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Abstract. Quantales can be regarded as a combination of complete lattices

and semigroups. Unital quantales constitute a significant subclass within quan-
tale theory, which play a crucial role in the theoretical framework of quantale

research. It is well known that every complete lattice can support a quantale.

However, the question of whether every complete lattice can support a uni-
tal quantale has not been considered before. In this paper, we first give some

counter-examples to indicate that the answer to the above question is negative,

and then investigate the complete lattices of supporting unital quantales.

1. Introduction

Originally, quantales were invented to formalize the logic of observables in quan-
tum physics, which became useful to describe the “spaces” of C∗-algebras (see
[3, 11, 12]) and non-commutative geometry (see [4, 14, 15, 16, 17, 19]). The lit-
erature on quantales often emphasizes that these structures are required to have
units. Unital quantales, as a valued domain, have wide applications in theoretical
computer science, logic, quantitative domain, enriched category and many-valued
topological space (see [1, 6, 10, 18, 21, 22]). By definition, a quantale is a complete
lattice Q with a semigroup multiplication & that distributes over arbitrary joins,
that is,

a&(
∨
i∈I

bi) =
∨
i∈I

(a&bi) and (
∨
i∈I

bi)&a =
∨
i∈I

(bi&a) (1.1)

for all a ∈ Q, {bi}i∈I ⊆ Q. A quantale Q is said to be unital provided that there
exists an element e ∈ Q such that q&e = q = e&q for all q ∈ Q. Q is said to be
commutative provided that a&b = b&a for all a, b ∈ Q.

Definition 1.1. Let Q be a complete lattice. Then we say that Q supports a
(unital) quantale if there exists a semigroup multiplication & on Q such that (Q,&)
becomes a (unital) quantale. An element e of Q can become a unit means that Q
supports a unital quantale with unit e.

In [20], one can see that every complete lattice Q can support a quantale (Q,&a)
where a ∈ Q and &a is a semigroup multiplication determined by

∀x, y ∈ Q, x&ay =

{
0, if x = 0 or y = 0,
a, otherwise.

(1.2)
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In [13], Paseka and Kruml investigated the construction of unital quantales from
a given quantale, and they proved that every quantale Q can be embedded into a
unital quantale Q[e]. For some special quantales, by addition of an isolated unit
Gutiérrez Garćıa and Höhle considered the construction of unitally non-distributive
quantales (see [8]). Based on the above work, Han and Lv further discussed the
construction of unital quantales from a given quantale in [9]. According to the
construction of unital quantale Q[e], by (1.2) one can easily see that if a complete
lattice L is isomorphic to Q× 2 for some complete lattice Q, then L can support a
unital quantale, where 2 is the two-element lattice. So, we have the following two
questions.

Question 1: Does every complete lattice support a unital quantale?
If the answer to Question 1 is negative, then we have Question 2 to ask.
Question 2: Which class of complete lattices can support unital quantales?
In order to answer the above questions, we need to review some concepts and

notations. Let L be a complete lattice, a, b ∈ L. Then L is said to be trivial if
| L |= 1 and a is said to be comparable if a ≤ b or b ≤ a for all b ∈ L. Further,
we let [a, b] = {x ∈ L | a ≤ x ≤ b} and (a, b] = {x ∈ L | a < x ≤ b}. a is called
a lower-cover of b (or b is called an up-cover of a) if a 6= b and [a, b] = {a, b}. A
non-empty subset S of L is said to be a sublattice if S is closed under ∧ and ∨.
We denote by L ×M the Cartesian product of complete lattices L and M . Then
L ×M is a complete lattice with pointwise order. In this paper, we denote the
bottom element and the top element in a complete lattice by 0 and 1 respectively.
For the notions and concepts, which are not explained, please refer to [2, 5, 7, 20].

2. Not every complete lattice can support a unital quantale

As we all know, every complete lattice can support a quantale. However, in this
section we will prove that not every complete lattice can support a unital quantale,
that is, the answer to Question 1 is negative. To see this, we need to consider the
following complete lattices.

