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Abstract

We consider an extension of the classical Fisher–Kolmogorov equation, called the
“Fisher–Stefan” model, which is a moving boundary problem on 0 < x < L(t). A key
property of the Fisher–Stefan model is the “spreading–vanishing dichotomy”, where
solutions with L(t) > Lc will eventually spread as t → ∞, whereas solutions where
L(t) ≯ Lc will vanish as t→∞. In one dimension it is well known that the critical length
is Lc = π/2. In this work, we re-formulate the Fisher–Stefan model in higher dimensions
and calculate Lc as a function of spatial dimensions in a radially symmetric coordinate
system. Our results show how Lc depends upon the dimension of the problem, and
numerical solutions of the governing partial differential equation are consistent with our
calculations.
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1. Introduction
The well-known Fisher–Kolmogorov model [7, 17, 20, 29, 36] is a reaction–diffusion
equation that is often used to describe the spatial and temporal spreading of a
population density where individuals in that population undergo random diffusive
migration and logistic proliferation. The Fisher–Kolmogorov model is often written as

∂u(x, t)
∂t

= D
∂2u(x, t)
∂x2 + λu(x, t)

[
1 −

u(x, t)
K

]
, (1.1)

where u(x, t) is the population density, x is the position, t is the time, D is the diffusivity,
λ is the proliferation rate and K is the carrying capacity density. The Fisher–
Kolmogorov equation is often studied on an infinite domain, −∞ < x < ∞, where
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it is well known to give rise to travelling wave solutions that eventually propagate
with speed c = 2

√
Dλ for initial conditions with compact support [7, 17, 20, 29, 36].

The Fisher–Kolmogorov equation, and certain extensions, have been used to model
invasion fronts in ecology [3, 4, 18, 44, 51, 52] and cell biology [5, 19, 22, 26–
28, 30, 31, 37, 38, 41, 43, 48–50, 53–55, 57–59]. Despite the widespread application
of this fundamental model, there are several shortcomings. First, any localized initial
condition with compact support will always lead to population growth and successful
colonization. Therefore, an implicit assumption in the Fisher–Kolmogorov model is
that the population will always survive and never go extinct. Second, solutions of the
Fisher–Kolmogorov equation are smooth and without compact support. This means
that the Fisher–Kolmogorov model does not, strictly speaking, lead to a clear and
unambiguous invasion front. This can be problematic, because well-defined invasion
fronts are often observed in practice [30, 31].

There are several ways that these two shortcomings of the Fisher–Kolmogorov
model have been addressed in the applied mathematics literature. One common
approach is to consider an extension of equation (1.1) that incorporates degenerate
nonlinear diffusion, since this leads to travelling wave solutions with a well-defined
front [1, 23, 30–32, 36, 39, 40, 42, 46, 60]. Another extension that has received less
attention in the applied mathematics literature, but far more attention in the analysis
literature, is to re-cast equation (1.1) as a moving boundary problem,

∂u(x, t)
∂t

= D
∂2u(x, t)
∂x2 + λu(x, t)

[
1 −

u(x, t)
K

]
, (1.2)

on 0 < x < L(t), with ∂u(0, t)/∂x = 0 and u(L(t), t) = 0, ensuring that there is a well-
defined front at the moving boundary, x = L(t). To close the problem, the evolution of
the moving boundary is taken to follow a classical Stefan condition [8, 21, 33–35],

dL(t)
dt

= −κ̂
∂u(L(t), t)

∂x
.

As we will show, the adoption of equation (1.2) alleviates both the shortcomings of
the classical Fisher–Kolmogorov model, since this moving boundary analogue leads
to solutions with well-defined fronts, as well as permitting certain initial conditions to
become extinct.

The moving boundary analogue of the Fisher–Kolmogorov model has been called
the “Fisher–Stefan model” [15]. To simplify our analysis, we re-scale the variables:
x′ = x/

