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Bitstreams, square wave digital signals, enable flexible radar implementations in modern digital technology. By using bit-
streams in place of analog sinusoidal waveforms, we can realize continuous-wave (CW), stepped-frequency CW, frequency-
modulated CW, or even pseudo random noise-sequence and pulsed radars, all with a single bit of amplitude resolution. The
building blocks are a programable waveform generator, a sweep threshold quantizer, digital delay, and a digital XOR gate as a
mixer. This gives us a novel, almost fully digital (requiring only a comparator) system, as previously proposed and which is
extended here. The flexibility of the transmitter allows for easy switching between waveforms and the bitstream signal can be
processed with single-bit digital gates. Single-bit signals allows for exploration of novel continuous time non-clocked digital
implementations to maximize speed and energy efficiency. Mixing frequencies with a digital XOR gate creates harmonics,
which are explored for multiple solutions utilizing digital delay. Analytical as well as simulation results are presented.
Initial measurements from a 90 nm CMOS chip is provided for the transmitter and the full system, proving the feasibility
of a digital future in radar.
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I . I N T R O D U C T I O N

Modern digital technology bring miniaturization, low-power
consumption, substantial computational power, and integra-
tion of complex processing on a small piece of silicon
(system-on-chip). For modern radar systems, the full advan-
tage of modern technology has been difficult to utilize in
spite of faster devices and higher computational speed. As
indicated in [1] modern radar systems are still fairly large
modules with substantial size and power consumption.

The basic principles of radar have been known for more
than a century, over the years several radar architectures
have been explored; each with its own tradeoff in application
and hardware complexity. Radar architectures differ mainly
by the utilized waveform, example architectures contains,
continuous-wave (CW) radar for velocity determination,
pulsed ranging radar, frequency-modulated continuous-wave
(FMCW) radar, stepped-frequency continuous-wave (SFCW)
radar, and noise radar. The frequency-modulated architec-
tures need a frequency source and a mixer, but require only
a modest sampling rate of the mixer difference. The pulsed
and noise radars are more amendable to digital implementa-
tion, but require a receiver that samples the entire transmitted
bandwidth.

Several integrated radar systems have appeared in the lit-
erature, some with commercial interest. The first single-chip
complementary metal–oxide–semiconductor (CMOS) radar
was published by Hjortland et al. [2] in 2006, featuring a
pulsed radar system now commercially available from
Novelda [3]. Later an integrated SFCW radar was reported
in 65 nm CMOS by Caruso [4] for breast cancer detection.
Sachs [5] has written extensively on a M-sequence radar
using SiGe BiCMOS technology. A growing application is
automotive radars in the 60/70 GHz bands, where multiple
single-chip solutions have been presented and some are com-
mercially available [6], CMOS realizations in the literature
include [7–10]. Several short-range radar systems are
reported [11–13] indicating a number of potential sensing
applications provided a compact, low-power, and high-
performance radar is available; preferably in low-cost stand-
ard technology.

Figure 1 shows the proposed generic, programable
system-on-chip radar with a FMCW receiver. Other architec-
tures like CW, SFCW, as well as noise radar will be explained
later in the paper, by simply replacing the dashed receiver
circuit.

The proposed solution uses a programable waveform gen-
erator and a swept threshold receiver, the frequency modu-
lated architectures (CW, SFCW, and FMCW) uses a single
XOR gate as a mixer and the CW/SFCW system uses counters
to obtain the desired averaged DC output.

The receiver amplifies the backscattered signal and quan-
tizes the signal to a bitstream by comparing it with a change-
able threshold voltage. This operation is non-linear, but by
repeating the measurement with different threshold voltages,
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we re-create the incoming signal (limited to the resolution of
the threshold voltage). As we repeat the measurement, noise
will be uncorrelated and the signal can be averaged coherently
(assuming the scene is stationary during the measurement
period). We therefore increase the signal-to-noise ratio
(SNR), while recreating the received signal. The concept is
called “swept-threshold” sampling [15] and combines single-
bit amplitude clipping, averaging, and threshold sweeping.
The comparator is the only analog component, having two
continuous time analog voltages as inputs and a continuous
time square wave digital output (bitstream).

In principle, the waveform generator and the swept thresh-
old receiver could implement all of the proposed architectures,
assuming we could sample the entire bitstream comparator
output and de-modulate the signal in software. Although
this sampling is made easier by the fact that we only need to
sample a single bit in amplitude resolution, this is still a non-
optimal implementation. Part of the novelty in this paper, is
that we instead do the processing while the signal is still a bit-
stream; replacing the conventional analog mixer, with a
simple and compact XOR gate! This allows us to take advan-
tage of the matched filter property of a frequency modulated
radar and lowers the required sample rate (or increases the
oversampling rate). Bitstream processing also enables a high-
speed running cross-correlation circuit for a pseudo noise
radar, by simply combining multiple XOR gates with delays,
as will be seen in Section V.

