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Abstract. It is shewn that, if N�P� be the number of solutions of the inde-
terminate equation

ax3 � by3 � cz3 � dw3 � 0 �a; b; c; d 6� 0�
for which jxj; jyj; jzj; jwj � P, then

N�P� � KP2 � o�P2�;

where, to within a term O�P�;KP2 is the contribution to N�P� corresponding to the
rational lines in the projective surface de®ned by the equation. This proves a con-
jecture made by Heath-Brown, who has studied N�P� under the assumption of the
Riemann Hypothesis for certain Hasse-Weil L-functions. The remainder term o�P2�
in the formula represents O�P4

3�"�;O�P5
3�"), or O�P2=3

�����������
logP

p � according as the surface
contains three, one, or no rational lines.

1991 Mathematics Subject Classi®cation. 11P99.

Developing inter alia an idea introduced by the author in [8], Heath-Brown [3]
has used his important new version of the circle method to obtain a remarkable
conditional theorem on the rational points on (non-singular) projective cubic sur-
faces de®ned by quaternary diagonal cubic forms, namely, subject to the Riemann
Hypothesis for certain Hasse-Weil L-functions, the equation

ax3 � by3 � cz3 � dw3 � 0 �a; b; c; d 6� 0� �1�

has only O�P3
2�"� solutions in integers of magnitude not exceeding P save for those that

correspond to points on rational lines in the surface C the equation de®nes. In other
words, if N�P� denote the total number of solutions for which jxj; jyj; jzj; jwj � P,
then

N�P� � KP2 �O�P3
2� "�; �2�

where, to within a term O�P�;KP2 is the contribution to N�P� due to any rational
lines in the surface, where K is easily calculated in terms of a; b; c; d, and where of
course K � 0 when there are no such rational lines. Among the notable features of
the method, we should especially mention the unusual way in which the main term
of the formula arises from arcs in the circle method that correspond to rationals
with large denominators.

To gauge the signi®cance of the result and the extent of its departure from the
relatively trival, we should brie¯y indicate the expanse of our previous knowledge on
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the matter. First, since the number of representations of a number m by a (non-
degenerate) binary cubic form is Ofd3�m�g (see our paper [7] for the irreducible case,
the reducible case being much easier), we immediately gain the estimate

N�P� � O�P2�"�;

which we might be inclined through elaborate divisor sum methods to re®ne to

N�P� � O�P2 logE P�

were it not for there being more favourable avenues to follow. Indeed, letting r�n�
be the number of representations of n as the sum of two cubes of either sign, we
should mention that the superior bound

N�P� � O�P2� �3�

¯ows from HoÈ lder's inequality and the estimateX
n�x

r2�n� � O�x2
3� �4�

that is a corollary of asymptotic formulae of the formX
n�x

r2�n� � 2E1x
2
3 � o�x2

3� �5�

obtained in several of our earlier papers (see, in particular, [5] and [6]). Easily
deduced from (4) in several ways (perhaps the most transparent method is through
the use of the exponential sum f ��� �Pjmj�P e2�im3� and the product
f �a�� f �b�� f �c�� f �d��), the formula (3) is actually best possible as a universal order
relation because of the barrier to further improvement in the exponent of P pre-
sented by the contribution N1�P� to N�P� due to solutions corresponding to rational
lines on C. The signi®cance of Heath-Brown's theorem is therefore that it gives a
useful conditional estimate for the di�erence

N0�P� � N�P� ÿN1�P� �6�

that is substantially less than the estimate O�P2� implied by what has already been
stated, a result that had been only known both unconditionally and more or less
explicitly for diagonal forms in situations derived from the case a; b; c; d � �1 that
is associated with (5); in particular, an improvement in the order relation (3) is
implied when there are no rational lines on C.