Lemma 2.1. Let (Q,&) be a unital quantale with unit e. Then a&b ≤ a∧ b for all
a, b ∈ [0, e].

Example 2.2. Let N5 = {0, a, b, c, 1} be a complete lattice which is determined
by Figure 1. Then the top element 1 cannot become a unit.

•
1

•
0

a

b c••

•

Figure 1. The partial order on N5

To see this, we assume that 1 is the unit in quantale (N5,&). Then by Lemma 2.1
we have that b&a ≤ b ∧ a = a and b&c ≤ b ∧ c = 0, which implies that b = b&1 =
b&(a ∨ c) = (b&a) ∨ (b&c) = b&a ≤ a, contradiction.

Example 2.3. Let M3 = {0, a, b, c, 1} be a complete lattice which is determined
by Figure 2. Then the top element 1 cannot become a unit.
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•

•

•

1

ba c

0
Figure 2. The partial order on M3

• •

To see this, we assume that 1 is the unit in quantale (M3,&). Then by Lemma 2.1
we have that a&b ≤ a ∧ b = 0 and a&c ≤ a ∧ c = 0, which implies that a = a&1 =
a&(b ∨ c) = (a&b) ∨ (a&c) ≤ 0, contradiction.

Definition 2.4. Let L be a complete lattice and x ∈ L\{0}. Then x is called an
N5-element (an M3-element) of L if there exists some sublattice M of L such that
x is the top element in M and M is isomorphic to N5 (M3).

Lemma 2.5. Every N5-element or M3-element of a complete lattice L cannot
become a unit of L.

Proof. The proof follows from Examples 2.2 and 2.3. �

Proposition 2.6. If every non-bottom element of a complete lattice L is either an
N5-element or an M3-element, then L cannot support a unital quantale.

Remark 2.7. It is easy to obtain an equivalent statement of Proposition 2.6, that
is, if a complete lattice supports a unital quantale, then it must have a non-bottom
element which is neither an N5-element nor an M3-element. Based on this equiv-
alent statement, we see that the converse of Proposition 2.6 is in general not true
(see Example 2.9 and Example 2.10).

Example 2.8. Let L1 = {aij | 1 ≤ j ≤ 2i−1, i = 1, 2, · · · , n, · · · } ∪ {0} be a
complete lattice determined by Figure 3 in which every non-bottom element of L1

has precisely two lower-covers, and every element of L\{0, a11} has precisely one
up-cover.

•
a11

a21 a22••

•a31 •a32 • a34• a33

•
0

Figure 3. The partial order on L1

It is easy to check that every non-bottom element of L1 is an N5-element. By
Proposition 2.6, we have that L1 cannot support a unital quantale.
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Example 2.9. Let L2 = L1∪{a00, a10} and the partial order on L2 be determined
by Figure 4. Then L2 is a complete lattice. Further, one can see that every element
of L2\{a10, 0} is an N5-element, and a10 is neither an N5-element or an M3-element.
Surprisingly, L2 can indeed support a unital quantale.

• a11

a21 a22•

•a10

•
a00

•

•a31 •a32 • a34• a33

•
0

Figure 4. The partial order on L2

To see this, we define now a binary operation & on L2 as follows ∀x, y ∈ L2,

x&y =



0, if x = 0 or y = 0,
0, if x ∈ (0, a21], y 6∈ {a10, a00} or x 6∈ {a10, a00}, y ∈ (0, a21],
y, if x = a10,
x, if y = a10,
y, if x = a00, y ∈ (0, a21],
x, if x ∈ (0, a21], y = a00,
a00, otherwise.

Then (L2,&) is a commutative unital quantale with unit a10.

Example 2.10. Let I denote the unit open interval (0, 1) with usual order ≤,
Σ = {σr | r ∈ (0, 1)} and Γ = {τr | r ∈ (0, 1)}. Further, we let r ∈ (0, 1), Xr =
{xr,i | i ∈ (0, 1)}, Yr = {yr,j | j ∈ (0, 1)} and L3 = I∪Σ∪Γ∪(

⋃
r∈I

(Xr∪Yr))∪{>,⊥}.