The frequency-modulated architectures extracts the phase
or frequency difference by mixing the transmitted and
received signal (giving the beat frequency in a FMCW
radar). Mixer output is then Fourier transformed, yielding
harmonics due to the square wave nature of both inputs,
these harmonics must be carefully considered. We analytic-
ally derived the harmonics in Section II and show ways to
remove or even utilize the harmonic in Section III. We
then briefly cover a CW radar with a SFCW processor in
Section IV, before we show a correlation-based radar in
Section V, and an unmodulated pulsed radar in Section VI.
The chip and measurement setup is reviewed in Section
VII, with a post-layout simulation and a full FMCW trans-
ceiver measurement.

Preliminary simulations and handling of harmonics was
first published in [14]; this is an extended paper with analyt-
ical treatment and measurements from a prototype chip
implementation.

I I . A N A L Y T I C A L M I X I N G O F
F R E Q U E N C Y - M O D U L A T E D
W A V E F O R M S

We will here outline the theoretical frequency behavior when
using a digital XOR gate as a mixer. This theoretical founda-
tion is then used in a digital FMCW radar in Section II.A and a
digital CW/SFCW radar in Section II.B. Starting with the
behavior of an analog mixer with inputs X(t) and Y(t) per-
forms the simple multiplication

M(t) = X(t) · Y(t).

For two sinusoidal inputs, with arbitrary phases fX (t) and
fY (t), the mixer output can be expressed as

M(t) = AX cos(fX(t))AY cos(fY (t)),

which can be re-expressed by applying Euler’s formula

M(t) = AXAY

2
[cos(fX(t) + fY (t)) + cos(fX(t) − fY (t))]

;
AXAY

2
[cos(f+(t)) + cos(f−(t))],

leaving us with the sum and difference between the phases of
X and Y. Of particular interest in a frequency-modulated radar
and for brevity in the derivations below, we will often look at
the differentiation only, namely the frequency

f (t) ;
1

2p
∂

∂t
f(t).

A square wave can be expressed as an infinite sum of odd
harmonics, so a square wave mixer (an XOR gate), will be
doing

M(t) =
∑

n=1,3,5,...

AXn cos(nfX(t))
( )

∑
n=1,3,5,...

AYn cos(nfY (t))
( )

.

(1)

As the signals are rail-to-rail digital signals, we can, for
notational convenience, assume AXn ¼ AYn ¼ An. Some
algebra will yield the following phase/frequency terms:

f+
ij = ifX(t)+ jfY (t),

f +ij = ifX(t)+ jfY (t)
(2)

for i, j [ [1, 3, 5, . . .] with amplitudes Ai Aj.

Fig. 1. Principle of a bitstream waveform generator utilized in a digital FMCW
radar with a swept threshold receiver. The range spectrum is obtained after
sampling, averaging and a frequency transform. Harmonics not shown, two
up-sweeps depicted with different threshold levels for each sweep [14].
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A) Analytical FMCW
In a FMCW radar, the phase and frequency takes the form

fFMCW(t) = 2p flt +
fo − fl

2Tm
t2

( )
(3)

fFMCW(t) = fl +
fo − fl

Tm
t,

; fl + at,

(4)

where the frequency goes from fl to fo in Tm seconds, and a is
the chirp rate. For a single return at the two-way travel time tk,
the mixer product becomes

Mtk (t) = AX cos(fX(t))AY cos(fX(t − tk)),

leading to the sum and difference frequencies

f +11 = 1
2p

∂

∂t
(fX(t) + fX(t − tk))

= (fl + at) + (fl + a(t − tk))
= 2(fl + at) − atk,

(5)

f −11 = 1
2p

∂

∂t
(fX(t) − fX(t − tk))

= atk,

(6)

the beat sum, f +11 , can be filtered out as long as 2( fl + at) ≫
atk, which is normally assured by having a slow sweep time
Tm, leaving us with the desired beat frequency atk, which is
easily identified by a Fourier transform.

In a square wave FMCW radar, the mixer will, as seen in
(1), not only mix the fundamental frequency terms, but also
mix the harmonics. Writing out (2) when we include the
third harmonic, we obtain

f −11 = atk f +11 = 2at − atk + 2fl,

f −33 = 3atk f +33 = 6at − 3atk + 6fl,

f −13 = −2at + 3atk − 2fl f +13 = 4at − 3atk + 4fl,

f −31 = 2at + atk + 2fl f +31 = 4at − atk + 4fl.

(7)

Even when including higher order harmonics, the resulting
frequencies are, as seen above, linear in time t. The third har-
monic from each input mixes together and creates multiples of
the beat difference (and beat sum) f +33 = 3f +11 , while the cross-
terms result in various integer slopes.