√
D/λ, t′ = tλ and u′ = u/K. Dropping the prime notation gives

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2 + u(x, t)[1 − u(x, t)], (1.3)

on 0 < x < L(t), with ∂u(0, t)/∂x=0, and u(L(t), t) = 0 with dL(t)/dt= − κ∂u(L(t), t)/∂x.
In this nondimensional framework there is just one parameter, κ > 0. Varying κ allows
us to control the finite speed of the moving boundary at x = L(t). This mathematical
model has been studied extensively in the analysis literature [6, 9–14]. Much of this
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analysis has centred upon proving properties of travelling wave solutions of equation
(1.3) as well as characterizing the “spreading–vanishing dichotomy”. As we will show,
it is very interesting that certain initial conditions and choices of κ in equation (1.3)
lead to eventual “spreading” in the form of a travelling wave, whereas other choices
of initial conditions and κ in equation (1.3) lead to “extinction”. A key feature of
the spreading–vanishing dichotomy is that there exists a critical length, Lc, such that
solutions of equation (1.3) that evolve in such a way that L(t) > Lc always lead to
eventual spreading, whereas solutions that evolve in such a way that L(t) ≯ Lc always
lead to eventual extinction. A great deal of attention has been paid to the analysis of
this spreading–vanishing dichotomy, and establishing that Lc = π/2 [6, 9–14].

The aim of this work is to revisit the spreading–vanishing dichotomy in a more
general setting by re-casting equation (1.3) in a radially symmetric geometry. Using
numerical simulations to guide our calculations, we provide a very straightforward
interpretation of Lc and show how the critical length depends upon the dimension of
the problem. All results are supported by numerical evidence. The details of the
numerical scheme we use to solve equation (1.3) are described in Appendix A and
MATLAB software to implement the numerical scheme and to explore and visualize
various solutions is available at GitHub.

2. Results and discussion

We will revisit the spreading–vanishing dichotomy in a one-dimensional coordinate
system before moving on to show that the calculations can be extended to higher
dimensions.

2.1. Preliminary results in one dimension We first begin by visualizing numerical
solutions of equation (1.3). For simplicity, all numerical solutions in this work have
the same initial condition: u(x, 0) = 1 for 0 ≤ x ≤ 1 with L(0) = 1. The solutions
of equation (1.3) with κ = 1 are given in Figure 1(a)–(d), showing that the initial
density evolves into a constant speed, constant shape travelling wave. Insights into
such travelling waves can be obtained by phase plane analysis [15]. The evolution of
L(t) is given in Figure 1(d), where we see that L(t) eventually increases linearly as
t→∞.

With κ = 0.2, the solutions of equation (1.3) are given in Figure 1(e)–(h). These
solutions show that the initial density evolves in such a way that the population goes
extinct as t→∞. Solutions at t = 50 and t = 100 (Figure 1(f)–(g)) are plotted with
an inset, because these solutions are so close to zero that it is impossible to clearly
visualize the solutions when they are plotted on the same scale as the other solutions
in Figure 1. The evolution of L(t) in Figure 1(h) shows that L(t) initially increases
and then asymptotes to some constant value as t→∞. In this case, we always have
∂u(x, t)/∂x < 0 at L(t) and so the Stefan condition ensures that dL(t)/dt ≥ 0. This
means that L(t) never decreases.

This simple numerical demonstration in Figure 1 illustrates the key features of the
spreading–vanishing dichotomy. Unlike the usual Fisher–Kolmogorov model where
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Figure 1. Numerical solutions of equation (1.3). Results in (a)–(d) are for κ = 1 and lead to a spreading
travelling wave. Results in (e)–(h) are for κ = 0.2 and lead to extinction. (d) and (h) show the evolution
of L(t) (blue) and Lc = π/2 (red). Colour available online.
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all positive initial conditions eventually lead to spreading, here the moving boundary
analogue of this model can either lead to an invading travelling wave or it can lead to
extinction. Numerical solutions of equation (1.2) in Figure 1 provide some intuition
about how we may analyse this dichotomy. As illustrated in Figure 1, when extinction
occurs, we always have u(x, t)→ 0 as t→∞ for all 0 ≤ x ≤ L(t), suggesting that we
can analyse the behaviour in this regime by linearizing. If v(x, t)� 1, an appropriate
linear analogue of the Fisher–Stefan model is

∂v(x, t)
∂t

=
∂2v(x, t)
∂x2 + v(x, t) (2.1)

on 0 < x < L(t) with ∂v(0, t)/∂x = 0 and v(L(t), t) = 0. For the purposes of this analysis
we treat the domain length as fixed, L(t) = L. The exact solution of equation (2.1) is

v(x, t) =

∞∑
n=1

An cos(λnx)e−t(λ2
n−1), (2.2)

where λn = π(2n − 1)/(2L) for n = 1, 2, 3, . . . and the coefficients An can be chosen
so that the solution matches an initial condition. As we will show, our analysis does
not require that we specify these coefficients. We now approximate equation (2.2) by
retaining just the first term in the series. Such leading eigenvalue approximations can
be particularly accurate as t→∞ [24, 25, 45],

V(x, t) ∼ A1 cos
(
πx
2L

)
e−t[(π/2L)2−1].