Next, we define a binary relation ≤L3 on L3 as follows: ∀a, r, i, j ∈ I, x ∈ L3,

i ≤L3 j ⇐⇒ i ≤ j, σi ≤L3 σj ⇐⇒ i ≤ j ⇐⇒ τi ≤L3 τj ,

xr,i ≤L3
xr,j ⇐⇒ i ≤ j ⇐⇒ yr,i ≤L3

yr,j ,

a ≤L3 σr ⇐⇒ a ≤ r ⇐⇒ a ≤L3 τr,

a ≤L3
xr,i ⇐⇒ a ≤ r ⇐⇒ a ≤L3

yr,i,

xa,i ≤L3
σr ⇐⇒ a ≤ r ⇐⇒ ya,j ≤L3

τr,

⊥ ≤L3 x ≤L3 >.
It is easy to check that (L3,≤L3) is a complete lattice. Further, we see that every
element of Σ ∪ Γ ∪ {>} is an N5-element, and every element of I ∪ (

⋃
r∈I

(Xr ∪ Yr))

is neither an N5-element nor an M3-element. However, L3 indeed cannot support
a unital quantale (see Proposition 2.12).
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⊥

>

•

◦

◦

•

•

•

r

a

1

0

Figure 5. The partial order on L3

yr,j
•

xr,i
•

ya,j
•

xa,i
•

•

•

◦

◦

σr

σa

•

◦

◦

•

τr

τa

For convenience, we use ≤ instead of ≤L3 . The following lemma lists some
properties of complete lattice L3.

Lemma 2.11. Let L3 be the complete lattice in Example 2.10 and a, r, i, j ∈ I.
Then

(1)
∨
b<r

b = r,
∨
r∈I

r = > and
∨
r∈I

σr = > =
∨
r∈I

τr.

(2)
∧
j∈I

yr,j = r =
∧
i∈I

xr,i,
∨
j∈I

yr,j = τr and
∨
i∈I

xr,i = σr.

(3)
∨
b<r

xb,j = σr and
∨
b<r

yb,j = τr.

(4) if a 6= r, then σr ∨ a = σr∨a = xr,i ∨ xa,j and τr ∨ a = τr∨a = yr,j ∨ ya,i.
(5) σr ∧ a = r ∧ a = xr,i ∧ ya,j and τr ∧ a = r ∧ a = σr ∧ τa = r ∧ τa.
(6) if a 6= r, then xr,i ∧ xa,j = a ∧ r = yr,i ∧ ya,j.
(7) if a < r, then σa ∧ xr,i = a.
(8) if x ∈ Σ ∪ (

⋃
r∈I

Xr), y ∈ Γ ∪ (
⋃
r∈I

Yr), then x ∨ y = >.

Proposition 2.12. L3 cannot support a unital quantale.

Proof. Assume that L3 supports a unital quantale (L3,&) with unit Υ. Then we
have the following different cases for unit Υ.

Case 1. Υ 6= ⊥.
Assume that Υ = ⊥. Then by (1.1) one can see that ⊥ = ⊥&> = Υ&> = >,

contradiction.
Case 2. Υ 6∈ Σ ∪ Γ ∪ {>}.
Assume that Υ ∈ Σ∪Γ∪{>}. Since every element of Σ∪Γ∪{>} is an N5-element,

by Lemma 2.5 we have that Υ cannot become a unit, contradiction.
Case 3. Υ 6∈ I.
Assume that Υ = r ∈ I. Then we will prove that there exists d < r such that

σd ≤ xdi, contradiction.
To see this, we first give the following asserts.
(1) For all b ∈ I with b < r, we have that b ≤ σr&b ≤ σb.
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There exists an element c ∈ I with c < b. By Lemma 2.11, we have b = r&b ≤
σr&b = (σc ∨ r)&b = (σc&b) ∨ (r&b) ≤ σc ∨ b = σb.