These slopes can be seen in the left column of Fig. 2, where
we have plotted the entire mixer output spectogram as the first
row, a zoomed view in the middle row and a Fourier

Fig. 2. Analytical, simulated, and measured beat spectrum for a square wave FMCW sweep from 38.1 to 799 MHz in 25.3 ms. Top: spectogram of the entire mixer
spectrum; middle row: spectogram of the mixer difference (beat spectrum), with a (Hanning windowed) fast Fourier transform (FFT) at the bottom. From left to
right: analytical model, python simulation, and measured results on the right. The transmitter is “clocked” at 1/97 ps ¼ 10.4 GHz; hence, the visible aliasing around
5.2 GHz. The measurements are here only the transmitter, where the mixing and delay is done entirely in software. The beat spectrum is linearized with the
technique presented in Section VII.
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transform of the beat spectrum in the bottom row. In addition,
we have included the effect of a sampled transmitter, where
the down-aliasing is visible as a folding around half the trans-
mitters clock rate.

The depicted analytical model use terms up to the 30th har-
monic, where we only draw up to the 9th in the spectogram
view. The spectogram views use the polynomials in (7) but
aliased above the transmitters Nyquist frequency of 5.2 GHz.
To create the Fourier view, the analytical model first sums
up the phase terms

yanalytical[nT] =
∑

i[[1, 3, 5, ...]
Ai

∑
j[[1, 3, 5, 7]

Aj cos(f+
ij [nT])

[ ]
,

f+
ij [nT] = ifFMCW[nT]+ jfFMCW[nT − ti],

where fFMCW is found in equation (3), T = 97ps,
Tm = 25.3 ms, and n [ [0, 1, . . . , Tm/T]. The waveform is
then upsampled and zero padded before a Hanning windowed
Fourier transform.

A square wave mixer has a large number of intermixing pro-
ducts. In addition to handle harmonics, care must be taken
when selecting the sweep parameters fl, fo, and Tm to minimize
the interference of the mixer cross-terms. As the mixer cross-
terms are not constant in time, their interference does not
cause false targets, but rather raises the noise floor.

B) Analytical CW/SFCW
Transmitting a single frequency fc, a square wave mixer sees
the inputs

fX = 2pfct, (8)

fY = 2pfc(t − tk). (9)

We notice that a frequency domain investigation is insuffi-
cient, as we simply get

f −ii = f −jj = 0 for i, j [ [1, 3, 5, . . .], (10)

i.e. the fundamental and all of the harmonic differences will
mix down to DC. Looking instead at the phase, we obtain

f−
11 = 2pfctk f+

11 = 2pfc(2t − tk),
f−

33 = 6pfctk f+
33 = 6pfc(2t − tk),

f−
13 = 2pfc(−2t + 3tk) f+

13 = 2pfc(4t − 3tk),

f−
31 = 2pfc(2t + tk) f+

31 = 2pfc(4t − tk).

(11)

The “classical” result is here the phase f−
11, which gives a

(ambiguous) range estimate at

f−
11 = 2p(fctk + n) for n [ +[0, 1, 2, 3, . . .], (12)

which can be solved for the two-way travel time of target k

tk =
f−

11

2pfc
− n

fc
, (13)

we notice that the ambiguity of phase wrapping creates false
targets every 1/fc. To improve this, we need to measure with
multiple frequencies fc, say N frequencies spaced Dfc apart,
each frequency being transmitted for Dtc seconds. We now
have a SFCW radar, where the change in measured phase
gives the range information [16]

fSFCW = 1
2p

∂f−
11(fc)
∂t

, (14)

= ∂

∂t
fctka + n
( )

, (15)

= tk
∂

∂t
fc, (16)

which is just the discrete equation

= tk
Dfc

Dtc
. (17)

In a similar manner to the FMCW radar, we now have a
direct link between a frequency and the two-way travel time
of the target. This is however inherently sampled, following
[16], the ambiguity of Dfc discrete frequency steps creates
aliasing around t ¼ 1/(2Dfc). A tight number of steps is there-
fore required to avoid far off returns appearing as aliased
responses.

There is no strict requirement for I/Q sampling, as the
phase at each step f−

11(fc) is never explicitly needed in the pro-
cessing, we simply use the real-valued samples for each SFCW
step to recreate the environments transfer function. We there-
fore achieve the same final result as an I/Q SFCW radar by
sampling with twice the number of frequencies. From (10)
we notice that the output of interest lies at DC, so for each
SFCW step, we simply store the mean mixer output value.
The fSFCW is then found to be a Fourier transform, alterna-
tively, we can get tk directly from an inverse Fourier
transform.

The aliasing does however represents a challenge for a
square wave SFCW radar. In the FMCW case, the ambigu-
ous/additional responses at iatk (for i [ [3, 5, . . .]) can be
filtered by an anti-aliasing filter before sampling the beat fre-
quency. In the SFCW case, the undesired phase terms i2pfctk

will create the sampled frequencies itkDfc/Dtc, which will fold
into signal band if left unmanaged.

The solution is identical to a superheterodyne receiver,
where instead of using a single frequency, we transmit one fre-
quency and mix with a frequency that is offset by fc + foffset.
The mixer difference will produce the offset frequency, and
the harmonics mix to create [3foffset, 5foffset, . . .], which can
be filtered out.

We will return to a square wave SFCW radar in Section IV,
but first, we must deal with the harmonics.