With this solution we can specify a conservation statement for the time evolution of
the total population in the domain,

dm
dt

=

∫ L

0
V(x, t) dx︸           ︷︷           ︸

accumulation due to source term

− −
∂V(L, t)
∂x︸      ︷︷      ︸

loss due to the diffusive flux at x = L

. (2.3)

Setting dm/dt = 0, we solve (2.3) using V(x, t), giving Lc = π/2 ≈ 1.570 796 327,
which is independent of An. This means that whenever a solution of equation (1.3)
evolves in such a way that L(t) > π/2, the accumulation due to the source term is
greater than the loss due to the diffusive flux at the moving boundary. In contrast,
whenever L(t) < π/2, the accumulation due to the source term is less than the loss
at the moving boundary. This result has some interesting consequences and provides
a straightforward explanation for our numerical results in Figure 1. For our initial
condition we have L(0) = 1 < π/2 and it is unclear whether or not the transient solution
will evolve such that L(t) > π/2 as t→∞. When κ is sufficiently large, we see that
the evolution of the solution is such that L(t) eventually exceeds π/2 and at this point
the population will continue to grow indefinitely, as shown in Figure 1(d). In contrast,
for sufficiently small κ, the evolution of the solution is such that L(t) never reaches
π/2 and so the diffusive flux out of the domain is greater than the production due
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to the source term and we see eventual extinction where lim
t→∞

L(t) < π/2, as shown in
Figure 1(h).

Our numerical results and analysis of the linearized problem confirm that we have
Lc = π/2 in one dimension and this explains our original choice of initial condition
in Figure 1, where L(0) = 1 < Lc. In this case L(0) < Lc and, without solving for the
time-dependent solution, it is unclear whether L(t) evolves in such a way that it ever
exceeds Lc. Therefore, with this initial condition we have the flexibility of choosing κ
to be sufficiently small such that L(t) never reaches Lc and the population goes extinct,
or we can choose κ to be sufficiently large such that L(t) will eventually exceed Lc and
lead to a travelling wave. Had we chosen a different initial condition with L(0) > Lc, we
would always observe the formation of a travelling wave provided κ > 0. Since we are
interested in studying the spreading–extinction dichotomy, we restrict our numerical
solutions to the case where L(0) < Lc. Setting L(0) = 1 is a convenient way to achieve
this.

While it has long been known that Lc = π/2 in the more formal literature [6, 9–14],
here we offer a very simple and intuitive way to calculate and interpret the spreading–
vanishing dichotomy in terms of this critical length. Our approach is mathematically
and conceptually straightforward and, as we will now show, also applies in other
geometries.

2.2. Critical length in higher dimensions A generalization of equation (1.3) is to
consider the Fisher–Stefan model in a radially symmetric coordinate system,

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2 +

d − 1
x

∂u(x, t)
∂x

+ u(x, t)
[
1 − u(x, t)

]
(2.4)

for t > 0 and 0 < x < L(t), with ∂u(0, t)/∂x = 0, u(L(t), t) = 0 and dL(t)/dt =

−κ∂u(L(t), t)/∂x. Here d = 1, 2, 3 is the dimension. We will now explore how Lc

depends upon d.
Setting d = 2 in equation (2.4) allows us to consider the spreading–vanishing

dichotomy on a disc. Preliminary numerical simulations indicate that for a particular
choice of u(x, 0) the solution may either evolve into a moving front when κ is
sufficiently large, or the solution may go extinct when κ is sufficiently small, just like
we demonstrated in Figure 1 when d = 1. To explore this, we linearize with v(x, t)� 1
to obtain

∂v(x, t)
∂t

=
∂2v(x, t)
∂x2 +

1
x
∂v(x, t)
∂x

+ v(x, t) (2.5)

on 0 < x < L with ∂v(0, t)/∂x = 0 and v(L, t) = 0. The exact solution of equation (2.5)
is

v(x, t) =

∞∑
n=1

AnJ0

(
x
√

1 + λ2
n

)
e−λ

2
nt,

where J0(x) is the zeroth-order Bessel function of the first kind [45]. Here the
eigenvalues, λn, are obtained by setting L

√
1 + λ2

n equal to the nth zeros of J0(x).
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If we invoke a leading eigenvalue approximation, we have
√

1 + λ2
1 = z/L, where z is

the first zero of J0(x), or z ≈ 2.404 825 558. The leading eigenvalue approximation is

V(x, t) ∼ A1J0

(zx
L

)
e−t[(z/L)2−1]. (2.6)

To proceed, we formulate a condition where the accumulation due to the source term
is precisely matched by the loss at the moving boundary. Taking care to account for
the geometry, ∫ L

0
V(x, t)2πx dx︸                ︷︷                ︸

accumulation due to source term

= −
∂V(L, t)
∂x

2πL︸           ︷︷           ︸
loss due to the diffusive flux at x = L

,

in which we can substitute equation (2.6) and solve for L. This procedure shows that
Lc is the first zero of J0(x), giving Lc ≈ 2.404 825 558. Numerical solutions in Figure
2 confirm this.