The purpose of the present communication is to provide an unconditional proof
of a version of Heath-Brown's theorem in which the remainder term in (2) is usually

weaker than the O�P3
2�"� appearing therein but is always superior to the unin-

teresting O�P2�; in particular, therefore, his conjecture (1.4) in [3] will be sub-
stantiated. More or less both obvious and known when there are three rational lines
on C, the proof increasingly depends on new features not explicitly present in previous
literature on the subject as the number of rational lines decreases, the treatment
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when there are no such lines being almost entirely new and constituting the most
important part of the exposition. Beyond this we need say no more at present, since
what we do and its connections with other work will be clear from the relevant
portions of the text.

In what follows E1;E2; . . . denote positive constants depending at most on
a; b; c; d; the constants implied by the O-notation being of this type except when
they also depend on an arbitrarily small positive constant �; the letter P denotes a
positive variable that is to be regarded as tending to in®nity; from time to time we
shall express non-zero integers such as h uniquely in the form h1h2

3, where h1 is
positive, cube-free, and termed the positive cube-free part of h; the notation pjjh
means as usual that p is the highest power of the (positive) prime p that divides h;
�a1; . . . ; ar� denotes the (positive) highest common factor of integers a1; . . . ; ar when
this is de®ned. Also during the proof it may obviously be assumed that

�a; b; c; d� � 1 �7�

although this restriction is irrelevant to the ®nal conclusions.
With the aid of the numbers A � 3

���
a
p

, B � 3
���
b
p

, C � 3
���
c
p

, D � 3
���
d
p

, and a complex
cube root of unity !, we classify the surfaces C and their modes of treatment
according to how many of the 27 lines on each surface are rational. Since the lines

Ax� !iBy � 0;Cz� ! jDw � 0 �0 � i; j � 3�;
Ax� !iCz � 0;By� ! jDw � 0 �0 � i; j � 3�;
Ax� !iDz � 0;By� ! jCw � 0 �0 � i; j � 3�;

clearly lie on C and are in number 27, they exhaust all the lines on the surface, the
only possible rational ones being therefore

Ax� By � 0; Cz�Dw � 0; �8�

Ax� Cz � 0; By�Dw � 0; �9�

Ax�Dw � 0; By� Cw � 0: �10�

If all three of the above lines be rational, then A;B;C;D are in rational ratio
and conversely, in which case

A3 : B3 : C3 : D3 :: �3 : �3 : �3 : �3

with (�; �; �; �) = 1 so that A;B;C;D are integers by (7). Thus in this instance the
equation of C takes the form

�Ax�3 � �By�3 � �Cz�3 � �Dw�3 � 0: �11�

To continue the classi®cation we note that there cannot be exactly two rational
lines. This is because, if, say, the ®rst line (8) were rational, then the rationality of
any plane occurring in (9) or (10) would imply that A;B;C;D were in rational ratio
and hence that there were three rational lines. We must therefore next consider the
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case where there is just one rational line, which may be taken typically to be (8) by
an appropriate ordering of the terms in the diagonal form. Thus now each of the
pairs A;B and C;D are in rational ratio whereas A;C;A;D; B;C; B;D are not.
Hence common positive cube-free parts �1 and �2 are shared by a; b and c; d,
respectively, whence

a � �1a31; b � �1b31; c � ÿ�2c31; d � ÿ�2d 3
1; �12�

where �1 6� �2 and where also

��1; �2� � 1 �13�
by (7). Consequently in this situation the equation of C can be thrown into the form

�1f�a1x�3 � �b1y�3g ÿ �2f�c1z�3 � �d1w�3g � 0: �14�

There remains the instance where there is no rational line on C. This is examined
by considering separately the cases where at least one of the planes in (8), (9), and
(10) is rational and where none of them is. Taking for the moment only the former
as being the easier to treat, we may suppose that Cz�Dw � 0 is a rational plane by
an appropriate arrangement of terms with the consequence that c � ÿ�2 c31,
d � ÿ�2 d 3

