata model of the data backend system, these approaches and objects can be mapped and 

connected. 

5. Prototypical Implementation and Evaluation 
To evaluate the research, a prototypical implementation of the approach was evaluated according to the 

CASE research methodology. It is based on the tools of the different project partners (cf. Figure 4). As 

a SysLM Backbone solution, the CONTACT Elements Platform is used. Here the data from the different 

phases of the product lifecycle is managed and linked in a consolidated data backend. In addition, the 

VPE SP²IDER solution includes the possibilities of a semantic metadata repository and the data model 

canvas, which can also be used for the SysLM Backbone. The data analysis takes place in Rapidminer 

Studio. 

While the CONTACT Elements platform consists of different modules that can address the requirement 

of managing different data types, it was used as a data backend system for prototypical implementation 

and evaluation of the concept described. As a result, some of the data backend modules provide and 

manage data objects of the early lifecycle phases and are covered by the product lifecycle management 

tool of the platform called CIM Database. In contrast, CONTACT Elements for IoT cover other modules 

focusing on real-time data objects (Figure 5). 
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Figure 4. AKKORD Data backend system 

Different data objects from modules represent data from different, heterogeneous sources of the 

product lifecycle in the CONTACT Elements platform: the product data management module 

consists of objects such as the product itself, which contains different parts on a generic level. The 

generic product must satisfy specifications that are part of requirements, which are tested in test runs 

in accordance with acceptance criteria and generate test results. Every tested part is instantiated by 

assigning a serial, referred to in a test order as part of the test execution management module. Work 

plans and test plans consist of one or more sequences (respectively test processes) and one or more 

operations (respectively test steps) and are part of the work planning or test planning module. A 

workplace represents the organization and resource management module, which is part of an 

organization or a plant to which persons, e.g., working personal, are allocated. Real-time data are 

represented by objects such as assets, which describe the digital twin of a product instance. Finally, 

the production order describes the sequence in which operations are executed. As part of different 

modules, these objects communicate with the modules for data analysis and the data model analysis 

and proposition. 

 
Figure 5. Possible data model of the SysLM Backbone 
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As described above, the CONTACT Elements platform provides an extensive data model that allows to 

bring in heterogeneous data from various legacy sources in a state-of-the-art platform and link and 

semantically enrich these data. It also provides an intuitive, modern user interface for personal data 

consumption and manipulation, as shown in Figure 6. However, it is not always possible to bring all 

data needed for extensive industrial analysis into one or several closely integrated systems. In this case, 

a data integration pipeline based on the SP²IDER technology comes into play as described in the 

following. 

A data linkage and provision pipeline to supply the analysis tool with data from various sources is built 

based on the SP²IDER and Data Model Canvas (DMC) technology. Figure 6 shows the schematically 

connected parts of the solution.  

The prototype of the SP²IDER solution is a collection of different Flask server applications. Specific 

connectors provide access to data from the SysLM-backbone of Contact CIM Database and Elements 

for IoT, Influx DB, Aras and generic SQL databases. The primary user interface is the Data Model 

Canvas, a Python and Javascript web application where users can interact with the graph-based 

representation of data models and the data needs module to create data pipelines for analytics use-cases. 

The URLs can be tested in the browser for their functionality. The data access can then be transferred 

into Rapidminer for data analysis. 

 
Figure 6. CONTACT CIM Database providing relevant PLM data for consumption to the VPE 

SP²IDER data pipeline (cf. Figure 5) 

Figure 7 shows the AKKORD implementation loop with different data source systems, the SP²IDER 

data backend approach and gives a glimpse into the user interface of the Data Model Canvas. Behind 

every graph node is the aforementioned metadata model, which gives enough information to identify 

the data type and its attributes in the specific source system. This information is then extracted by the 

connector and the underlying data is transferred and accessed by a REST interface, which can be inserted 

into the analysis software of Rapidminer and then used for the analysis itself. 
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Figure 7. The AKKORD implementation loop with the VPE SP²IDER data pipeline for integrated 

data proposition to an analysis tool 

6. Summary and Outlook 
This contribution showed how industrial data analytics could be made tangible in the common cases of 

relevant data being spread between multiple systems and sources and where heterogeneous data models 

must be integrated. A state-of-the-art backend system with an extensive data model was developed based 

on CONTACT Elements technology to host all relevant data from the development to the usage phase 

of a product when bringing the data to a new system is feasible. Alongside the data availability to 

analysis, this provides many advantages in terms of data management and visualization capabilities. 

When this is not a feasible approach, it was demonstrated how an integrated data backend with linking 

information and an additional data pipeline with data model integration functions and REST endpoint 

generation could be built based on open technology. 

Future work in the AKKORD project includes the connection of a staging area to the data pipeline for 

performance improvement, as well as the consideration of social and qualification aspects in the usage 

of the AKKORD data analysis toolkit. 
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