(2) There exists r > b0 ∈ I such that b0 < σr&b0 ≤ σb0 .
Assume that for all b ∈ I with b < r, b = σr&b. Then r =

∨
b<r

b =
∨
b<r

(σr&b) =

σr&(
∨
b<r

b) = σr&r = σr, which implies that r = σr, contradiction.

(3) For b0 < d < r, we have that σr&d = σd.
Since b0 < σr&b0 ≤ σr&d, by (1) and Lemma 2.11 we have that σr&d = σd.
By (3) and Lemma 2.11 we have that σd = σr&d = (xd,i ∨ r)&d = (xd,i&d) ∨

(r&d) = (xd,i&d)∨ d ≤ (xd,i&r)∨ d ≤ xd,i ∨ d = xd,i, which implies that σd ≤ xd,i,
contradiction. Thus, Υ 6∈ I.

Case 4. Υ 6∈
⋃
r∈I

(Xr ∪ Yr).

Assume that Υ ∈
⋃
r∈I

(Xr ∪Yr). Then we will prove that there exist b, r ∈ I such

that b < r, (Yr ∪ {τr}) ∩ {m ∈ L3 | m ≤ τb} 6= ∅ or (Xr ∪ {σr}) ∩ {m ∈ L3 | m ≤
σb} 6= ∅, contradiction.

Without loss of generality, we suppose that Υ = xr,i0 ∈ Xr for some r ∈ I. Then
we have the following asserts.

(1) For all b ∈ I with b < r, we have σr&b = b and b&σr = b.
Since b = xr,i0&b ≤ σr&b = (σb∨xr,i0)&b = (σb&b)∨(xr,i0&b) ≤ (σb&xr,i0)∨b =

σb, we have that b ≤ σr&b ≤ σb. For all xb,j , we have that σr&b = (xb,j∨xr,i0)&b =
(xb,j&b)∨ (xr,i0&b) ≤ (xb,j&xr,i0)∨ b = xb,j . By Lemma 2.11, we have b ≤ σr&b ≤∧
j∈I

xb,j = b, which implies that σr&b = b. Similarly, we can show that b&σr = b.

(2) σr&r = r = r&σr and r&r = r.
By (1) and Lemma 2.11, we have r =

∨
b<r

b =
∨
b<r

(σr&b) = σr&(
∨
b<r

b) = σr&r.

Similarly, we have r = r&σr. For b ∈ I with b < r, we have σb&r ≤ σb ∧ r = b and
r = σr&r = (σb ∨ r)&r = (σb&r) ∨ (r&r) ≤ b ∨ (r&r) ≤ b ∨ (r&σr) ≤ b ∨ r = r,
which implies r&r = r.

(3) For all b ∈ I with b < r, we have r&b = b = b&r.
We let c ∈ I and c < b. Then for all xc,j , by (1) we have xc,j&b ≤ xc,j&xr,i0 =

xc,j and xc,j&b ≤ σc&b ≤ σr&b = b, which implies that xc,j&b ≤ xc,j∧b = c. Thus,
b = σr&b = (xc,j ∨ r)&b = (xc,j&b) ∨ (r&b), which implies b = r&b. Similarly, we
can prove that b = b&r.

(4) For all b ∈ I with b < r, we have r&σb = b = σb&r.
By (2), we have that σb&r ≤ σb&xr,i0 = σb and σb&r ≤ σr&r = r, which implies

σb&r ≤ σb ∧ r = b. It follows from (3) that b = b&r ≤ σb&r ≤ b, that is, b = σb&r.
Similarly, we can show that r&σb = b.

(5) For all b ∈ I with b < r, we have r&xb,j = b = xb,j&r.
By (3) and (4), we have that b = r&b ≤ r&xb,j ≤ r&σb = b, that is, r&xb,j = b.