1 as in (12); the equation can thus be cast into the shape

ax3 � by3 ÿ �2f�c1z�3 � �d1w�3g � 0 �15�

in which ax3 � by3 is an irreducible form.
We are ready to dispose of our problem in all situations saving the last one left

undiscussed in the previous paragraph. In the ®rst one where (11) is applicable,
N0�P� in (6) evidently does not exceed the number of solutions of

X3 � Y3 � Z3 �W3 � 0

for which jXj; jYj; jZj; jWj � E2 P and for which none of X� Y, Z�W, X� Z,
Y�W, X�W, Y� Z is zero. This matter was treated by the author ([5] and [6]; see
especially the comment in the antepenultimate paragraph of the introduction to the
former) and then considerably later by Wooley [9] and Heath-Brown [2], whose
successive results imply that

N0�P� � O�P��"� �16�

for the exponents 5
3 ;

5
3 ;

4
3, respectively.

In the second situation where (14) is relevant, N0�P� does not exceed the number
of solutions of

�1�X3 � Y3� � �2�Z3 �W3� �17�

in integers X;Y;Z;W for which jXj; jYj; jZj; jWj � E3 P and X� Y, Z�W are
non-zero. Hence, save for the presence of the cube-free coe�cients �1, �2, the subject
of bounding N0�P� seems much the same as before and, in particular therefore, to
the one regarding solutions of
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l 3 �m3 � �3 � �3; � 6� l;m; � 6� l;m

that was raised in our already cited [5]. Yet, although the solution of the latter pro-
blem was also contained in the following paper [6] on sums of two h-th powers for
odd values of h � 3, it is important to note that the method of the later paper cannot
suit our present needs because the appearance of �1, �2 in (17) means that substitu-
tions akin to (9) in [6] are no longer available; in like manner, the methods of
Wooley and Heath-Brown in [9] and [2], respectively, are not applicable in these
more general circumstances. We therefore brie¯y indicate the initial transformations
that are needed to prepare (17) for the operation of the method in [5], then sum-
marizing for completeness the interconnection between [6] and both N0�P� and [5].

Since in bounding the order of magnitude of N0�P� we may clearly restrict
attention to the case where Xÿ Y;ZÿW � 0, we set

r0 � X� Y; s � Xÿ Y; �0 � Z�W; � � ZÿW

much as in (4) of [5] and, having deduced that 0 < r0; �0 � E4 P and 0 � s; � � E4 P,
obtain the two equivalent equations

�1r
0�r02 � 3s2� � �2�0��02 � 3�2� �18�

and

3�1r
0s2 ÿ 3�2�

0�2 � �2�03 ÿ �1r03 �19�

in the second of which the right-hand side is non-zero because �1, �2 are unequal
cube-free numbers. Next, if �r0; �0� � �, let

r0 � �r00; �0 � ��00; where �r00; �00� � 1; �20�

and then set �r00; �2� � �2 and ��00; �1� � �1 so that

r00 � �2 r; �00 � �1�; �1 � �1�01; �2 � �2�02; �r; �02� � 1; ��; �01� � 1

and

0 < r � E4P=��2; 0 < � � E4P=��1:

Then, for each set of relevant values of �; �1; �2, we consider either the derivatives

�01r��2�22r2 � 3s2� � �02���2�21�2 � 3�2�; ��01r; �02�� � 1

of (18) and (13) or the derivative

3�01rs
2 ÿ 3�02��

2 � �2��02�21�3 ÿ �01�22r3�

of (19) according as � � P
1
2 or � > P

1
2. These are the central elements in the estima-

tion of sums that are closely analogous, respectively, to �y�x; �� and ����x� in [5], the
e�ect of the bounded parameters �01, �

0
2, �1, �2 being merely to bring in some unim-

portant complication into the previous treatment. We therefore end up with the
estimate
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N0�P� � O�P5
3�"� �21�

that generalizes Theorem 1 in [5].
An advantage of the later paper [6] over [5] is the generality of the method used

for the estimation of exponential seems. We may therefore with some advantage
substitute this treatment in both [5] and our proof of (21) but otherwise leave the
structure of [5] intact.