I I I . D E A L I N G W I T H H A R M O N I C S

As we have seen, a frequency-modulated radar will, after a
Fourier transform, have ambiguous returns at integer multi-
ples of the true target. Although these ambiguous returns
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are lower in amplitude, they will appear indistinguishable
from weaker true targets. A method to circumvent the ambi-
guity was first presented in [17], where we briefly presented
how a delay on the receiver separated the harmonics from
the signals. This was then extended in [14], where we not
only showed how to move the targets out of band, but also
how to utilize the harmonics constructively and an alternative
technique that suppresses the harmonics in-band. In this
paper, we have refined the simulation setup and the correl-
ation technique.

The advantage of using a bitstream as the waveform is that
implementing a programable time delay is realistic. This
enables an array of new radar signal processing opportunities,
since we can now freely adjust the range response, making
targets appear closer or further away depending on which
path is delayed. In a square wave frequency-modulated
radar, this functionality is useful, since it gives multiple
methods to separate the harmonics from the fundamental.

There are multiple ways to implement the programable
delay. In continuous time, we can use a series of digitally
selectable inverters. In a synchronous implementation, we
can duplicate the generator and program in a time-offset
between them. One generator then feeds the mixer, while
the other is used for transmission. A delay inserted in the
on-chip path between the generator and mixer will decrease
the apparent two-way travel time of the response, while a
delay in the channel path will make the environment response
appear further away. For the channel path, which is the pro-
gramable delay we will use here, the delay can either be
inserted on the receiver (after the threshold, as depicted in
[17]) or, equivalently, on the transmitter; as both placements
increase the apparent two-way travel time. We will denote this
adjustable delay as ttx.

A) Moving out of band
The first method we will present requires a delay equal to (or
greater) than the desired unambiguous range run. A delay of
ttx ¼ tun ¼ 2run/c will move the fundamental of the direct
return to atun with its second harmonic now moved to
2atun. This creates a unambiguous band for the fundamental,
allowing us to ignore (filter away) the harmonics.

To illustrate this technique, we simulate a square wave
FMCW radar (as indicated in Fig. 1) and obtain the beat spec-
trums in Fig. 3. For simplicity, we here view everything as con-
tinuous time and care is taken in the simulation to minimize
aliasing when modeling the square waves in a discrete simula-
tion. We do not include the typical low-pass filtering and sam-
pling of the beat spectrum.

In Fig. 3, we simulate five targets distributed between 0 m
and run = 100m using increasing delay settings in the
channel path. Without delay, the close in targets will have har-
monics interwoven with targets further out. As we increase the
delay, we can not only get an unambiguous frequency range
for the fundamental (middle panel), but we can also get an
unambiguous range for the individual harmonics.

Remember that the third harmonic components are created
by the mixing the third harmonics of the two mixer inputs; this
means that a sweep with bandwidth BW ¼ fo 2 fl has third har-
monics sweeping 3fo 2 3fl ¼ 3BW. This gives us three times the
bandwidth, and hence three times the resolution! We show this
resolution in the bottom panel of Fig. 3, where two targets sepa-
rated by 136 mm are barely separated when we use the

fundamental, but is clearly separated when looking at the
third harmonic in the beat spectrum.

The only requirements for utilizing the harmonics is that
(a) the mixer is digital and (b) that we can look at the harmo-
nics without ambiguity. We will show the first requirement in
Section VII.B, where we simulate a digital XOR gate with
sinusoidal inputs, but we will first show a second way of
getting an unambiguous spectrum.

B) Resolving in band ambiguity
If the desired unambiguous range is large, the above approach
may necessitate an impractically long delay. As an alternative
approach, we have therefore proposed a second solution. The
idea is that instead of moving the harmonics all the way out of
the band, we can make repeated measurements with different
delays, in essence giving us staggering or jittering in the beat
spectrum. If we do a frequency shift of the spectrum, both
the fundamental and harmonics will shift by the same fre-
quency, while a delay will cause the fundamental to shift by
a different amount than the harmonics. Assuming the non-
delayed response is

F = [fi, 3fi, 5fi, . . .]

a new measurement with a delay ttx on the receiver results in

Fttx = [fi + attx, 3(fi + attx), 5(fi + attx), . . .].

Fig. 3. Simulated scenario to illustrate how a delay in the channel path can
separate the fundamental from the harmonics. A square wave chirp, where
the fundamental goes from 600 MHz to 2.67 GHz in 16.7 ms is repeated 20
times with a linearly varying thresholds for each chirp. The first panel uses
no delay and shows five equal amplitude targets interwoven with harmonics.
By increasing the delay, by 2 · 100m/c = 667ns, the next panel (middle)
shows the harmonics moved out of the highlighted fundamental band. At
the bottom, we increase the delay even further to separate the third and fifth
harmonic, allowing us to utilize the higher resolution of the third
harmonics. Originally proposed in [14].
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Shifting this back by fshift ¼ attx results in

Ffshift = Fttx − fshift

= [fi, 3(fi + a) − attx, 5(fi + attx) − attx, . . .].

We notice that the fundamentals of F and Ffshift lines up at fi,
while the harmonics do not. The shift is simplest to achieve
after a Fourier transform, as a re-arrangement of indices.