Setting d = 3 in equation (2.4), allows us to consider the spreading–vanishing
dichotomy on a sphere. To explore the critical length, in this case we linearize with
v(x, t)� 1, to obtain

∂v(x, t)
∂t

=
∂2v(x, t)
∂x2 +

2
x
∂v(x, t)
∂x

+ v(x, t) (2.7)

on 0 < x < L with ∂v(0, t)/∂x = 0 and v(L, t) = 0. The exact solution of equation (2.7)

v(x, t) =

∞∑
n=1

An

x
sin

(
x
√

1 + λ2
n

)
e−λ

2
nt,

where λn = nπ/L, n = 1, 2, 3, . . . . The associated leading eigenvalue approximation is

V(x, t) ∼
A1

x
sin

(
πx
L

)
e−t[(π/L)2−1]. (2.8)

The associated conservation statement is∫ L

0
V(x, t)4πx2 dx︸                 ︷︷                 ︸

accumulation due to source term

= −
∂V(L, t)
∂x

4πL2︸             ︷︷             ︸
loss due to the diffusive flux at x = L

, (2.9)

in which we substitute equation (2.8) and solve for L, giving Lc = π ≈ 3.141 592 654;
numerical solutions in Figure 3 confirm this.

3. Conclusions

In this work, we explore an extension of the well-known Fisher–Kolmogorov
model, called the Fisher–Stefan model. This extension involves reformulating the
Fisher–Kolmogorov model as a moving boundary problem, and the evolution of the
moving boundary is described by a classical Stefan condition. The Fisher–Stefan

https://doi.org/10.1017/S1446181120000103 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000103


10 M. J. Simpson [8]

Figure 2. Numerical solutions of equation (2.4) with d = 2. Results in (a)–(d) show a solution with
κ = 2.3 leading to spreading. Results in (e)–(h) show a solution with κ = 2.1 leading to extinction. (d) and
(h) show the evolution of L(t) (blue) and Lc = 2.404 825 558 (red). Colour available online.
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Figure 3. Numerical solutions of equation (2.4) with d = 3. Results in (a)–(d) show a solution with
κ = 11 leading to spreading. Results in (e)–(h) show a solution with κ = 10 leading to extinction. (d) and
(h) show the evolution of L(t) (blue) and Lc = π (red). Colour available online.
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model has two key advantages over the usual Fisher–Kolmogorov model: (i) solutions
of the Fisher–Stefan model are characterized by a sharp front, which is often relevant
in practice; (ii) solutions of the Fisher–Stefan model do not always lead to successful
colonization, since the population can go extinct as t→∞. An important feature of
the Fisher–Stefan model is the existence of a critical length, Lc. As we show, solutions
of the Fisher–Stefan model that evolve in such a way that L(t) > Lc always lead to
spreading, whereas solutions that evolve in such a way that L(t) ≯ Lc always leads to
extinction. Formal analysis of the spreading–vanishing dichotomy has established that
Lc = π/2 in a standard one-dimensional Cartesian geometry [6, 9–14]. This property
is often called the spreading–vanishing dichotomy and it has been extensively studied
in one dimension. Far less attention has been paid to similar behaviour in higher
dimensions.

We also reformulate the Fisher–Stefan model in a radially symmetric coordinate
system, and study the spreading–vanishing dichotomy in one, two and three
dimensions. Using simple conservation arguments, we confirm that Lc = π/2 in the
usual one-dimensional geometry and this result is confirmed by numerical solutions.
By extending these ideas to consider the Fisher–Stefan model on a disc and sphere, we
find that the critical length depends upon the geometry of the problem. In particular,
the critical length for the Fisher–Stefan model on a disc is the first zero of the zeroth-
order Bessel function of the first kind (Lc ≈ 2.404 825 558), and the critical length for
the Fisher–Stefan model on a sphere is π (Lc ≈ 3.141 592 654). Numerical solutions of
the governing partial differential equation are consistent with these findings.