In the ®rst case of the third situation where (15) is the underlying equation,
N0�P� does not exceed the number of solutions

ax3 � by3 � �2�Z3 �W3�

satisfying jxj; jyj � P and jZj; jWj � E5 P. The cardinality of those for which
Z�W � 0 being O�P� by the irreducibility of ax3 � by3, we may restrict Z�W to
be positive when determining the order of magnitude of the number N2�P� of the
remaining solutions. Hence, writing

� � Z�W; � � ZÿW; where 0 < � � 2E5 P;

we are faced with the equation

4�ax3 � by3� � �2���2 � 3�2�; �22�

of which, having set x � �x0; y � �y0; � � ��0; � � ��0 where �x0; y0; �0; �0� � 1 and
then having suppressed the (notational) primes, we investigate the primitive solu-
tions that are subject to the inequalities

jxj; jyj � P=�; 0 < � � 2E5P=�: �23�P=�

Then, since certainly

�x; y; ��
���3�2 �24�

in the situation we have reached, we deduce that

N0�P� � O
X
��P

N2�P=��
 !

�O�P�;

where N2�P0� is the number of solutions of (22) for which (23)p0 and (24) hold. The
replacement of (18) by (22) actually makes the treatment of N2�P0� easier than the
previous one for N0�P� because the work no longer involves a transformation of
type (20) with a consequent split of the analysis into two parts. Indeed, on replacing
�2 by a member of a set obtained by eliminating quadratic non-residues, modulis
various primes p, we can follow closely with the participation of (22) the treatment
of [5, Section 4 onwards] to arrive at the conclusion that

N2�P0� � O�P053�"�;
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whence

N0�P� � O P
5
3�"

X
��P

1

�
5
3

 !
�O�P� � O�P5

3�"�: �25�

In particular, hardly any change is needed in the examination by Deligne's theories
of the exponential sums appertaining to products d of the primes p featuring in the
large sieve process.

The cases so far examined have been settled for the most part by fairly trans-
parent modi®cations of some of the author's earlier methods, although we should
stress that in one instance a superior result stems from Heath-Brown's method in [2].
In contrast, the ®nal and most important case must be treated by another method,
the description of which is the most signi®cant part of this paper. To initiate the
proceedings, we state some presumably familiar properties of pure cubic ®elds and
include their proofs for convenience. Let �1 � 3

������
D1

p
, �2 � 3

������
D2

p
, where neither �1 nor

�2 is rational. Then the pure cubic ®elds R1 � Q��1�, R2 � Q��2� are the same if and
only if either �2=�1 or �2=�

2
1 be rational (the rationality of �2=�

2
1 is obviously equiva-

lent to that of �22=�1). The su�ciency of the condition being clear, let us suppose that
R1 and R2 be the same so that there are rational numbers a; b; c such that

�2 � a�21 � b�1 � c; �26�

whence, on taking conjugates, we also have

!��2 � a!2�21 � b!�1 � c; �27�
and

!�2�2 � a!�21 � b!2�1 � c; �28�
for complex cube roots of unity ! and !�. If !� � !, the linear combination (26) +
!2 �27� � ! �28� yields

3�2 � a�1� !� !2��21 � 3b�1 � c�1� !2 � !� � 3b�1

and �2=�1 is therefore rational; alternatively, if !� � !2, the rationality of �2=�
2
1 is

implied by the combination (26) + ! (27) + !2 (28) that is tantamount to

3�2 � 3a�21 � b�1� !2 � !��1 � c�1� !� !2� � 3a�21:

Also, if R1, R2 be distinct, then the degree of S � Q��1; �2� over Q is 9 and the degree
of T � Q��1; �2; !� over Q is 18. To establish the ®rst part it su�ces to prove that
the degree of �2 over R1 is 3 and therefore that it is not 2. But, if this degree were in
fact 2, then �2 would satisfy a quadratic equation with real coe�cients, which
property is impossible because the only real quadratic factor of the minimum poly-
nomial of �2 over Q has purely imaginary zeros. The last part follows because !
cannot belong to the real ®eld S.