By measuring with different delay settings of ttx and com-
pensating for the expected shift, the range profiles can be aver-
aged. This effectively dithers away the undesired harmonic
responses, while improving the SNR.

As an alternative to averaging, we can in some cases, reduce
clutter level with fewer measurements by correlating the
shifted and delayed spectrum. To maintain the voltage unit,
the correlation is calculated as

Xcorr =
�����������
Xfshift Xttx

∣∣∣ ∣∣∣
√

.

Where, without the square root, voltage units would be trans-
formed to power units.

An example simulation is shown in Fig. 4. As in Section
III.A, each sweep covers a bandwidth of 2.67 GHz–
600 MHz ¼ 2 GHz in 16.7ms, but is here repeated 128 times
to detect the weaker return placed 40 dB below the two stron-
ger returns. In addition, additive white Gaussian noise
(AWGN) is added to the channel, with the same rms ampli-
tude as the signal (giving an input SNR of 0 dB). The time

bandwidth product of the chirp and the coherent averaging
of the sweep threshold receiver gives a theoretical SNR
improvement of 2 GHz × 16.7ms × 128 = 66 dB, which is
consistent with the here simulated SNR of 70 dB.

We see in Fig. 4 that the fundamentals line up while the har-
monics are reduced (limited by the noise floor). It is clear that
the weak signal is ambiguous with the harmonics of the stron-
ger scatters, without the correlation. In this example, we line up
the fundamental, but the technique can also be used to line up
the harmonics, giving the same improved resolution as was
demonstrated in the previous section.

The correlation technique relies on the harmonics lining up
with “empty” parts of the range spectrum and is therefore best
suited for “sparse” scenes with few returns, or at least scenes
with some empty regions. The two presented techniques can
be combined to alleviate this, by moving at least some of the
harmonics up and correlating or averaging away the rest.
An optimal choice of delay settings and harmonic suppression
technique will depend on the image scene, which, due to the
ease of digital integration, can conceivably be optimized
automatically.

I V . S F C W

As was explained in the analytical section (Section II.B), a
SFCW radar is implemented as a CW radar that steps the
output frequency. The proposed architecture to achive this
is shown in Fig. 5, consisting of a CW transmitter and receiver
with some control logic.

Traditionally, a CW receiver low-pass filters the mixer
output and digitizes the remaining DC value with a high-
resolution ADC. To avoid this analog voltage level, and the
filter, we can make the observation that the mixer output
will toggle like a pulse-density modulation signal. The
desired DC level can then be found by measuring (counting)
the ratio of high-to-low values. This is trivial to implement as
two counters, one that increments if the signal is high and
another that increments when the signal is low. The sampling
clock does not need to be synchronous, we are simply inter-
ested in the average value, so a local free running ring oscilla-
tor can serve as the clock source.

An example simulation is shown in Fig. 6, where we step
the CW frequency 1381 times from 600 MHz with a
1.5 MHz frequency step. A number of cases is illustrated; as

Fig. 4. Simulated scenario to illustrate the correlation technique to suppress
harmonics in-band. Three targets are simulated, two closely spaced targets
and one weaker return. AWGN noise is added to the channel with the same
rms amplitude as the signal (input SNR of 0 dB). The top panel shows a
sweep where the radar is programed without any delay. In the next panel,
the sweep is repeated with a delay of ttx = 42ns in the channel path; this is
then shifted back by fshift = attx = 5.2 MHz. The bottom panel shows the
point wise multiplication (correlation) of the original and shifted spectra.
Similar to [14].

Fig. 5. Principle of a bitstream CW radar controlled by a SFCW processor. For
each frequency fn, the CW radar outputs the mean (DC) value, which is
arranged and transformed with an inverse fast Fourier transform (IFFT)
yielding the range spectrum.
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a reference, an idealized sinusoidal simulation is shown in the
top panel, giving a single peak for each simulated target. The
next panel shows what happens if we do not deal with the
harmonics; due to the sampled nature of a SFCW radar, the
harmonics will fold around 1/(2 · 1.5 MHz) = 334 ns. By
taking this folding into account, we can annotate the peaks
by using the fundamental peak as a reference, peaks up to
the 19th harmonic is visually recognizable.

As was mentioned in the analytical section, the theoretical
solution is to add a frequency offset between the transmitted
and mixed signal, the low-pass characteristic of taking the
average then attenuates the higher order harmonics as
shown in the next panel. An alternative to attenuating the har-
monics is to jitter them away; this could be added explicitly by
modifying the bitstream, but we first consider some real-world
deviations from a perfect square wave.

The first such non-ideal behavior is finite time resolution,
the bitstream consists of discrete bits, which is read out with
a finite clock rate. In addition, the transmitter will have
jitter, we here include the measured jitter level from [17]
and also added some AWGN noise to the channel. These
effects create the bottom panel of Fig. 6. We note that these
real-world effects jitter away the higher harmonic peaks,
without requiring a frequency offset.