Similarly, we have b = xb,j&r.
(6) For all b ∈ I with b < r, we have τr&b = >&b and b&τr = b&>.
By (1) and (3), we have that τr&b = (r∨ τb)&b = (r&b)∨ (τb&b) = b∨ (τb&b) =

(σr&b) ∨ (τb&b) = (σr ∨ τb)&b = >&b. Similarly, we have b&τr = b&>.
(7) r < τr&r = >&r ≤ τr.
By (6), we have that τr&r = τr&(

∨
b<r

b) =
∨
b<r

(τr&b) =
∨
b<r

(>&b) = >&(
∨
b<r

b) =

>&r. Further, one can see that r = r&r ≤ xr,i0&r ≤ >&r = τr&r ≤ τr&xr,i0 = τr.
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Assume that r = τr&r. It follows from (5) and Lemma 2.11 that for all b < r
we have that r = >&r = (xb,j ∨ τb)&r = (xb,j&r) ∨ (τb&r) = b ∨ (τb&r) ≤
b ∨ (τb&xr,i0) ≤ b ∨ τb = τb, which implies r ≤ τb, contradiction. Thus, r < τr&r =
>&r ≤ τr.

By (1)-(7), for all b < r, we see that r < >&r = (σb∨τb)&r = (σb&r)∨ (τb&r) =
b ∨ (τb&r) = (b&r) ∨ (τb&r) = (b ∨ τb)&r = τb&r ≤ τr&r ≤ τr, which implies
that r < τb&r ≤ τr, that is, τb&r ∈ Yr ∪ {τr}. Obviously, τb&r ≤ τb&xr,i0 ≤ τb.
However, (Yr ∪ {τr}) ∩ {m ∈ L3 | m ≤ τb} = ∅, contradiction. Thus, Υ 6∈

⋃
r∈I

Xr.

Similarly, we can show that Υ 6∈
⋃
r∈I

Yr.

From Cases 1-4, it follows that Υ 6∈ L3, contradiction. Therefore, L3 cannot
support a unital quantale. �

By Example 2.8 and Proposition 2.12, we have the below conclusion.

Proposition 2.13. Not every complete lattice can support a unital quantale.

3. Complete lattices supporting unital quantales

In Section 2, we see that not all complete lattices can support unital quantales.
In this section, we will investigate Question 2, that is, which class of complete
lattices can support unital quantales.

An element x of quantale Q is called a zero-factor of Q provided that x 6= 0 and
there exists an element y ∈ Q\{0} such that x&y = 0 or y&x = 0.

Proposition 3.1. Every complete chain supports a commutative unital quantale
without zero-factors.

Proof. Let I be a complete chain, e ∈ I\{0}. Then we have two ways to define a
binary operation on I such that I becomes a commutative unital quantale without
zero-factors.

(1) The first way to define a binary operation & on I is given as follows

∀x, y ∈ I, x&y =

 0, if x = 0 or y = 0,
x ∧ y, if x, y ∈ (0, e],
x ∨ y, otherwise.

It is easy to check that (I,&) is a commutative unital quantale with unit e and L
has no zero-factors.

(2) The second way to define a binary operation ⊗ on I is given as follows

∀x, y ∈ I, x⊗ y =


0, if x = 0 or y = 0,
x ∧ y, if x, y ∈ (0, e],
y, if x ∈ (0, e], y ∈ (e, 1],
x, if y ∈ (0, e], x ∈ (e, 1],
1, otherwise.

It is easy to check that (I,⊗) is a commutative unital quantale with unit e and L
has no zero-factors. �

Proposition 3.2. Let Q be a complete lattice and e ∈ Q\{0}. If [0, e] supports a
(commutative) unital quantale with unit k and Q satisfies the condition (∗)

∀x ∈ (0, e], y ∈ Q\[0, e], x ≤ y ⇐⇒ e ≤ y, (∗)
then Q supports a (commutative) unital quantale with unit k.
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Proof. Let ([0, e],&) be a (commutative) unital quantale with unit k. Then & can
be extended to a binary operation ⊗ on Q as follows

∀x, y ∈ Q, x⊗ y =


0, if x = 0 or y = 0,
y, if x ∈ (0, e], y ∈ Q\[0, e],
x, if x ∈ Q\[0, e], y ∈ (0, e],
x&y, if x, y ∈ (0, e],
1, if x, y ∈ Q\[0, e].