Our approach for calculating the critical length is conceptually straightforward and
shows how the critical length depends upon the dimension. A great deal of literature
about the spreading–vanishing dichotomy involves rigorous analysis that can be both
difficult to interpret and difficult to extend to more general problems. Our approach,
in contrast, is quite flexible and there are many potential extensions. While we have
not pursued further calculations for other choices of d, it is straightforward to apply
the methods described here for d > 3 to explore the spreading–vanishing dichotomy
on an hypersphere. For example, setting d = 4 in equation (2.4) and repeating the
analysis shows that the critical length is the first zero of the first-order Bessel function
of the first kind (Lc ≈ 3.831 705 970). Further calculations for different d can also be
performed.

We close by commenting on some extensions of equation (2.4) that could be
of interest. As we already pointed out in Section 1, a very common extension
of the classical Fisher–Kolmogorov model is to generalize the linear diffusion term
to a degenerate nonlinear diffusion term [1, 23, 30–32, 36, 39, 40, 42, 46, 60].
This generalization is often motivated by the desire to seek solutions with a well-
defined sharp front. While it is certainly possible to generalize equation (2.4) to
include degenerate nonlinear diffusion [16], an important consequence of this in
the moving boundary context is that this extension does not lead to a spreading–
vanishing dichotomy. This is because the flux at the moving boundary x = L(t), where
u(L(t), t) = 0, is always zero, thereby always preventing extinction. In contrast, the
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one-phase Stefan condition in equation (2.4) leads to a loss of mass at the moving
boundary, and it is this loss of mass that enables the population to go extinct. Another
interesting extension would be to consider the spreading–vanishing dichotomy in
higher dimensions for nonradial geometries, and explore the relationship between
the solutions in radial and nonradial geometries [2, 56]. Such an extension to
consider moving boundary problems in higher dimensions without radial symmetry
would require a very different approach numerically and so we leave this for future
consideration.

A. Appendix: Numerical methods

We develop a simple, robust numerical solution of

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2 +

d − 1
x

∂u(x, t)
∂x

+ u(x, t)[1 − u(x, t)]

for t > 0 and 0 < x < L(t) with u(L(t), t) = 0, ∂u(0, t)/∂x = 0 and dL(t)/dt =

−κ∂u(L(t), t)/∂x. To solve this partial differential equation, we first re-cast the moving
boundary problem on a fixed domain by setting ξ = x/L(t), giving

∂u(ξ, t)
∂t

=
1

L2(t)
∂2u(ξ, t)
∂ξ2 +

[
ξ

L(t)
dL(t)

dt
+

d − 1
ξL2(t)

]
∂u(ξ, t)
∂ξ

+ u(ξ, t)[1 − u(ξ, t)] (A.1)

for t > 0 and 0 < ξ < 1 with u(1, t) = 0, ∂u(0, t)/∂ξ = 0 and dL(t)/dt =

−(κ/L(t))∂u(1, t)/∂ξ.
We discretize equation (A.1) on a uniform mesh with spacing ∆ξ, and the value of

u(ξ, t) at each node is indexed with a subscript i = 1, 2, 3, . . . ,N, where N = 1/∆ξ + 1.
Integrating through time using an implicit Euler approximation, using a subscript
m to denote the time step, leads to the following system of N nonlinear algebraic
equations [47],

um
1 = um

2 ,

um
i − um−1

i

∆t
=

(um
i−1 − 2um

i + um
i+1)

(∆ξLm)2 +

[
ξi

Lm

dLm

dt
+

d − 1
ξi(Lm)2

] (um
i+1 − um

i+1)
2∆ξ

+um
i [1 − um

i ], i = 2, 3, 4, . . . ,N − 1,
um

N = 0,

where dLm/dt = κum
N−1/(L

m∆ξ). This system of nonlinear algebraic equations is solved
using Newton–Raphson iteration until the change in estimates of um

i per iteration falls
below a tolerance of ε. This algorithm provides estimates of u(ξ, t) on 0 < ξ < 1, which
are then re-scaled to give u(x, t) on 0 < x < L(t). A MATLAB implementation of this
algorithm is available at GitHub. All results presented in this work use ∆ξ = 1 × 10−3,
∆t = 1 × 10−4 and ε = 1 × 10−10. This choice of discretization appears to be suitable
for our purposes, but numerical results should always be checked to test that they are
independent of the mesh. Experience suggests that problems with larger κ require
particular care to ensure grid convergence.
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