V . C O R R E L A T I O N - B A S E D R A D A R

We have up to now discussed radar architectures that are fre-
quency modulated. These rely on a single mixer to down-

convert the received signal and a Fourier transform of the cap-
tured data to obtain a range spectrum. A more general archi-
tecture is proposed in Fig. 7, where we have replaced the mixer
with a correlation circuit. In a correlation-based radar, we can
utilize any waveform, where “noise radars” (usually pseudo
noise) are most common. The correlation circuit can be in
continuous time, as shown by the correlating circuit in [15],
or discrete.

A particularly nice set of pseudo random noise (PN)
sequences are coined maximum length sequences
(M-sequences) and can be generated with a single linear feed-
back shift register (LFSR). Sachs [5] gives a thorough overview
on M-sequence radar. The repetition of a pseudo random
sequence gives a range ambiguity given by the sequence
length, while the bandwidth (and hence the resolution) is pro-
portional to the sequence rate.

In addition, an M-sequence has “perfect” autocorrelation,
with a peak of 1 and the value 2 1/N for all other delays.
This gives us the dynamic range for a single target scenario.
For a more realistic scenario, with multiple returns, the floor
2 1/N adds up, decreasing the dynamic range for each return.

Figure 8 shows a simulated and measured M-sequence after
correlation. Two sequences are compared, a shorter 29 2 1 ¼
511 sequence and a 212 2 1 sequence. The sequences are
repeated continously and read out at a clock rate of
1/(2 · 88.4ps) = 5.7GHz. The first sequence repeates after
90 ns, while the other after 724 ns.

V I . U N M O D U L A T E D P U L S E D
R A D A R

The previously presented radar types can easily be used in
pulsed mode (or interrupt mode), where the transmitter is
occasionally turned off. Shutting down the transmitter is trad-
itionally done to avoid saturating the receiver, long-range
radars can transmit long “pulses” of a modulated waveform
and then shut the transmitter off before capturing the back-
scattered data. The modulation can be any of the mentioned

Fig. 6. Simulated SFCW radar with two close targets, the radar is stepped from
600 MHz to 2.67 GHz in 1381 steps of length 53 ms (divided into 16 different
threshold settings). The top panel shows an idealized (sinusoidal) simulation,
with an inset showing the two simulated targets separated by 121 mm and the
231 dB sidelobe level of the Hanning window barely visible. In the next panel,
a square wave SFCW radar is simulated and harmonic peaks up to the 19th
harmonic are annotated. The harmonics are attenuated by adding a
frequency offset of 30 kHz between the two mixer inputs and using
averaging as a simple to implement filter. In the bottom panel, we do not
use a frequency offset, but simulate the transmitter with a finite time
resolution of 64 ps, jitter levels measured in [17] and an input SNR of 0 dB.
This effectivly dithers away the higher order harmonic peaks.

Fig. 7. Principle of a bitstream-based radar that does a full correlation between
the transmitted and received signal. The correlation circuit can either be
sampled; by using a chain of D-flip-flops, or continuous time; by using
inverters as delay elements.
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radar architectures, either frequency modulated or even a
pseudo random sequence.

In this section, we will have a brief look at a simpler
unmodulated radar, where no pulse compression is performed.
An unmodulated radar is in principle simpler to implement; we
simply transmit a single pulse and get the range response by
synchronously capturing the received signal. We do however
loose the advantage of a modulated waveform (either pulsed
or continuous), in that the receiver takes advantage of a
matched filter, presented in this paper as either a mixer or a cor-
relator, theoretically maximizing the SNR. An additional disad-
vantage of pulsing the transmitter, with a limited peak output
power, is the reduction in average transmitted power and
hence maximum range.

In an unmodulated pulsed radar, the resolution is directly
proportional to the pulse width T as

DR = cT
2
.

As seen in Fig. 9, the prototype waveform generator can
transmit pulses as short as 120 ps, giving us a theoretical
resolution of 18 mm. The inherent flexibility of a program-
able bitstream allows for adjustable bandwidth as shown by
the difference between the “11” and “111” waveform. To
conform to regulations, we can also insert notches in the
mainlobe, as seen by two example double pulses “110011”
and “1110000111”.

V I I . M E A S U R E M E N T S

In the preceding sections, we have included measurements of
the transmitter; programed for a FMCW chirp bitstream in
Fig. 2, M-sequence bitstream in Fig. 8, and pulsed in Fig. 9.

Fig. 8. Simulated M-sequence radar with two close targets. The top panel uses a nine-stage LFSR, while the bottom panel uses a m ¼ 12 stage. On the left, the
entire system is simulated [14], on the right, the waveform generator is measured and used in the simulation. The simulation is averaged over 32 different threshold
levels and include band-limited noise with s ¼ 0.1.