It can be verified that (Q,⊗) is a (commutative) unital quantale with unit k. Fur-
ther, if ([0, e],&) has no zero-factors, then (Q,⊗) has no zero-factors. �

Corollary 3.3. Let Q be a complete lattice and e ∈ Q\{0}. If [0, e] is a chain
and Q satisfies the condition (∗), then Q supports a commutative unital quantale
without zero-factors.

Proof. The proof follows immediately from Propositions 3.1 and 3.2. �

Corollary 3.4. Every complete lattice with non-bottom minimal element supports
a commutative unital quantale without zero-factors.

Proof. Let Q be a complete lattice with non-bottom minimal element e. Then
[0, e] = {0, e} and Q satisfies the condition (∗). By Corollary 3.3, we have that Q
supports a commutative unital quantale without zero-factors. �

Corollary 3.5. Every finite complete lattice supports a commutative unital quan-
tale without zero-factors.

Proposition 3.6. Let Q be a complete lattice and a ∈ Q\{0, 1} be a comparable
element. Then we have

(1) if [a, 1] is a chain, then Q supports a commutative unital quantale.
(2) if [0, a] is a chain, then Q supports a commutative unital quantale without zero-

factors.

Proof. (1) Assume that [a, 1] is a chain. Then we can define a binary operation ⊗
on Q as follows

∀x, y ∈ Q, x⊗ y =

{
0, if x, y ∈ [0, a],
x ∧ y, otherwise.

It is easy to verify that (Q,⊗) is a commutative unital quantale with unit 1.
(2) The proof follows directly from Propositions 3.1 and 3.2. �

Let Q be a complete lattice and {⊥, e,>} ∩Q = ∅. Next, we will consider three
types of extensions Q⊥, Qe, Q> of Q, where Q⊥ = Q ∪ {⊥}, Qe = Q ∪ {e}, Q> =
Q ∪ {>}. We respectively define the relations ≤Q⊥ ,≤Qe

,≤Q> as follows

≤Q⊥=≤Q ∪{(⊥, x) | x ∈ Q⊥},
≤Qe

=≤Q ∪{(0, e), (e, e), (e, 1)},
≤Q>=≤Q ∪{(x,>) | x ∈ Q>}.

It is easily checked that (Q⊥,≤Q⊥), (Qe,≤Qe
) and (Q>,≤Q>) are complete lattices,

called the extensions of Q. By Corollary 3.3 and Proposition 3.6, we have the
following result.

Corollary 3.7. For any complete lattice Q, the extensions Q⊥, Qe, Q> can all
support unital quantales.
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The proof of Theorem 3.8 can be found in Theorem 2.4 in [9]. For the convenience
of readers, we will give the main details.

Theorem 3.8. Let Q be a complete lattice with Q = M×K. If M or K supports a
commutative unital quantale without zero-factors, then Q supports a unital quantale.

Proof. Without loss of generality, we assume that (K,&) is a commutative unital
quantale without zero-factors and e is the unit. By (1.2), we have that (M,&a) is
a quantale with a ∈ M . Next, we define a binary operation &∗ on Q as follows:
∀(m, k), (n, k′) ∈M ×K,

(m, k)&∗(n, k
′) = ((m&an) ∨ (m ∗ k′) ∨ (n ∗ k), k&k′),

where ∗ is a module operator from M ×K into M defined by

∀m ∈M,k ∈ K, m ∗ k =

{
0, if k = 0,
m, otherwise.

It can be verified that (Q,&∗) is a unital quantale with unit (0, e). �

Corollary 3.9. Let Q be a complete lattice with Q = M ×K satisfying one of the
following conditions:

(1) M or K is a non-trivial complete chain;
(2) M or K is a non-trivial finite complete lattice;
(3) M or K has a comparable element e such that [0, e] is a chain.

Then Q supports a unital quantale.

Proof. The proof follows from Proposition 3.1, Corollary 3.5, Proposition 3.6(2)
and Theorem 3.8. �

In the following, we will give a complete lattice which does not belong to any of
the aforementioned types of complete lattices supporting unital quantales.