Because of the present assumption that all the planes in (8), (9), and (10) are
non-rational, each pair of terms on the left of (1) such as ax3 and by3 give rise to a

pure cubic ®eld, which in the example chosen is the ®eld Q 3
��
a
b

p� �
=Q 3

��
b
a

q� �
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=Q 3
�������
a2b
p� �

generated by the real root of the equation au3 � b � 0. If the ®elds

corresponding to each side of the equation

ax3 � by3 � ÿcz3 ÿ dw3

were the same, then a2b would have the same cube-free part as either c2d or cd 2, it
being possible to insist on the former occurrence by rearranging the last two terms
on the left of (1) if necessary. Next, if likewise the ®elds related to each side of

ax3 � dw3 � ÿby3 ÿ cz3

were also identical, then a2d would have the same cube-free part as either b2c or bc2.
In the former instance, we would altogether deduce that both

a2b

c2d

a2d

b2c
� a3

c3
a

b
and

a2b

c2d

b2c

a2d
� b3

cd 2
� b3

d 3

d

c

were rational cubes, while in the latter instance we similarly would see that

a2b

c2d

a2d

bc2
� a3

c3
a

c
and

a2b

c2d

bc2

a2d
� b2

d 2
� b3

d 3

d

b

were rational cubes. Hence either a=b and c=d or a=c and b=d would be rational
cubes in opposition to the prevailing circumstances. Thus, by a suitable permutation
of the terms in (1), we may certainly assume that the equation of the surface C can be
expressed as

ax3 � by3 � ÿcz3 ÿ dw3;

where the pure cubic ®elds R1 � Q 3
�������
a2b
p� �

and R2 � Q 3
�������
c2d
p� �

are distinct.

Having cast the equation of C into a suitable form, we continue by ®rst letting
re; f �n� � re; f �ÿn� � re; f;P�n� be the number of representations of the number n by
the irreducible form el 3 � fm3 for which jlj; jmj � P and by then de®ning �e; f �n) to
be 1 or 0 according as n (and therefore ÿn) is representable by the form or not.
Then, by these de®nitions and the Cauchy-Schwarz inequality,

N0�P� �
X
n

ra;b�n�rc;d�n� �
X
n

ra;b�n��c;d�n�rc;d�n��a;b�n�

�
X
n

r2a;b�n��c;d�n�
 !1

2 X
n

r2c;d�n��a;b�n�
 !1

2

� �S1S2�
1
2; say;

�29�

it being su�cient in what follows to unfold the estimation of S1. Next
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S1 �
X
n

ra;b�n��c;d�n� �
X
n

r2a;b�n� ÿ ra;b�n�
ÿ �

�c;d�n�

�
X
n

ra;b�n��c;d�n� �
X
n

r2a;b�n� ÿ ra;b�n�
ÿ �

� S3 � S4; say;

�30�

in which the sum S4 is bounded by the earlier methods in the paper. In fact, sinceX
n

r2a;b�n� �
X

ax3�by3�az3�bw3
jxj;jyj;jzj;jwj�P

1 �
X
jxj;jyj�P

1�
X

ax3�by3�az3�bw3
jxj;jyj;jzj;jwj�P

x 6�z;y 6�w

1

�
X
n

ra;b�n� �
X

ax3�by3�az3�bw3
jxj;jyj;jzj;jwj�P

x 6�z;y 6�w

1;

we deduce, on altering the signs of y and z, that S4 is the number of solutions of

a�x3 � z3� � b�y3 � w3� �31�

for which jxj; jyj; jzj; jwj � P and x� z; y� w 6� 0. Hence, by the second case con-
sidered above, we deduce that

S4 � O�P5
3�"� �32�

since the surface (31) has only one rational line within it.