Fig. 9. Measurements of the waveform generator as a flexible pulse generator.
Top: time-domain view (different waveforms offset vertically for clarity).
Bottom: frequency domain view, found by the Welch method with a
Hanning window and zero padding. The shortest pulse (“11”) has a
measured 50 pulse width of 120 ps and a 10 dB bandwidth of 5 GHz.
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The transmitter is a slightly improved version of the one pub-
lished in [17]. The chip also features a receiver, with a thresh-
older from Novelda [3], a XOR gate, and the CW receiver
counters depicted in Fig. 5. The prototype is realized in a low-
power commercial 90 nm process. We will show the XOR gate
in Section VII.B with a post-layout simulation and a FMCW
measurement utilizing the generator, thresholder, and mixer
in Section VII.C.

The chip is programed using a Raspberry Pi communica-
tion over Serial Peripheral Interface Bus (SPI) and the thresh-
old is set using an external digital-to-analog converter. The
CW counters can be accessed with the SPI interface, so with
a SPI capable device we can realize a standalone SFCW
radar. The chip can be used as a FMCW radar by externally
sampling the XOR output as depicted in Fig. 10 and doing a
FFT on the captured data.

The waveform generator is programed by writing the bit-
stream waveform to a 32 kb on-chip-memory. Under typical
supply and bias settings (supply and N-well at 1.2 V), the
chip will read out this bitstream once every 16.7 ms. This
can be slowed down by increasing the N-well voltage or
decreasing the supply voltage to the transmitter.

A) FMCW linearity correction
Due to the transmitter being open loop, the transmitted chirp
does not linearly increase in frequency. We correct for this
using the efficient technique presented in [18]. The lineariza-
tion re-samples the beat spectrum and corrects for first-order
non-linearity in the chirp, the idea starts by equating the mea-
sured beat with a constant frequency sine wave

2pfbeat · told[n] = 2pfmeas[n] · tnew[n], (18)

where fbeat ¼ a1t is a constant. If we assume the

measurements to follow

fmeas[n] = t(a1 + a2tnew[n]), (19)

where a2 is the unwanted first-order non-linearity term, we
can solve (18) to obtain our new sampling locations

tnew[n] = −a12 +
�������������������
a2

12 + 2a12told[n]
√

, (20)

where a12 ;
a1

2a2
. (21)

Possibly due to a software bug, we have found the above
equation to give complex time locations; removing a factor
of 2 has empirically given better results:

tnew[n] = −a12 +
�����������������
a2

12 + a12told[n]
√

. (22)

The a1 and a2 are extracted from the beat spectrum by fitting
a second-order polynomial through the extracted phase. The
phase is extracted by a Hilbert transform of the beat spectrum
when there is only one target.

B) XOR gate as a digital mixer
We have stated that the only requirement for the harmonics to
exist in a frequency-modulated radar is that the mixer is
digital. This implies that attenuation of the transmitter har-
monics have little consequence to the presented principles;
in addition, the digital mixer can even be used in a traditional
analog radar. To show this, we present a post-layout simula-
tion from a commercial low-power 90 nm CMOS process,
where the inputs are sinusoidal.

Fig. 10. Test setup when measuring the entire system. The chip is configured via SPI to the desired bitstream, it then transmits once the digital RUN signal enables.
The channel is here emulated by a long coax. After going though the coax, the signal is compared with the externally set threshold current (ITH) before being mixed
and sent out of the chip again. The intermediate frequency (IF) is then sampled by an oscilloscope, which has an amplifier in front, to reduce noise. The chip is
mounted in a standard QFN48 package (pictured with the lid of) and all of the surface-mount device (SMD) components are decoupling capacitors. Note that there
is no external clock/frequency reference as the chip is self-timed.
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A static and symmetric XOR gate is realized with four sym-
metric NAND gates [19]; a layout is created and the parasitics
are extracted. For realistic drive and load conditions, buffers
are added to the XOR input and output as shown in Fig. 11.
In addition, a simple model for the supply pads is included
in the circuit model, consisting of a 50 fF capacitor and a
2 nH inductor.

As seen in Fig. 11, the buffers have more than sufficient
gain to drive the output to saturation, giving us a square
wave digital signal with harmonics. These harmonics will
mix, creating additional peaks in the beat spectrum at multi-
ples of the expected beat frequency. We note that a perfect
50% high/low waveform only has odd harmonics, while
even harmonics are seen in the simulated XOR output.

C) Full system measurements
To show the full system, we connect the chip as shown in
Fig. 10 and produce Fig. 12. The transmitter is here pro-
gramed for a shorter sweep, only 418 ns long. The XOR
output (IF) is captured by a oscilloscope, and the result is
coherently averaged and Fourier transformed on a computer.
The transmitter is connected to the receiver through a 43 ns
long coax; the resulting beat frequency peak at 51 MHz corre-
sponds to a two-way travel time of 42 ns. The reader should
note that the post-layout simulation uses the extracted

measured delay in the simulation; hence, the match between
simulated and measured peak beat frequency comes as no
surprise.

V I I I . D I S C U S S I O N

Previous all digital designs like those outlined in [20, 21] focus
on digitally assisting the generation and capture of analog
waveforms. The novelty in this work is that the waveform
itself is a digital bitstream, allowing for digital generation
and processing with simple digital gates.