Example 3.10. Let I denote the unit open interval (0, 1) with usual order ≤, Σ =
{σr | r ∈ (0, 1)}. Further, we let X = {xr | r ∈ (0, 1)} and L4 = I ∪Σ∪X ∪{>,⊥}.
We define a binary relation ≤L4

on L4 as follows: ∀r, i, j ∈ I, x ∈L4
,

i ≤L4
j ⇐⇒ i ≤ j ⇐⇒ σi ≤L4

σj ,

i ≤L4 σj ⇐⇒ i ≤ j ⇐⇒ i ≤L4 xj ,

xr ≤L4
σj ⇐⇒ r ≤ j,

⊥ ≤L4
x ≤L4

>.

It is easy to check that (L4,≤L4
) is a complete lattice.
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Figure 6. The partial order on L4
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We let Ir = {a ∈ I | a ≤ r}, Xr = {xa ∈ X | a ≤ r} and Σr = {σa ∈ Σ | a ≤ r}.
Next, we define a binary operation ⊗ on L4 as follows: ∀x, y ∈ L4,

x⊗ y =



⊥, if x = ⊥ or y = ⊥,
x ∧ y, if x, y ∈ Ir,
xa∧c, if x = xa ∈ Xr, y = xc ∈ Xr,
σa∧c, if x = σa ∈ Σr, y = σc ∈ Σr,
a ∧ c, if x = a ∈ Ir, y = xc ∈ Xr or x = xa ∈ Xr, y = c ∈ Ir,
a ∧ c, if x = a ∈ Ir, y = σc ∈ Σr or x = σa ∈ Σr, y = c ∈ Ir,
σa∧c, if x = xa ∈ Xr, y = σc ∈ Σr or x = σc ∈ Σr, y = xa ∈ Xr,
y, if x ∈ Ir ∪ Σr ∪Xr, y ∈ L4\(Ir ∪ Σr ∪Xr),
x, if y ∈ Ir ∪ Σr ∪Xr, x ∈ L4\(Ir ∪ Σr ∪Xr),
>, otherwise.

It is easy to verify that (L4,⊗) is a commutative unital quantale with unit xr and
L4 has no zero-factors.

Further, we will obtain more interesting observations for complete lattice L4.
(1) Since every element of Σ is an N5-element, it follows from Lemma 2.5 that

σr ∈ Σ cannot become a unit.
(2) Every element of I ∪X is neither an N5-element nor an M3-element. Based

on the above description, we see that every element xr of X can become a unit.
However, every element of I cannot become a unit (see the proof of Case 3 in
Proposition 2.12).

(3) The top element > is neither an N5-element nor an M3-element. Also, >
cannot become a unit.

Assume that > can become a unit in quantale (L4,&). For d, r ∈ I, we have that
d&σr ≤ d ∧ σr ≤ r, which implies that σr = >&σr = (

∨
r<d

d)&σr =
∨
r<d

(d&σr) ≤ r,

contradiction.
(4) L4 does not belong to any of the aforementioned types of complete lattices

supporting unital quantales in Propositions 3.1, 3.2, 3.6 and Theorem 3.8.
To see this, L4 is obviously not a chain and also L4 has no non-trivial comparable

elements. Further, we see that there are no non-bottom elements e in L4 such that
L4 satisfies the condition (∗), and L4 is not isomorphic to any product lattice M×K
for all non-trivial complete lattices M and K.
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4. Conclusion

From Remark 2.7, we see that if a complete lattice supports a unital quantale,
then it must have a non-bottom element which is neither an N5-element nor an
M3-element. However, the converse is in general not true. From Example 2.10
and Example 3.10, one can see that for the non-bottom elements of a complete
lattice which are neither an N5-element nor an M3-element, some can become a
unit while others cannot. So, it is not easy to determine whether a complete lattice
can support a unital quantale. In other words, it is very difficult to give a necessary
and sufficient condition for a complete lattice to support a unital quantale.

Acknowledgements. The authors are very grateful to the referees for the very
careful reading of the manuscript and very useful comments.
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