The estimation of S3 begins by our developing a weak criterion for deciding
whether �c;d�n� be non-zero or zero. To this end, let p denote any prime satisfying

p j-- abcd; p � 1 �mod 3�: �33�

Then, if c�3 � d�3 be divisible by p but not by p2, we infer that both � and � are
indivisible by p and hence that the congruence

c
3 � d � 0 �mod p�

is not only soluble but has three distinct roots, mod p, which state of a�airs by a
principle due to Dedekind is tantamount to the prime p being a product of three
distinct linear prime ideals in the corpus Q�3

�������
c2d
p
�. Consequently, rephrasing this

deduction to suit the method to follow, we infer that any number n representable by
c�3 � d�3 does not have the property that it is divisible by p but indivisible by p2 for
any prime p satisfying (33) that does not split totally into three distinct prime ideals
in Q�3

�������
c2d
p
�. (Note this is valid when n � 0.) The ground has thus been laid for the

application of a sieve method to the majorization of S3 in (30). Let � denote, gen-
erally, a positive square-free number composed entirely of primes p corresponding
to the unwanted properties and then let the notation �jjn indicate the conjunction of
the conditions pjjn for all prime divisors p of �. Then, by Brun's method (see, for
example, our tract [4] and Halberstam and Richert [1]; the former work describes a
general situation covering the present type of sieving, while the latter gives full

�30�
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details of Brun's method when it is applied in circumstances that are slightly di�er-
ent from those here), there is a suitable modi®cation �0��� of the MoÈ bius function
such that

�i� �0��� � ���� or 0;

�ii� �0��� � 0 for � > P� � Q; where 0 < � < 1;

�iii� �c;d�n� �
X
�jjn
�0���;

(iv) �0��� has properties that enable equation (39) below to be substantiated in the
light of what we shall shortly discover about a function 	��� to be introduced.

Next, by (30),

S3 �
X
n

ra;b�n�
X
�jjn
�0��� �

X
jlj;jmj�P

X
�jj�al 3�bm3�

�0���

�
X
��Q

�0���
X

�jj�al 3�bm3�
jlj;jmj�P

1

�
X
��Q

�0��� 	��;P�; say;

�34�

to proceed from which we must investigate 	��;P� and the associated function 	���
that is the number of solutions of �jj�al 3 � bm3� satisfying 0 < l;m � �2.

Since the solutions of pjj�al 3 � bm3� arrange themselves in residue classes
(mod p2), we infer ®rst that 	��� is a multiplicative function of � and then that

	��;P� �
X

�jj�ah3�bk3�
0<h;k��2

X
jlj;jmj�P

lÿh�mÿk�0 �mod �2 �

1

�
X

�jj�ah3�bk3�
0<h;k��2

2P� 1

�2
�O�1�

� �
2P� 1

�2
�O�1�

� �

� 4P2	���
�4

�O
P	���
�2

� �
�35�

for � � Q and � � 1
2. Secondly, to examine 	��� we study 	�p�, whose non-vanishing

by an argument previously applied to c�3 � d�3 implies that the congruence

a
3 � b � 0 �mod p�

is soluble and hence that p is a product of three distinct linear ideals in Q�3
�������
a2b
p

�.
Also, in these circumstances, the numbers of incongruent solutions, modulis p and
p2, of

ah3 � bk3 � 0 �mod p�; ah3 � bk3 � 0 �mod p2�

for which p j-- hk are 3� pÿ 1� and 3p� pÿ 1�, respectively, so that
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	� p� � 3p2� pÿ 1� ÿ 3p� pÿ 1� � 3p� pÿ 1�2: �36�

Hence, returning to (34), we get

S3 � 4P2
X
��Q

�0���	���
�4

�O P
X
��Q

3!����

 !