The implementation chosen in this work is digital, asyn-
chronous, and (mostly) continuous time.1 Concepts presented
in this paper are however fully compatible with a synchronous
digital implementation, or even traditional analog. Of particu-
lar note is the increase in resolution when mixing the harmo-
nics, as have been shown, the harmonics can be taken
advantage of without a full digital implementation. The trans-
mitting and receiving antennas and amplifiers do not need to
support the larger bandwidth of the harmonics. The drawback
is that the fundamental and harmonics must be separated and
that the various mixer cross-terms will lower the dynamic
range.

Fig. 11. Post-layout simulation setup and results for a chirped sinusoidal input A(t), and a delayed sinusoidal responce from two targets B(t) ¼ A(t 2 t1)/2 +
A(t 2 t2)/2. The insets of the two top panels show the sinusoidal inputs in time, where the dashed curve is the sinusoidal input and the whole black line is
after the four inverters. Bottom plot shows a zoomed spectogram of the buffered XOR output, where the inset includes a low-pass filtered responce as a visual
reference [14].

1

The waveform generator is discrete, as it transmits a sequence of bits.
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A digital asynchronous implementation has the advantage
of pushing modern technology to its limits, as it can take full
advantage of the fine time delay of digital gates without the
added overhead of timing margins and fast clock distribution.
The achieved equivalent clock rate of 15.7 GHz would not be
possible using standard synchronous design as a standard cell
flip flop has a maximum clock rate below 8 GHz in the utilized
90 nm process.2 Clock margins is avoided by “self-timed” chip
design, enabling speed tuning using supply rails. This enables
an open-loop transmitter, where the output frequency will
depend on voltage and temperature, making precise and
stable frequency generation under voltage and temperature
variations impossible without some form of feedback. For
the frequency-modulated architecture, feedback can be
added by using a phase-locked loop with a stable frequency
reference and an adjustable oscillator and divider, at the cost
of significantly reduced flexibility as one is now limited to
frequency-modulated waveforms within the oscillator’s fre-
quency range. Alternatively the waveform generator can use
a fast and stable clock to read out the bitstream, at the cost
of significantly lower sample rate and an increase in power
consumption.

Programing the bitstream waveform by storing the bit
stream in memory gives maximum flexibility and is ideal for
our prototype. That said, dedicated on-chip generators for
the trivial M-sequence bitstream or even a direct digital syn-
thesizer like frequency and phase counter would most likely
be far more area and power efficient for these dedicated
architectures.

In a conventional FMCW radar, the chirp rate is kept
low (typically on the order of 100 MHz/1 ms ¼ 1 ×
1011 Hz/s); this reduces the sample rate of the beat spec-
trum. In our work, the single-bit beat spectrum is easier
to sample at high speeds, and the waveform memory
imposes a maximum limit on our chirp length; in add-
ition, the lack of a frequency lock means we can easily
transmit chirp rates on the order of 2 GHz/20 ms ¼ 1 ×
1014 Hz/s. Our high chirp rate allows the chirp to
be repeated 50 times and still get a frame rate similar
to a conventional radar, easing our assumption of a
stationary scene.

This high chirp rate and low center frequency also allows
us to safely ignore Doppler shift. For a target moving at the
speed of sound vr = csound = 340m/s and a chirp time of
Tm = 17ms around fc = 1 GHz, we expect a Doppler shift
of only around 2vrfc/c = 2.3 kHz, which is in essence a DC
signal considering our chirp time and the assumed (fast!)
speed.

Fig. 12. Post-layout simulation (left) and measurements (right) of a digital XOR gate mixing bitstreams. The measurements are for the full system, the waveform
generator is transmitting a bitstream chirp from 1 to 1.5 GHz in 418 ns and clocked out at 15.7 GHz though a 43 ns long coax, the return is then quantized and
mixed with the transmitted copy before being sent out of the chip, amplified, and captured by an oscilloscope. The post-layout result is from a single simulation,
while the measurements are the result of coherently averaging 283 times with different threshold levels.

2

According to the data sheet under fast–fast conditions.
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Further study is required before the proposed principles
can be applied to complex scenes with multiple moving
targets (both with and without Doppler shift). One work-
around is to apply multiple single-bit parallel receivers,
which is very feasible since the single-bit processing is so
area efficient. A multi comparator receiver will reduce the
integration time in low noise scenarios and hence further
ease the assumption of a stationary scene during the measure-
ment period.

I X . C O N C L U S I O N

We have shown the feasibility of implementing several clas-
sical frequency-modulated architectures, a pseudo noise cor-
relation radar and a simple pulsed radar; all in single-bit
CMOS implementation. Using bitstreams enables mixer oper-
ation of a frequency-modulated radar to be implemented as a
single CMOS XOR gate, which is proven by analytical treat-
ment, post-layout simulations, and measurements. The
digital nature of the radar also allows such operations as
delays, which are proven useful to deal with the ambiguity
created by harmonics as well as increasing the theoretical reso-
lution by a factor of 3. Preliminary measurements from a
digital asynchronous implementation in CMOS prove the
feasibility of bitstreams for generic single-chip radar.
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