� 4P2
X
��Q

�0���	���
�4

�O�PQ2 log2 Q�

� 4P2
X

1
�O�P7

4�; say;

�37�

if we choose � to be 1
3.

The sieving primes in the process are thus those satisfying (33) which split
totally into three distinct linear prime ideals in Q�3

�������
a2b
p

� but not in Q�3
�������
c2d
p
� and

which therefore belong to the set A � A1 ÿA2, where A1 is the set of primes in (33)
splitting totally into three distinct linear prime ideals in Q�3

�������
a2b
p

� and A2 is the set in
(33) splitting totally into three distinct linear prime ideals in both Q�3

�������
a2b
p

� and
Q�3

�������
c2d
p
�. The condition p � 1 �mod 3� is seen to be super¯uous in the de®nitions of

A1;A2 but serves to remind us that p splits totally into three distinct linear prime
ideals in Q�!�, whereupon we are prompted to de®ne the members of A1;A2 with
reference to their factorizations in the normal corpora U1 � Q�3

�������
a2b
p

; !� and
U2 � Q�3

�������
a2b
p

; 3
�������
c2d
p

; !� of respective degrees 6 and 18. The condition that p belong
to Ai being that it split totally into distinct linear prime ideals pi in Ui by the theory
of ideals, we can employ the prime ideal theorem in a familiar way to yieldX

p�u
p2A1

1 � 1

6

X
Npi�u

1�O�u1
2� � 1

6
li u�O ueÿE6

�������
log u
p� �

and X
p�u
p2A2

1 � 1

18

X
Npi�u

1�O�u1
2� � 1

18
li u�O ueÿE6

�������
log u
p� �

because in a normal corpus a rational prime p has a linear prime ideal factor if and
only if it split totally into a product of such ideals (which will be distinct when p does
not divide the discriminant). ConsequentlyX

p�u
p2A

1 � 1

9
li u�O ueÿE6

�������
log u
p� �

: �38�

The sieving procedure and the remainder of the estimation are quickly com-
pleted. By Brun's procedure and what has been said earlier about the function �0���,
the sum

P
1 in (37) does not exceed

�37�

RATIONAL POINTS ON CUBIC SURFACES 235

https://doi.org/10.1017/S0017089500020073 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500020073


E7

Y
p�Q
p2A

1ÿ	� p�
p4

� �
� E7

Y
p�Q
p2A

1ÿ 3� pÿ 1�2
p3

� �

� E8

Y
p�Q
p2A

1ÿ 3

p

� �

� E9

3
�����������
logQ

p � E10

3
�����������
logP

p
�39�

owing to (36) and (38), from which inequality and (37) we conclude that

S3 � O
P2

3
�����������
logP

p !
: �40�

Then, going back to (29), we ®rst infer from (30), (32), and (40) that

S1;S2 � O
P2

3
�����������
logP

p !

because S2 is a sum of type S1. Hence, ®nally,

N0�P� � O
P2

3
�����������
logP

p !
; �41�

with which estimate we end the analysis of the ®nal case to be considered.

We then arrive via (16), (21), (25), and (41) at our

Theorem. Let N�P� be the number of solutions of the indeterminate equation

ax3 � by3 � cz3 � dw3 � 0 �a; b; c; d 6� 0�

for which jxj; jyj; jzj; jwj � P. Then

N�P� � KP2 � o�P2�;

where, to within a correcting term O�P�, the contribution to N�P� from the rational
lines on the surface �1� is KP2. Also, according as the surface contains three, one, or no
rational lines, the remainder term o�P2� is actually

O P
4
3�"

� �
; O P

5
3�"

� �
; or O

P2

3
�����������
logP

p !
;

respectively.
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